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Abstract. Peridynamics is a novel nonlocal theory able to deal with discontinuities, such as crack 
initiation and propagation. Near the boundaries, due to the incomplete nonlocal region, the 
peridynamic surface effect is present, and its reduction relies on using a very small horizon, which 
ends up being expensive computationally. Furthermore, the imposition of nonlocal boundary 
conditions in a local way is often required. The surface node method has been proposed to solve 
both the aforementioned issues, providing enhanced accuracy near the boundaries of the body. 
This method has been verified in the cases of quasi-static elastic problems and diffusion problems 
evolving over time, but it has never been applied to a elastodynamic problems. In this work, we 
show the capabilities of the surface node method to solve a peridynamic problem of elastic wave 
propagation in a homogeneous body. The numerical results converge to the corresponding 
peridynamic analytical solution under grid refinement and exhibit no unphysical fluctuations near 
the boundaries throughout the whole timespan of the simulation. 
Motivation 
When structures are exposed to unfavorable conditions, e.g., high temperature gradients, hostile 
environmental actions, excessive mechanical loading, or extreme events, cracks may initiate, 
propagate, and coalesce over time, compromising the functionality of the affected structure. 
Aircraft integrity assessments often consist of scheduled maintenance to inspect damage 
propagating in the structures. The first concern is the safety of passengers since in between two 
scheduled inspections, little can be said about the status of the aircraft so that an unexpected failure 
could bring catastrophic consequences. The second drawback is related to financial losses, as each 
airplane has to be grounded for several hours/days during inspections. 

Fracture is difficult to predict because of complex multiphysical interactions and multiscale 
mechanisms that influence the behavior/evolution of cracks and damage. The capability of 
currently available computational tools based on classical mechanics, such as the Finite Element 
Method, to describe crack propagation and fragmentation is rather limited. On the other hand, the 
peridynamic theory allows to model fracture phenomena with ease. 
Introduction to the peridynamic theory 
Peridynamics (PD) is a nonlocal continuum theory based on integro-differential equations [1,2]. 
Peridynamics is more general compared to classical continuum models based on partial differential 
equations since discontinuities in the unknown displacements can arise and evolve in the domain 
without leading to mathematical inconsistencies or singularities in the problem. Successful 
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applications of this theory are, for instance, initiation and propagation of cracks in solid bodies 
[3,4], damage mechanisms in corrosion (with autonomously evolving interfaces) [5], etc. 

In a PD body 𝐵𝐵, a point interacts with all the points within a finite distance 𝛿𝛿, named horizon 
size. As shown in Fig. 1, the neighborhood 𝐻𝐻𝑥𝑥 is the set of points with which a generic point 𝑥𝑥 
interacts: 

 𝐻𝐻𝑥𝑥 = {𝑥𝑥′ ∈ 𝐵𝐵: |𝑥𝑥′ − 𝑥𝑥| ≤ 𝛿𝛿} . (1) 

Each interaction between any points 𝑥𝑥 and 𝑥𝑥′ is called bond. Thus, the PD equation of motion 
for a generic point 𝑥𝑥 in a 1D, homogeneous, linear elastic body [6,7] is given as 

 �̈�𝑢(𝑥𝑥, 𝑡𝑡) = 𝑣𝑣2 ∫ 𝑢𝑢�𝑥𝑥′,𝑡𝑡�−𝑢𝑢(𝑥𝑥,𝑡𝑡)
𝛿𝛿(𝑥𝑥′−𝑥𝑥)2

 
𝐻𝐻𝑥𝑥

d𝑥𝑥′, (2) 

where 𝑢𝑢 is the displacement, �̈�𝑢 is the acceleration and 𝑣𝑣 is the wave speed. 
 

 
Figure 1: Example of the neighborhoods of two points (𝑥𝑥1 and 𝑥𝑥2) in a peridynamic body. Note 

that the neighborhood of point 𝑥𝑥2 is incomplete due to the closeness with the boundary of the 
body, whereas the neighborhood of point 𝑥𝑥1 in the bulk of the body is complete. The blue curved 
lines represent the PD bonds between points 𝑥𝑥1, 𝑥𝑥2, and their neighboring points, respectively. 

 
However, nonlocal theories are well-known to have issues near the boundaries of the body, for 

the reason illustrated in Fig. 1. Due to the lack of some bonds, points near the boundaries of the 
body exhibit an apparent variation in stiffness properties, if one uses the same micromodulus for 
bonds of points near the boundaries as for bonds of points in the bulk. This phenomenon is called 
peridynamic surface effect and is usually undesired in structural analyses [8-10]. Moreover, 
nonlocal models require the imposition of nonlocal boundary conditions, i.e., loads and constraints 
have to be enforced in a layer of finite thickness. This is in contrast with the concept of local 
boundary conditions that are enforced just at the boundary of the body. Since experiments 
generally provide measurements at the boundary, imposing local boundary conditions in a nonlocal 
model is usually desired. In this work, the surface node method (see details in the following) is 
used to mitigate the PD surface effect and impose local boundary conditions in the peridynamic 
model. This method has been applied to quasi-static mechanical problems [9-11] and to a diffusion 
problem evolving over time [12]. Here we extend it to elastodynamic problems in 1D. Further 
extensions to higher dimensions are immediate. 
Discretization in space and time 
A peridynamic body is commonly discretized by means of the meshfree method with a uniform 
grid spacing ∆𝑥𝑥 [13]. Therefore, each node is representative of a cell of length ∆𝑥𝑥, as shown in 
Fig. 2. After the discretization in space, the peridynamic equation of motion of a generic node 𝑖𝑖 is 
written as 

 �̈�𝑢(𝑥𝑥𝑖𝑖, 𝑡𝑡) = 𝑣𝑣2

𝛿𝛿
∑ 𝑢𝑢�𝑥𝑥𝑗𝑗,𝑡𝑡�−𝑢𝑢(𝑥𝑥𝑖𝑖,𝑡𝑡)

�𝑥𝑥𝑗𝑗−𝑥𝑥𝑖𝑖�
2𝑗𝑗∈𝐻𝐻𝑖𝑖 𝛽𝛽𝑖𝑖𝑗𝑗∆𝑥𝑥 , (3) 
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where 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗 are respectively the coordinates of node 𝑖𝑖 and any node 𝑗𝑗 within the neighborhood 
𝐻𝐻𝑖𝑖 of node 𝑖𝑖, and 𝛽𝛽𝑖𝑖𝑗𝑗 is the quadrature coefficient of node 𝑗𝑗 with respect to 𝐻𝐻𝑖𝑖. 𝛽𝛽𝑖𝑖𝑗𝑗 is defined as the 
fraction of cell of node 𝑗𝑗 which actually lies within the neighborhood 𝐻𝐻𝑖𝑖 [14,15]. Hence, 𝛽𝛽𝑖𝑖𝑗𝑗 = 1 
if the cell of node 𝑗𝑗 lies completely inside 𝐻𝐻𝑖𝑖 and 0 < 𝛽𝛽𝑖𝑖𝑗𝑗 < 1 if the cell of node 𝑗𝑗 lies partially 
inside 𝐻𝐻𝑖𝑖. 
 

 
Figure 2: Discretization of the peridynamic body by means of the meshfree method with a 

uniform grid spacing ∆𝑥𝑥. The black solid dots and the blue curved lines represent the nodes and 
the bonds, respectively. 

 
The explicit central difference is employed to integrate in time [13]: 

 �̈�𝑢(𝑥𝑥𝑖𝑖, 𝑡𝑡𝑛𝑛) = 𝑢𝑢(𝑥𝑥𝑖𝑖,𝑡𝑡𝑛𝑛+1)−2𝑢𝑢(𝑥𝑥𝑖𝑖,𝑡𝑡𝑛𝑛)+𝑢𝑢(𝑥𝑥𝑖𝑖,𝑡𝑡𝑛𝑛−1)
∆𝑡𝑡2

 , (4) 

where ∆𝑡𝑡 is the time step size and 𝑛𝑛 stands for the index of the current time step. Therefore, the 
iterative procedure to obtain the displacement of node 𝑖𝑖 at the time step 𝑛𝑛 + 1 is determined by the 
following formula: 

 𝑢𝑢(𝑥𝑥𝑖𝑖, 𝑡𝑡𝑛𝑛+1) = 2𝑢𝑢(𝑥𝑥𝑖𝑖 , 𝑡𝑡𝑛𝑛) − 𝑢𝑢(𝑥𝑥𝑖𝑖, 𝑡𝑡𝑛𝑛−1) + (𝑣𝑣∆𝑡𝑡)2

𝛿𝛿
∑ 𝑢𝑢�𝑥𝑥𝑗𝑗,𝑡𝑡�−𝑢𝑢(𝑥𝑥𝑖𝑖,𝑡𝑡)

�𝑥𝑥𝑗𝑗−𝑥𝑥𝑖𝑖�
2𝑗𝑗∈𝐻𝐻𝑖𝑖 𝛽𝛽𝑖𝑖𝑗𝑗∆𝑥𝑥 . (5) 

The initial displacement 𝑢𝑢(𝑥𝑥𝑖𝑖, 𝑡𝑡0) and velocity �̇�𝑢(𝑥𝑥𝑖𝑖, 𝑡𝑡0) are known at any node. However, to obtain 
the displacement at the first time step 𝑢𝑢(𝑥𝑥𝑖𝑖, 𝑡𝑡1), the knowledge of 𝑢𝑢(𝑥𝑥𝑖𝑖, 𝑡𝑡−1) is required as well. 
This displacement can be computed as 

 𝑢𝑢(𝑥𝑥𝑖𝑖, 𝑡𝑡−1) = 𝑢𝑢(𝑥𝑥𝑖𝑖, 𝑡𝑡0) − �̇�𝑢(𝑥𝑥𝑖𝑖, 𝑡𝑡0)∆𝑡𝑡 + �̈�𝑢(𝑥𝑥𝑖𝑖, 𝑡𝑡0) ∆𝑡𝑡
2

2
 , (6) 

where 

 �̈�𝑢(𝑥𝑥𝑖𝑖, 𝑡𝑡0) = 𝑣𝑣2

𝛿𝛿
∑ 𝑢𝑢�𝑥𝑥𝑗𝑗,𝑡𝑡0�−𝑢𝑢(𝑥𝑥𝑖𝑖,𝑡𝑡0)

�𝑥𝑥𝑗𝑗−𝑥𝑥𝑖𝑖�
2𝑗𝑗∈𝐻𝐻𝑖𝑖 𝛽𝛽𝑖𝑖𝑗𝑗∆𝑥𝑥 . (7) 

Review of the Surface Node Method 
Let us call interior nodes the nodes lying within the peridynamic body. In order to complete the 
neighborhoods of the interior nodes near the boundaries of the body, two fictitious domains are 
added at the two boundaries of the body, as shown in Fig. 3. The nodes lying in the fictitious 
domains are named fictitious nodes. Moreover, we introduce the surface nodes at the two ends of 
the body, a new type of nodes that do not have PD bond connections with other nodes and are used 
to impose the peridynamic boundary conditions in a local way. 
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Figure 3: Introduction of the fictitious domain to complete the neighborhoods of the nodes near 

the boundaries of the body. The solid and empty dots represent the interior and the fictitious 
nodes, respectively. The solid squares at 𝑥𝑥 = 0 and 𝑥𝑥 = ℓ represent the surface nodes. The solid 

and dashed blue lines represent the bonds between nodes. 
 

In this work, we apply only Dirichlet boundary conditions at the surface nodes, i.e., the 
displacements of the surface nodes are constrained. For the imposition of Neumann boundary 
conditions, the equations enforced at the surface nodes based on the peridynamic force flux can be 
found in [9-12]. To determine the displacements of the fictitious nodes, we assume that a fictitious 
domain deforms as the corresponding closest surface node. In other words, we determine the 
displacements of a fictitious node 𝑓𝑓 via a Taylor-based extrapolation, truncated at the linear term 
for simplicity: 

 𝑢𝑢�𝑥𝑥𝑓𝑓 , 𝑡𝑡𝑛𝑛� = 𝑢𝑢(𝑥𝑥𝑠𝑠, 𝑡𝑡𝑛𝑛) + �𝑥𝑥𝑓𝑓 − 𝑥𝑥𝑠𝑠�
𝜕𝜕𝑢𝑢(𝑥𝑥𝑠𝑠,𝑡𝑡𝑛𝑛)

𝜕𝜕𝑥𝑥
 , (8) 

where the derivative of the displacement at the surface node 𝑠𝑠 is computed with the finite 
difference method as 

 𝜕𝜕𝑢𝑢(𝑥𝑥𝑠𝑠,𝑡𝑡𝑛𝑛)
𝜕𝜕𝑥𝑥

= 𝑢𝑢(𝑥𝑥𝑠𝑠,𝑡𝑡𝑛𝑛)−𝑢𝑢�𝑥𝑥𝑝𝑝,𝑡𝑡𝑛𝑛�
𝑥𝑥𝑠𝑠−𝑥𝑥𝑝𝑝

 , (9) 

where 𝑝𝑝 is the index of the interior node closest to the surface node 𝑠𝑠. Note that, by plugging Eq. 
9 into Eq. 8, the displacements of the fictitious nodes are functions of the displacements of the 
surface node and of its closest interior node. An example of the Taylor-based extrapolation is 
illustrated in Fig. 4. At this point, since the displacements of the surface nodes are prescribed as 
boundary conditions, the only unknowns are the displacements of the interior nodes, which can be 
found by solving, at each time step, the system of equations generated by Eq. 5. 
Analytical solution of elastic wave propagation in Peridynamics 
Even though Peridynamics handles with ease the treatment of discontinuities thanks to the integro-
differential equations, determining analytical solutions to such equations is a much more difficult 
task to accomplish. For this reason, peridynamic numerical results are often compared with those 
obtained with classical mechanics. However, due to the different formulations of the theories, 
analytical solutions to the peridynamic and classical problems may be (and usually are) different 
from one another, and even more so in dynamics. A recent work [6,7] has shown that the method 
of separation of variables can be applied to peridynamic models to obtain their analytical solutions. 
Therefore, we present here one of the examples in [7] with the analytical solution to a peridynamic 
elastodynamic (elastic wave propagation) problem. 
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Figure 4: Examples of displacement field (𝑢𝑢1 and 𝑢𝑢2 at two different time steps) determined by a 
linear Taylor-based extrapolation over the fictitious domain when Dirichlet boundary conditions 

are enforced at the surface node (purple square). The displacements of the fictitious nodes 
(empty dots) depend on the value of the constraint and the displacement of the interior node 

closest to the boundary. 
 

The initial boundary value problem of wave propagation in a peridynamic medium is given as 

 �
�̈�𝑢(𝑥𝑥, 𝑡𝑡) = 𝑣𝑣2

𝛿𝛿 ∫
𝑢𝑢�𝑥𝑥′,𝑡𝑡�−𝑢𝑢(𝑥𝑥,𝑡𝑡)

(𝑥𝑥′−𝑥𝑥)2
 
𝐻𝐻𝑥𝑥

d𝑥𝑥′                         for  0 < 𝑥𝑥 < ℓ,   𝑡𝑡 > 0 ,

𝑢𝑢(0, 𝑡𝑡) = 𝑢𝑢(ℓ, 𝑡𝑡) = 0                                            for  𝑡𝑡 > 0 ,                       
𝑢𝑢(𝑥𝑥, 0) = 0.02𝑒𝑒−100(𝑥𝑥−0.5)2 ,   �̇�𝑢(𝑥𝑥, 0) = 0      for  0 < 𝑥𝑥 < ℓ ,             

  (10) 

where ℓ is the length of the peridynamic body. Note that the initial displacement field 𝑢𝑢(𝑥𝑥, 0) has 
the shape of a Gaussian function. The analytical solution to this peridynamic problem is computed 
by means of the method of separation of variables [6,7]: 

 𝑢𝑢(𝑥𝑥, 𝑡𝑡) = ∑ 0.004√𝜋𝜋
ℓ

∞
𝑚𝑚=1,3,5,… sin �𝑚𝑚𝜋𝜋

2
� 𝑒𝑒

−𝑘𝑘𝑚𝑚
2

400 sin(𝑘𝑘𝑚𝑚𝑥𝑥) cos�𝑣𝑣�−𝜓𝜓 𝑡𝑡� , (11) 

where 𝑘𝑘𝑚𝑚 = 𝑚𝑚𝜋𝜋
ℓ

 and 𝜓𝜓 = 𝜓𝜓(𝛿𝛿) is the nonlocal factor computed as 

 𝜓𝜓(𝛿𝛿) = 2
𝛿𝛿2

[𝑘𝑘𝑚𝑚𝛿𝛿 Si(𝑘𝑘𝑚𝑚𝛿𝛿) + cos(𝑘𝑘𝑚𝑚𝛿𝛿) − 1] , (12) 

where Si(∙) is the sine integral function. The analytical solution in Eq. 11 will be used as reference 
for the numerical results. 
Results and discussion 
In this section, we solve numerically the problem in Eq. 10 of the peridynamic wave propagation 
in a homogeneous, linear elastic body by using the meshfree discretization in space and the explicit 
central difference method for time integration (Eq. 5). This is the first application of the Surface 
Node Method to an elastodynamic problem. 
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Figure 5: Plots of the propagating wave at different instants of time 𝑡𝑡. Note that the Classical 
Continuum Mechanics (CCM) analytical solution is a non-dispersive wave, whereas the 

peridynamic (PD) analytical solution with 𝛿𝛿 = 0.1ℓ is a dispersive wave. The peridynamic 
numerical results (with 𝛿𝛿 = 0.1ℓ) are represented by the colored dots corresponding to the 

displacements computed at each node. As the grid is refined (namely as the 𝑚𝑚� -ratio 𝑚𝑚� = 𝛿𝛿/∆𝑥𝑥 
is increased keeping 𝛿𝛿 constant), the numerical results converge to the peridynamic analytical 

solution. 
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The length of the body is assumed to be ℓ = 1 m and the horizon size 𝛿𝛿 = 0.1ℓ. The wave 
speed is computed as 𝑣𝑣 = �𝐸𝐸 𝜌𝜌⁄ , where 𝐸𝐸 = 200 GPa is the Young’s modulus and 𝜌𝜌 = 8000 
kg/m3 is the density. Regarding the time integration, we used a time step size of ∆𝑡𝑡 = 0.0002 ms 
to discretize a total timespan of 𝑇𝑇 = 0.2 ms. The series to compute the analytical solution in Eq. 
11 is truncated after the first 40 terms. In order to prove that the numerical model converges to the 
peridynamic analytical solution, different grid sizes are adopted. Since the horizon size has a fixed 
value, the grid refinement is equivalent to increasing the value of the 𝑚𝑚� -ratio, defined as 𝑚𝑚� =
𝛿𝛿/∆𝑥𝑥, i.e., increasing the number of nodes lying within a neighborhood. This is why, in 
Peridynamics, the convergence analysis related to the grid refinement is called 𝑚𝑚� -convergence. 
Therefore, we choose 𝑚𝑚� = 10, 25, 100, corresponding to a grid spacing ∆𝑥𝑥 = 10, 4, 1 mm and a 
number of interior nodes 𝑁𝑁 = 100, 250, 1000, respectively. 

Fig. 5 shows the analytical solutions obtained with Classical Continuum Mechanics (CCM) and 
Peridynamics (PD), and the peridynamic numerical results. We observe that in this simple dynamic 
problem the CCM solution cannot serve as reference solution for the numerical PD cases since it 
is clearly different from the exact PD solution. Moreover, note that elastic waves modeled with 
CCM are non-dispersive, but this is not the case for waves propagating in a peridynamic medium 
[1,7]. The dispersion in a peridynamic medium can be reduced by decreasing the horizon size 𝛿𝛿, 
since the PD solution approaches the CCM one as 𝛿𝛿 → 0 [7,16]. 

The peridynamic numerical results are close to the PD analytical solution at any instant of time 
and their accuracy is improved by increasing the value of the 𝑚𝑚� -ratio, as expected in a 𝑚𝑚� -
convergence analysis. No unphysical fluctuations or kinks, typically observed in relation to surface 
effect and/or nonlocal boundary conditions (see for example [8-11]), are exhibited near the 
boundaries of the body. Therefore, the Surface Node Method has been shown to be accurate and 
reliable in the solution of dynamic problems. 
Conclusions 
The peridynamic framework is a promising theory to model fracture phenomena in solid bodies. 
However, the intrinsic nonlocality of the model leads to the well-known peridynamic surface effect 
and fluctuations of the solution of an elastodynamic problem near the boundaries of the body. 
Moreover, there is the need for a method to impose local boundary conditions in these nonlocal 
models. The surface node method provides an easy and automatic way to considerably reduce the 
oscillations near the boundaries and impose local boundary conditions in a peridynamic model. In 
this work, we verified that the surface node method is accurate when applied to solve an 
elastodynamic problem in a homogeneous, linear elastic body. In particular, we showed that the 
numerical results exhibit no unphysical fluctuations near the boundaries and converge to the 
peridynamic analytical solution under grid refinement. 
Acknowledgements 
The authors would like to acknowledge the support they received from the Italian Ministry of 
University and Research under the PRIN 2017 research project “DEVISU” (2017ZX9X4K) and 
from University of Padova under the research project BIRD2020 NR.202824/20. 
References 
 

[1] S.A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces, J. 
Mech. Phys. Solids 48 (2000) 175-209. https://doi.org/10.1016/S0022-5096(99)00029-0 

[2] S.A. Silling, M. Epton, O. Weckner, J. Xu, E. Askari, Peridynamic states and constitutive 
modelling, J. Elast. 88 (2007) 151-184. https://doi.org/10.1007/s10659-007-9125-1 

[3] F. Bobaru, G. Zhang, Why do cracks branch? A peridynamic investigation of dynamic brittle 
fracture, Int. J. Fract. 196 (2015) 59-98. https://doi.org/10.1007/s10704-015-0056-8 

https://doi.org/10.1016/S0022-5096(99)00029-0
https://doi.org/10.1007/s10659-007-9125-1
https://doi.org/10.1007/s10704-015-0056-8


Aerospace Science and Engineering - III Aerospace PhD-Days Materials Research Forum LLC 
Materials Research Proceedings 33 (2023) 347-354  https://doi.org/10.21741/9781644902677-51 
 

 
354 

[4] M. Zaccariotto, F. Luongo, U. Galvanetto, G. Sarego, Examples of applications of the 
peridynamic theory to the solution of static equilibrium problems, Aeronaut. J. 119 (2015) 677-
700. https://doi.org/10.1017/S0001924000010770 

[5] Z. Chen, F. Bobaru, Peridynamic modeling of pitting corrosion damage, J. Mech. Phys. Solids 
78 (2015) 352-381. https://doi.org/10.1016/j.jmps.2015.02.015 

[6] Z. Chen, X. Peng, S. Jafarzadeh, F. Bobaru, Analytical solutions of peridynamic equations. 
Part I: transient heat diffusion, J. Peridyn. Nonlocal Model (2022) 303-335. 
https://doi.org/10.1007/s42102-022-00080-7 

[7] Z. Chen, X. Peng, S. Jafarzadeh, F. Bobaru, Analytical solutions of peridynamic equations. 
Part II: elastic wave propagation, submitted. 

[8] Q.V. Le, F. Bobaru, Surface corrections for peridynamic models in elasticity and fracture, 
Comput. Mech. 61 (2018) 499-518. https://doi.org/10.1007/s00466-017-1469-1 

[9] F. Scabbia, M. Zaccariotto, U. Galvanetto, A novel and effective way to impose boundary 
conditions and to mitigate the surface effect in state-based Peridynamics, Int. J. Numer. 
Methods. Eng. 122 (2021) 5773-5811. https://doi.org/10.1002/nme.6773 

[10] F. Scabbia, M. Zaccariotto, U. Galvanetto, A new method based on Taylor expansion and 
nearest-node strategy to impose Dirichlet and Neumann boundary conditions in ordinary 
state-based Peridynamics, Comp. Mech. 70 (2022) 1-27. https://doi.org/10.1007/s00466-
022-02153-2 

[11] F. Scabbia, M. Zaccariotto, U. Galvanetto, A new surface node method to accurately model 
the mechanical behavior of the boundary in 3D state-based Peridynamics, J. Peridyn. 
Nonlocal Model (2023) 1-35. https://doi.org/10.1007/s42102-022-00094-1 

[12] F. Scabbia, M. Zaccariotto, U. Galvanetto, F. Bobaru, Stability and convergence analyses for 
peridynamic models with autonomously evolving interfaces, in preparation. 

[13] S.A. Silling, E. Askari, A meshfree method based on the peridynamic model of solid 
mechanics, Comput. Struct. 83 (2005) 1526-1535.  

https://doi.org/10.1016/j.compstruc.2004.11.026 
[14] P. Seleson, Improved one-point quadrature algorithms for two-dimensional peridynamic 

models based on analytical calculations, Comput. Methods Appl. Mech. Eng. 282 (2014) 
184-217. https://doi.org/10.1016/j.cma.2014.06.016 

[15] F. Scabbia, M. Zaccariotto, U. Galvanetto, Accurate computation of partial volumes in 3D 
peridynamics, Eng. Comput. (2022) 1-33. https://doi.org/10.1007/s00366-022-01725-3 

[16] S.A. Silling, R.B. Lehoucq, Convergence of peridynamics to classical elasticity theory, J. 
Elast. 93 (2008) 13-37. https://doi.org/10.1007/s10659-008-9163-3 

 

https://doi.org/10.1017/S0001924000010770
https://doi.org/10.1016/j.jmps.2015.02.015
https://doi.org/10.1007/s42102-022-00080-7
https://doi.org/10.1007/s00466-017-1469-1
https://doi.org/10.1002/nme.6773
https://doi.org/10.1007/s00466-022-02153-2
https://doi.org/10.1007/s00466-022-02153-2
https://doi.org/10.1007/s42102-022-00094-1
https://doi.org/10.1016/j.compstruc.2004.11.026
https://doi.org/10.1016/j.cma.2014.06.016
https://doi.org/10.1007/s00366-022-01725-3
https://doi.org/10.1007/s10659-008-9163-3

	Peridynamic simulation of elastic wave propagation by applying  the boundary conditions with the surface node method
	Motivation
	Introduction to the peridynamic theory
	Discretization in space and time
	Review of the Surface Node Method
	Analytical solution of elastic wave propagation in Peridynamics
	Results and discussion
	Conclusions
	Acknowledgements
	References


