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Abstract. This paper presents the application of low- and high-fidelity finite beam elements to 
analyze the dynamic response of aerospace structures subjected to random excitations. The refined 
structural models are developed with the Carrera Unified Formulation (CUF), enabling arbitrary 
finite element solutions to be easily generated. The solution scheme uses power spectral densities 
and the modal reduction strategy to reduce the computational burden. The response of an 
aluminum box beam is studied and compared with a solution obtained by a commercial code. 
Considering the root-mean-square value of the axial stress, an estimation of the fatigue life of the 
structure is obtained. 
Introduction 
Fatigue is one of the prevalent causes of failure in structural and mechanical components. To 
correctly estimate the fatigue life of an element, it is essential to evaluate the stress distribution as 
accurately as possible. Time and frequency domain analyses can be employed to characterize the 
fatigue performance of a structure. In particular, the frequency domain approach is preferred 
thanks to its lower computational cost than direct integrations of the governing equation in the 
time domain. [1-2]. In particular, the Power Spectral Density (PSD) method is commonly used in 
structural dynamics and random vibration analysis [3]. The Finite Element (FE) method is a 
flexible and powerful tool for determining displacement and stress spectra. Previous works mostly 
adopted finite elements based on classical and first-order shear deformation theories [4-5]. While 
these kinematics expansions are suitable for various structural problems, they may not hold valid 
assumptions for other applications, such as laminated and thin-walled structures. Two- and three-
dimensional (3D) FE formulations can be employed to address their limitations, but they often 
lead to a significant increase in computational costs. This study proposes an alternative approach 
by utilizing high-order finite beam elements. These elements provide an accurate and 
computationally efficient solution for predicting structural responses to random excitations. The 
Carrera Unified Formulation (CUF) enables the automatic implementation of various kinematic 
models through a recursive notation. Specifically, the response of a clamped-free box beam is 
given in terms of PSD and root-mean-square (RMS) of displacements and stresses, and a fatigue 
life prediction is provided given the value of RMS of axial stress.  
One-dimensional finite elements 
The one-dimensional (1D) model adopted in this work is based on the Carrera Unified Formulation 
(CUF). According to the CUF, the 3D displacement field of a solid beam with main dimension 
along the y-axis, can be expressed as a generic expansion of the generalized displacements 
𝑢𝑢τ(𝑦𝑦, 𝑡𝑡): 

𝐮𝐮(x, y, z, t) = Fτ(x, z)Ni(y)𝐮𝐮τ(y, t),           τ = 1,2, … , M and i = 1, … , nsn (1) 
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In this equation, M represents the number of terms used in the expansion, while nsn represents 
the number of structural nodes of a single Finite Element (FE). Repeated subscripts indicate 
summation, Ni(y) refers to the 1D FE shape functions, and Fτ(x, z) represents arbitrary functions 
on the cross-section. In this study, we adopt the Taylor (TE) and Lagrange (LE) expansion classes 
as polynomial bases. By introducing the Principle of Virtual Displacement (PVD) 𝛿𝛿𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛿𝛿𝐿𝐿𝑒𝑒𝑒𝑒𝑒𝑒, 
it is possible to derive finite element matrices and vectors by assembling the so-called 
Fundamental Nuclei. These nuclei are the invariant of the methodology. 
Theory of random response and fatigue life prediction  
Using the Fourier transform of the equation of motion, it is possible to obtain the equation in 
frequency domain: 
 
𝐪𝐪𝐤𝐤(𝛚𝛚) = [−𝛚𝛚𝟐𝟐𝐌𝐌 + 𝐢𝐢𝐢𝐢𝐢𝐢 + 𝐊𝐊]−𝟏𝟏𝐅𝐅𝐤𝐤∗                               𝐢𝐢 = √−𝟏𝟏                                                      (3) 

Where 𝐪𝐪𝐤𝐤 is the column vector that collects the degrees of freedom (DOF) of the FE model, k 
is an arbitrary non-null generalized coordinate, 𝐅𝐅𝐤𝐤∗ is the generalized force vector in frequency 
domain and it has only one nun-null term (equal to 1).  
To reduce the computational cost, it is a common practice to employ a modal reduction strategy.  
The Power Spectral Density (PSD) function of a signal gives an indication of the average power 
contained in particular frequencies and the root mean square (RMS) represents the square root of 
the area below PSD curve. Given the input PSD function of the load 𝐒𝐒𝐅𝐅, the output PSD of the 
three-dimensional displacement 𝐒𝐒𝐮𝐮 and the stress 𝐒𝐒𝛔𝛔 components at various frequencies (𝛚𝛚) are 
obtained: 
 
𝐒𝐒𝐮𝐮𝐢𝐢(𝛚𝛚) = 𝐇𝐇�𝐮𝐮𝐢𝐢(𝛚𝛚)𝐒𝐒𝐅𝐅(𝛚𝛚)𝐇𝐇𝐮𝐮𝐢𝐢

𝐓𝐓 (𝛚𝛚)                          𝐢𝐢 = 𝟏𝟏,𝟐𝟐,𝟑𝟑        

𝐒𝐒𝛔𝛔𝐣𝐣(𝛚𝛚) = 𝐇𝐇�𝛔𝛔𝐣𝐣(𝛚𝛚)𝐒𝐒𝐅𝐅(𝛚𝛚)𝐇𝐇𝛔𝛔𝐣𝐣
𝐓𝐓(𝛚𝛚)                        𝐣𝐣 = 𝟏𝟏, … ,𝟔𝟔                                                            (4) 

where 𝐇𝐇�(𝛚𝛚) and 𝐇𝐇𝐓𝐓 (𝛚𝛚)  are the complex conjugate and the transpose of the transfer function and 
it can be computed with the FE method by performing as many frequencies response analysis as 
of the non-null terms (𝐧𝐧𝐧𝐧𝐧𝐧) in the generalized force vector 𝐅𝐅: 
 
𝐇𝐇𝐪𝐪𝐤𝐤(𝛚𝛚) = �𝐪𝐪𝐤𝐤𝟏𝟏  𝐪𝐪𝐤𝐤𝟐𝟐  …   𝐪𝐪𝐤𝐤𝐋𝐋�            𝐤𝐤 = 𝟏𝟏, … ,𝐧𝐧𝐧𝐧𝐧𝐧         𝐋𝐋 = 𝟏𝟏, … , 𝐟𝐟𝐟𝐟                                            (5) 

where q is derived from Eq. (3) and fs is the number of frequency steps. In this work, the structure 
is subjected to white noise excitations, thus the PSD of this type of noise is constant. 
Numerical results 
The numerical example refers to a clamped-free box beam made of aluminum alloy with E = 71.7 
GPa, G= 27.6 GPa, ν= 0.3, ρ = 2700 kgm-3 and dimensions L=2.00 m, h = 0.05 m, b = 0.25 m, t=0.01 m. 
The beam is subjected to three-point loads (1 N) as shown in Figure 1.  
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Figure 1. Boundary conditions and geometry of the clamped-free box beam subjected to clipped 

white noise. Scheme of the cross-section. 
The structure was discretized using ten cubic beam elements. The first ten natural frequencies of 

the structure (Table 2) and the mass participation (Figure 2) were evaluated by conducting a 
normal mode analysis. The results have been obtained with the 12-LE9 model consisting of two 

Lagrange-type bi-quadratic elements for each lateral edge and four for the top and bottom 
surfaces. In the following analyses, forty modes were employed.  

 
Table 1. First six natural frequencies 

obtained with NASTAN and CUF-FEM 
approach. 

12-LE9 NASTRAN  
13.90 13.88 
56.13 56.17 
84.03 83.09 

178.68 170.8 
223.17 216.08 
324.78 324.67 
406.34 378.13 
461.23 424.19 
613.37 539.52 
629.52 563.01 

 

 
Figure 2. Mass participation versus 
number of modes of the box beam 

response. 
Figure 3 shows point A's vertical displacement PSD and point C's axial stress PSD. In Figure 

4, the distribution along the thickness corresponding to Point C of the root mean square of the axial 
stress is shown. Statistically speaking, the RMS stress value represents the 1σ value and will be 
experienced 68.3% of the time. A 2σ will be experienced 27.1% of the time, and a 3σ will be 
experienced 4.33%. These values represent 99.73% of the stresses the beam will experience at 
point C. Using Miner’s cumulative damage 𝑅𝑅𝑛𝑛 = 𝑛𝑛1

𝑁𝑁1
+ 𝑛𝑛2

𝑁𝑁2
+ 𝑛𝑛3

𝑁𝑁3
, it possible to obtained n, which is 

the number of cycles to fail: 1 = 0.6831𝑛𝑛
𝑁𝑁1

+ 0.271𝑛𝑛
𝑁𝑁2

+ 0.0433𝑛𝑛
𝑁𝑁3

. If the beam is vibrating at a frequency 
of 13.9 Hz (first natural frequency), then it will take approximately 2769 hours to fail. The results 
show that the 1D CUF approach is a valuable alternative to the common the 3D approach used by 
commercial codes. 
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         (a) 

 
        (b) 

Figure 3. PSD of: (a) vertical displacement of point A, (b) axial stress of point B. 

   

 
 
 
 

 1 RMS 2 RMS 3 RMS 
S 10.06 20.12 30.18 
N 4.3E10 1.8E8 7.6E6 

 

Figure 4. RMS distributions of the axial stress along the thickness. On the right, a table with 
values taken from a fatigue curve of aluminium. For a given stress in [MPa], the number of 

cycles needed to cause failure is given. 
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