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Abstract. This article explores a solution utilizing a convolutional neural network (CNN) to 
simulate robust monocular visual navigation during proximity operations of a space mission, 
where a precise determination of relative pose is crucial for mission safety. This operation involves 
closely observing a spacecraft with a CubeSat under challenging illumination conditions. The 
methodology involves generating a dataset using Blender software and training a Mask-CNN with 
a ResNet-50 architecture to identify relevant features representing the target's 3D model. The 
dataset's ground truth is obtained through an inverse Perspective-n-Point (PnP) problem. Overall, 
this work provides valuable insights into the potential of deep learning-based visual navigation 
techniques for enhancing space mission operations. 
Introduction 
In modern times, digital cameras have become compact, precise, non-invasive, and affordable, 
which has led to their widespread use in vehicle and robot navigation. Over the years, various 
techniques have been developed for this purpose, with visual navigation being one of the most 
accurate ways to estimate position and attitude, also known as camera pose estimation. 

Visual navigation has been extensively studied in the context of robotic space exploration, 
including the Mars exploration rovers in 2003. However, there has been a growing interest in 
applying visual-based navigation techniques for on-orbit servicing missions in recent years. This 
is especially important for automatic rendezvous operations, which require precise determination 
of relative pose to ensure safe mission completion. 

The traditional approach of pose estimation involves multi-view geometry, which compares 
two or more consecutive frames finding a set of 2D/2D correspondences to determine the camera's 
movement as in (Fravolini, 2010). 

These methods are mostly applied in conditions where no known target object is observed. On 
a space mission, during proximity maneuvers, a target object can be observed and, if the geometry 
is known, a single image is enough to estimate the camera pose. Classical single-image pose 
estimation methods aim to solve the Perspective-n-Point (PnP) problem. PnP is the problem of 
estimating the pose of a calibrated camera given a set of n 3D points in the world and their 
corresponding 2D projections in the image. Model-based methods use a wireframe 3D model of 
the target spacecraft to match with 2D features extracted from the image and estimate the relative 
pose. Non-model-based methods compare the in-flight image with a pre-stored database of images 
to estimate the pose without feature extraction (al., 2012). However, these approaches lack 
robustness due to low signal-to-ratio, extreme illumination conditions, and dynamic Earth 
background in space imagery.  

Recent developments in computer vision have introduced deep learning for pose estimation. 
Deep learning-based pose estimation methods typically use convolutional neural networks (CNNs) 
to extract features from input images or sensor data and then use these features to estimate the 
object's pose. By leveraging large amounts of labeled training data, deep learning methods can 
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learn complex relationships between input data and object poses, enabling them to achieve high 
accuracy even in challenging conditions such as low-light environments or cluttered scenes. 

The objective of this paper is to explore a solution based on a CNN for simulating robust 
monocular visual navigation during a space mission's proximity operation, which involves closely 
observing a spacecraft with a CubeSat in critical illumination conditions. The optical sensor will 
be evaluated as a strong option in synergy with GPS data and IMU to calculate the relative position 
and attitude accurately. The final part of the mission involves a docking maneuver, where visual 
navigation is crucial, and hence, an accurate study of the technique is necessary. 
Methodology 
 

 
Figure 1 High-level architecture 

The high-level architecture first involves the generation of the dataset using the 3D modeling 
software Blender. We placed in a blender environment a CAD model of SR and used blender’s 
built-in camera model to visualize the camera’s field of view, sensor size and resolution. Although 
this method is not physically or radiometrically accurate, it is a good way to test feature extraction 
algorithms under ideal circumstances. The environment is built by introducing a realistically scaled 
Earth, a moving sun, and trajectory import from STK or MATLAB simulations. However, the vast 
scale differences between Space Rider and Earth introduced core renderer issues that were 
addressed via workarounds. Three objects - terrain, atmosphere, and clouds - each with their own 
custom shader, made up the Earth. The terrain was composed of high-resolution satellite imagery, 
and a layer mask was used to increase roughness and create specular reflections on the water. The 
atmosphere was modeled to capture Rayleigh scattering and atmospheric pressure decay, which 
gives the sky its colour during daytime and tinge it red during sunset. The cloud layer imitated 
volumetric effects through a semi-transparent texture wrapped around the globe, and the sun mesh 
was placed according to the sun vector, with Blender's lens flare effects overlayed when visible 
from the camera. Blender's environment can read coordinate files in .csv form taken from STK or 
MATLAB and use them to procedurally place objects throughout the scene. Overall, this detailed 
environment provided a good testbed for feature extraction algorithms before introducing 
complications such as an illuminated moving background, real-world effects such as amplification 
and radiation noise, motion blur, bloom, or optic-induced blur.  

The second component of a visual navigation simulator involves training a CNN to recognize 
relevant features in the images. In this case, a Mask-CNN with a ResNet-50 architecture is used 
(He, Gkioxari, Dollar, & Girshick, 2018). The Mask-CNN is a variant of the standard CNN that 
includes an additional output layer that predicts object masks. This is useful for tasks such as object 
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segmentation, where the goal is to identify the pixels corresponding to specific objects in an image. 
In our case, the specific objects are 6 keypoint representing the 3D model of our target. 

 
Figure 2 3D Model in Blender environment 

The ground truth of the dataset (the 6 keypoints) is calculated through an inverse PnP problem; 
given the relative attitude and the relative position, the 𝑢𝑢 and 𝑣𝑣 coordinates of the keypoints on the 
image captured are automatically calculated: 
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In which 𝑋𝑋𝑐𝑐𝑐𝑐𝑐𝑐 and 𝑌𝑌𝑐𝑐𝑐𝑐𝑐𝑐 are the coordinates of the keypoints in the camera reference frame, 𝑓𝑓 is 
the focal length,  𝑢𝑢0 and 𝑣𝑣0 are the coordinates of the principal point of the camera, 𝑋𝑋 𝑌𝑌 and 𝑍𝑍 are 
the 3D coordinates in world coordinates frame (we considered a body reference frame).  

The CNN architecture was designed with Pytorch framework on Python with a texture-
randomized to increase accuracy and robustness. The Resnet 50 architecture is already 
implemented in the standard Pytorch libraries. 
 

 
Figure 3 PnP problem depicted 

The third component of a visual navigation simulator involves solving the PnP problem to find the 
relative pose of the target with respect to camera reference. The PnP problem is a classic computer 
vision problem that involves estimating the position and orientation of an object relative to a 
camera, given a set of 2D image points and their corresponding 3D points in the object coordinate 
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system. In the context of visual navigation, the PnP problem is used to determine the position and 
orientation (𝑅𝑅 and 𝑡𝑡 in  

Equation 1) of the autonomous agent relative to the environment it is navigating in. This 
information is critical for the agent to make informed decisions on how to navigate through the 
environment safely and efficiently. The problem is solved with RANSAC (Random Sample 
Consensus) (Fischler, 1981) algorithm, which is robust to outliers and can handle noise in the data. 
The RANSAC algorithm works by randomly selecting a subset of 3D-2D point correspondences 
to estimate the camera pose. 

Overall, the architecture of a visual navigation simulator is designed to enable the creation of 
realistic environments and provide the necessary tools for training and testing autonomous 
navigation algorithms. The use of realistic illumination conditions, the training of a CNN, and the 
solution of the PnP problem are all critical components of a visual navigation simulator that 
contribute to its effectiveness in training and testing autonomous navigation algorithms. 
Results & discussion 
The model was trained with 4500 synthetic images generated with Blender as explained in the 
previous section. The synthetic images are generated in a random position of our chaser in a range 
from 100 m to 10 m around the target. This dataset replicates the maneuver carried out which is 
an observation maneuver around the target, and the distance varies as it is a spiral-shaped maneuver 
with an elliptical-shaped base. 

The learning rate is initially set to 0.001 and decays exponentially by a factor of 0.98 after every 
epoch. The network is trained on an NVIDIA GeForce RTX 3090 for 200 epochs. Our aim was to 
evaluate the performance of the model in predicting the pose of objects in the scene. We used two 
metrics to evaluate the error in the predicted pose: 𝐸𝐸𝑅𝑅 for the quaternion error and 𝐸𝐸𝑇𝑇 for the 
translation error (Sharma & D'Amico, 2019). 
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Where t, 𝑞𝑞 are the predicted unit quaternion and translation vector aligning the target body 

reference frame and the Camera frame, and 𝑡𝑡,𝑞𝑞 are the ground-truth unit quaternion and translation 
vector. 𝐸𝐸𝑅𝑅 corresponds to the angle of the smallest rotation that aligns 𝑞𝑞 

and 𝑞𝑞. 𝐸𝐸𝐸𝐸𝐸𝐸 is this distance normalized by the ground truth distance between the target and the 
camera. A final metric combines the two errors: 
 
𝐸𝐸𝐸𝐸=𝐸𝐸𝐸𝐸𝐸𝐸+𝐸𝐸𝑅𝑅 

Table 1 CNN Scores 

Metrics Score 
Mean 𝐸𝐸𝑇𝑇 [m] [0.2978  0.2131  0.3376] 
Mean 𝐸𝐸𝑅𝑅 [deg] 4.302 
Mean 𝐸𝐸𝐶𝐶 0.1345 

 
Table 1 reports the CNN’s performances (Park, Sharma, & D'Amico, 2019) tested on a 

validation dataset of 100 synthetic images. 
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Overall, our results demonstrate the effectiveness of the Mask-CNN Resnet 50 model in 
accurately predicting the pose of objects in synthetic images. Specifically, the mean 𝐸𝐸𝐸𝐸 is about 
50 cm, while the mean 𝐸𝐸𝑅𝑅 is around 4.3 degrees.  

While initial results show promise, they are not as robust as those reported in seminal works in 
the field (Park, Sharma, & D'Amico, 2019) (Black, 2021). However, it is important to note that 
this work represents an early iteration in the development of new approaches to pose estimation 
using CNNs.  

Conclusion 
In conclusion, this paper presents a solution based on a convolutional neural network (CNN) for 
simulating robust monocular visual navigation during a space mission's proximity operation. The 
proposed approach involves the generation of a dataset using 3D modeling software and training 
a Mask-CNN with a ResNet-50 architecture to recognize 6 keypoint features in images. The 
ground truth of the dataset is calculated through an inverse Perspective-n-Point (PnP) problem. 
The CNN's output is used to estimate the relative pose of a target spacecraft with respect to a 
CubeSat using a monocular camera in critical illumination conditions. 

The proposed approach has several advantages over traditional methods for visual navigation. 
Deep learning-based pose estimation methods can learn complex relationships between input data 
and object poses, enabling them to achieve high accuracy even in challenging conditions such as 
low-light environments or cluttered scenes. The use of a monocular camera in critical illumination 
conditions reduces the complexity and cost of the system while maintaining high accuracy. The 
proposed approach can be used for automatic rendezvous operations, which require precise 
determination of relative pose to ensure safe mission completion. 

The present findings underscore the need for further research and refinement of the proposed 
method to achieve more robust and accurate results. Expanding the dataset, improving its quality 
evaluating the use of other software and adjusting training parameters may hold promise as 
solutions to the current limitations of the method.  

Another future work involves the integration of the proposed approach with GPS data and 
Inertial Measurement Unit (IMU) data to calculate the relative position and attitude accurately. 
Overall, the proposed approach shows promise for improving visual navigation in space missions 
and could be an essential tool for future on-orbit servicing missions. 
References 
[1] al., D. A. (2012). Solving the PnP Problem for Visual Odometry – An Evaluation of 
Methodologies for Mobile Robots. Conference: Conference Towards Autonomous Robotic 
Systems, 451-452. https://doi.org/10.1007/978-3-642-32527-4_54 
[2] Black, K. &. (2021). Real-Time, Flight-Ready, Non-Cooperative Spacecraft Pose Estimation 
Using Monocular Imagery. 
[3] Fischler, M. A. (1981). Random sample consensus: a paradigm for model fitting with 
applications to image analysis and automated cartography. Communications of the ACM 24.6, 
381-395. https://doi.org/10.1145/358669.358692 

Figure 4 Keypoint detection results 



Aerospace Science and Engineering - III Aerospace PhD-Days Materials Research Forum LLC 
Materials Research Proceedings 33 (2023) 9-14  https://doi.org/10.21741/9781644902677-2 
 

 
14 

[4] Fravolini, S. F. (2010). A Robust Monocular Visual Algorithm for Autonomous Robot 
Application. IFAC Proceedings Volumes 43.16, 551–556. https://doi.org/10.3182/20100906-3-
IT-2019.00095 
[5] He, K., Gkioxari, G., Dollar, P., & Girshick, R. (2018). Mask R-CNN. CoRR. 
https://doi.org/10.1109/ICCV.2017.322 
[6] Park, T. H., Sharma, S., & D'Amico, S. (2019). Towards Robust Learning-Based Pose 
Estimation of Noncooperative Spacecraft. ArXiv. 
[7] Sharma, S., & D'Amico, S. (2019). Pose estimation for non-cooperative spacecraft.  
 
 
 


	Relative visual navigation based on CNN in  a proximity operation space mission
	Introduction
	Methodology
	Results & discussion
	Conclusion
	References


