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Abstract. Metamaterials are artificially engineered materials that have properties not found in 
naturally occurring materials. They are designed to have specific electromagnetic or other physical 
properties, such as negative refraction, superconductivity or high absorptivity. They are often 
composed of structures on a scale much smaller than the wavelength of the phenomena they are 
intended to manipulate. Metamaterials have a wide range of potential applications, including in 
antennas, cloaking devices, and super resolution imaging. In this paper we have simulated and 
validated an L shaped meta material to make a data set of its absorptivity by varying different input 
parameters and then used these data to predict the absorptivity of any L shaped metamaterial using 
machine learning and it gave satisfactory results. 
Introduction 
Metamaterials, artificially engineered substances that possess uncommon electrical and magnetic 
characteristics, have become the focus of much interest due to their potential uses in fields such as 
negative refraction [1-2], superlensing [3,4], and optical cloaking [5,6]. 

The idea behind metamaterials, where properties are obtained by controlling the boundary 
conditions or the phase and shape of its components, can be traced back to early explorations in 
the fields of acoustics and vibrations, such as Newton's research on sound transmission through 
air and Riley's examination of alternate structures. In recent times, Acoustic Metamaterials (AMs) 
have become a subject of growing interest among the scientific community, due to advancements 
in the measurement of sound waves and the control of feedback vibrations [7]. 

Metamaterials have found significant industrial applications, particularly in the field of antenna 
engineering, where their ability to control electromagnetic waves has led to the creation of smaller 
and more efficient antennas for various applications such as mobile communication, satellite 
communication, and radar. The use of metamaterials in antenna design has also led to the 
development of antennas with improved bandwidth, gain and radiation patterns, resulting in more 
efficient communication systems. Additionally, metamaterials have been utilized in the field of 
imaging and sensing, leading to the development of sensors with enhanced resolution and 
sensitivity. These sensors are used in applications such as medical imaging, remote sensing and 
security imaging, allowing for early detection and diagnosis of diseases, and remote monitoring of 
environmental conditions. 

Metamaterial other‘s industrial applications, includes waveguiding, energy harvesting, as well 
as in public safety, sensor identification, high-frequency battlefield communications, improved 
ultrasonic sensors, solar energy management for high-gain antennas and remote aerospace 
applications [8-10]. Moreover, researchers from the army and air force employ metamaterials for 
detecting explosives, biological materials, and contamination [11-12]. The capability of 
metamaterials to manipulate sound wavelengths, which are much larger than light, has led navy 
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researchers to investigate their potential use in hiding submarines in military operations. In 
addition, metamaterials have found applications in civilian domains, such as the creation of sound 
chambers. Army engineers also utilize metamaterials to manufacture small and high-speed 
photonic equipment, as light is becoming increasingly important in the development of future 
circuit boards [13]. 

Metamaterials have the ability to create a "perfect" absorber with close to full absorption, a 
concept first introduced by Landy et al. [14]. By incorporating intrinsic loss and carefully 
designing the structure of the metamaterial, various types of perfect metamaterial absorbers can 
be created for specific wavelengths, including the microwave range , optical wavelengths [14], 
and infrared [15]. These absorbers enhance sensitivity in chemical and biological sensing 
applications [16]. 

There are two main approaches to creating metamaterials: forward design and inverse design 
[17-18]. The forward design method involves obtaining material responses through theoretical 
analysis, simulations, and experiments . However, this method can become expensive as the design 
complexity increases, as it requires repeatedly modifying material parameters and recalculating 
responses. In contrast, inverse design [19] has gained popularity as it involves constructing 
appropriate structures through optimization algorithms in a large parameter space. 

The progress in Artificial Intelligence (AI) has made the concept of inverse design a practical 
reality. AI includes optimization algorithms like simulated annealing, genetic algorithms, particle 
swarming optimization, and topology optimization, which are well- established and widely 
employed for generating inverse designs as per the specific needs. These algorithms typically 
depend on intermediate results obtained through an iterative forward design process. Despite this, 
performing inverse design under multiple constraints remains a challenge due to the restrictions of 
a purely random search. 

The field of artificial intelligence (AI) has seen significant advancements in recent years, with 
machine learning (ML) becoming a prevalent approach. The origins of ML can be traced back to 
the 1940s and 1950s, with the introduction of the artificial neural network and the concept of 
variable connection strength between neurons. However, it wasn't until the 1980s that ML truly 
began to gain traction, with the development of the back-propagation algorithm for training neural 
networks. Deep learning, a branch of machine learning, has been widely used to predict the 
properties of materials and design (nano)photonic devices. Researchers have used deep neural 
networks (DNN) to approximate the electromagnetic response of a given structure, a process 
known as forward prediction. For example, Peurifoy et al. trained a neural network to predict the 
scattering of light by multilayer nanoparticles [20]. However, when it comes to inverse design of 
photonic devices, which involves finding the structure that corresponds to a specific 
electromagnetic response, DNNs often face challenges due to the one-to-many mapping problem. 

The application of machine learning (ML) in the fields of electromagnetic and light waves has 
led researchers to explore the use of ML in the design of other materials that manipulate, providing 
a powerful tool for characterizing artificial material properties and structuring materials. 

Therefore, it's not surprising that Machine Learning (ML) methods have gained increasing 
attention for analyzing the transmission and dispersion characteristics of periodic acoustic 
metamaterials, which are characterized by the presence of local resonators. Reviews on the 
application of ML in acoustics can be found in studies such as those by Bianco et al. [21] and 
Michalopoulou et al. [22]. Using ML techniques, novel functional applications have been 
proposed, such as the optimal design of tunable mechanical filters and directional waveguides, as 
seen in the works of Bacigalupo et al. [23] and Gurbuz et al. [24]. In this research paper, we will 
explore the possibility of predicting the absorptivity of metamaterial on any particular wavelength 
based on its parameter for which a simulation model has been created and validated to create the 
dataset. The results are promising absorptivity estimation performance. 



Advanced Topics in Mechanics of Materials, Structures and Construction - AToMech1-2023 Materials Research Forum LLC 
Materials Research Proceedings 31 (2023) 656-665  https://doi.org/10.21741/9781644902592-67 
 

 
658 

NARX Neural Network 
The NARX, or Nonlinear Autoregressive model with Exogenous inputs, is a type of artificial 
neural network that mirrors the structure of the biological neural system. It comprises 
interconnected nodes, each of which receives one or multiple inputs and processes them by 
summing them up and then passing the result through a nonlinear activation function. These nodes 
perform like artificial neurons. NARX networks are distinct from other types of artificial neural 
networks because they facilitate information flow in both directions. This allows for connections 
between neurons within the same layer and between current and previous layers, resulting in faster 
optimization of connection weights and needing fewer layers to be calibrated. As a result, NARX 
is a highly effective model. 
Governing equation for basic NARX NN model: 

𝑧𝑧(𝑚𝑚 + 1) = 𝑓𝑓[𝑧𝑧(𝑚𝑚), … , 𝑧𝑧(𝑚𝑚 − 𝑑𝑑𝑧𝑧 + 1);  𝑣𝑣(𝑚𝑚),𝑣𝑣(𝑚𝑚 − 1), 𝑣𝑣(𝑚𝑚− 𝑑𝑑𝑣𝑣 + 1)] 
 
Or can be written as, 

𝑧𝑧(𝑚𝑚 + 1) = 𝑓𝑓[𝑍𝑍(𝑚𝑚);𝑉𝑉(𝑚𝑚)] 
 

Here, z(m) and v(m) represent the output and input of a model, respectively. The terms 𝑑𝑑z and 
𝑑𝑑v indicate the output and input memory orders, respectively, with 𝑑𝑑z > 1 and 𝑑𝑑v > 1. The vectors 
𝑇𝑇(m) and V(m) represent the input and output regressors, respectively. 

NARX (Nonlinear Autoregressive with exogenous inputs) is a highly capable type of dynamic 
model that has been shown to have computational capabilities equivalent to those of a Turing 
machine. 
Training Algorithm  
Levenberg–Marquardt (LM): 
The Levenberg-Marquardt (LM) algorithm is a well-known method utilized for forecasting time 
series through artificial neural networks (ANNs). This method incorporates the benefits of both 
the Gauss-Newton and steepest descent methods to optimize a non-linear function that represents 
the sum of squares of the error. The objective of the LM algorithm is to identify the lowest possible 
value of this function, thus enhancing the prediction's accuracy. 

𝐹𝐹(𝑡𝑡) =
1
2
� [𝑓𝑓𝑖𝑖(𝑡𝑡)]2

𝑚𝑚

𝑖𝑖
 

 
Scaled Conjugate Gradient (SCG): 
The Scaled Conjugate Gradient (SCG) algorithm is frequently utilized in the training of 
feedforward neural networks. It is a general optimization method that has been modified to 
enhance the determination of step size and direction of search. It is based on a second-order 
approximation as represented by an equation. 

𝐸𝐸(𝑎𝑎 + 𝑏𝑏) ≈ 𝐸𝐸(𝑎𝑎) +  𝐸𝐸′(𝑎𝑎)𝑇𝑇 +  
1
2
𝑣𝑣𝑇𝑇𝐸𝐸"(𝑎𝑎)𝑏𝑏 

The objective of the algorithm is to determine the optimal distance in each iteration through 
line search, with the goal of finding the most suitable distance to move in the search direction using 
equation. 

𝑎𝑎𝑘𝑘+1 =  𝑎𝑎 + 𝑙𝑙𝑘𝑘 ∗ 𝑝𝑝𝑘𝑘 
 

After that, it performs the next search direction which is conjugate to the previous search 
instructions. 
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Bayesian regularization(BR): 
Bayesian regularization is a method employed in artificial neural networks (ANNs) for adjusting 
the values of weights and biases through the use of Levenberg-Marquardt optimization. The goal 
is to find the best combination of these values by first reducing the square error and weight, and 
then incorporating the weights into the objective function of the training procedure, as represented 
by an equation. 

𝐹𝐹(𝜔𝜔) = 𝛼𝛼𝛼𝛼𝜔𝜔 + 𝛽𝛽𝛼𝛼𝛽𝛽 
 

The Bayesian method is then employed to optimize the values of the objective parameters 𝛼𝛼 
and 𝛽𝛽. 
 

𝑃𝑃(𝛼𝛼,𝛽𝛽|𝐸𝐸,𝑁𝑁) =
𝑃𝑃(𝐸𝐸|𝛼𝛼,𝛽𝛽,𝑁𝑁)𝑃𝑃(𝛼𝛼,𝛽𝛽|𝑁𝑁)

𝑃𝑃(𝐸𝐸|𝑁𝑁)
 

 
Dataset 
The illustration of the unit cell for the proposed single L-shaped metamaterial absorber, which was 
simulated and validated to gather data for training the neural network, is displayed in Fig. 1. Unit 
cell of the proposd single L shaped metamaterial absorber which we have used to gather data for 
neural network can be seen in Fig. 1. Proposed metamaterial has been simulated on COMSOL 
Mutiphysics and has been validated wih the experimental data[25]. In the suggested metamaterial, 
gold has been used as a material for the L shaped patch and also for the bottom metal layer. Drude 
model has been used to model the dielectric behaviour of the gold with theplasma and collision 
frequency of 16 x 10^1.2 rad/s and 13 x 10^10.5 rad/s respectively[44]. SiC has been used as the 
dielectric spacer with dielectric constant and loss tangent of 10.8 and 0.003 respectively. Thickness 
of gold and SiC has been taken as 0.27 μm(td) and0.1μm(tm)m(td) and 0.1 μm(td) and 0.1μm(tm) 
m(tm) respectively. 

Absorption capability has been calculated using the relation A = 1 - |S11|^2 , where |S11|^2 
represent the square of the magnitude of reflection coefficient. 

The absorption capability of the proposed single L-shaped metamaterial absorber is determined 
by the amount of reflection it experiences, which is calculated by taking the difference of 1 and 
the square of the magnitude of the reflection coefficient, represented as |S11|^2. The absorption 
can be represented mathematically as A = 1 - |S11|^2. 

The absorption spectrum of the single L-shaped metamaterial absorber, as measured 
experimentally, is presented in Fig. 2. The graph also displays a comparison between the 
theoretical calculations and experimental results for the case of transverse electric incidence. The 
theoretical calculations were made by using the dispersive model of silicon carbide's dielectric 
constant. As seen in Fig. 2, the simulation was able to accurately capture the presence of two strong 
peaks and their corresponding wavelengths. 
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Fig.1 Schematics of L-Shaped metamaterial 

Now two genarated data set, dielectrci constatnt, loss tangent and wavelength has been choosen as 
an input parameter to predict the absorptivity of the designed metamaterial. In total we have 
generated 1000 data points using Comsole Multiphysics. 

 
Fig . 2 Comparision of Simulated and Experimental results 

Performance Parameter 
In this paper, following matrices are employed to evaluate the precision of each model and to 
compare the performance of various training algorithm. 
 
Mean Square Error (MSE): 

𝑀𝑀𝑀𝑀𝐸𝐸 =
1
𝑛𝑛
�(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)2
𝑛𝑛

𝑡𝑡=1

 

 
Root Mean Square Error (RMSE): 

𝑅𝑅𝑀𝑀𝑀𝑀𝐸𝐸 = �
1
𝑛𝑛
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Where, 

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎𝑙𝑙 𝑣𝑣𝑎𝑎𝑙𝑙𝑎𝑎𝑒𝑒 − 𝑒𝑒𝑒𝑒𝑡𝑡𝑒𝑒𝑚𝑚𝑎𝑎𝑡𝑡𝑒𝑒𝑑𝑑 𝑣𝑣𝑎𝑎𝑙𝑙𝑎𝑎𝑒𝑒 
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Results and Discussion 
FEA analysis has been done with the following parameters using Comsole Multiphysics simulation 
software as shown in TABLE 1. 

As can be seen in Fig. 3, with increase in dielectric constant value, wavelength for maximum 
absorptivivty and that for all other local maxima start to shift toward a longer wavelength. 
 

   
(a) (b) 

                  
                                         (c) 

Fig. 3 : Effect of dielectric constant on absorptivity at loss tamgent (a) 0.001 (b) 0.002 (c) 0.003 
 

When changing the loss tangent value for a given dielectric cpnstant we haven‘t found any 
change in either of the maximum absorptivity or the corresponding wavelength as can be seen in 
Fig. 4. 

The proposed NARX NN used data collected from multiple simulations for training, testing, 
and validation. Whole data set has been divided in two sets (1:3) the larger set (Set 1)has further 
been divided in 70:15:15 ratio in random manner to train, test and validate the network while the 
input parameter from smaller set (Set 2) has been used to predict the value and then the result of 
both has been compared. The network was first trained using the Levenberg-Marquardt, Scaled 
Conjugate Gradient, and Bayesian Regularization algorithms, then tested, and finally used to 
predict the absorptivity for any arbitary input of dielectric constant, loss tangent and wavelength. 
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Fig. 4 : Effect of loss tamgent on absorptivity at dielectric constant value of 5.8 

 
The proposed NARX NN used data collected from multiple simulations for training, testing, 

and validation. Whole data set has been divided in two sets (1:3) the larger set (Set 1)has further 
been divided in 70:15:15 ratio in random manner to train, test and validate the network while the 
input parameter from smaller set (Set 2) has been used to predict the value and then the result of 
both has been compared. The network was first trained using the Levenberg-Marquardt, Scaled 
Conjugate Gradient, and Bayesian Regularization algorithms, then tested, and finally used to 
predict the absorptivity for any arbitary input of dielectric constant, loss tangent and wavelength. 

The network has been trained using the mean squared error (MSE) as the criteria, in which the 
network calculated the gradient and updated the weights to reach a point of minimum error.To 
validate the network performance, autocorrelation was used as a metric and was observed to be 
influenced by the value of delays. Thus, the delays were chosen in a way to ensure that the values 
remained within a confidence level. the autocorrelation remained within the 95% confidence level 
all the three algorithm. Correlation between input and errors, has also been found to be within the 
confidence limit at all lags, indicating that the model had captured all the features of the system 
and that the input and output were modeled accurately. 

 
TABLE.1  Performance parameter for different training algorithm on set 1 

ALGORITHM TRAINING VALIDATION TESTING 

Bayesian regularization 0.92644 0.86774 0.91776 

Levenberg-Marquardt 0.89644 0.86196 0.81638 

Scaled Conjugate Gradient      0.86635 0.85201 0.81736 

As can be seen in the Table. 1 that Bayesian regularization was mos accurate while testing the 
network on Set 1 while other two i.e Levenberg-Marquardt and Scaled Conjugate Gradient 
performed almost similarly. On Set 2 Scaled Conjugate Gradient performed much better than the 
other two algorithms as can be seen in Table. 2.  
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TABLE.2  Performance parameter for different training algorithm on set 2 

ALGORITHM RMSE MSE 

Bayesian regularization 0.46673 0.21784 

Levenberg-Marquardt 0.40905 0.16732 

Scaled Conjugate Gradient 0.27871 0.07768 

 
NARX NN has been able to capture the peaks and valleys pretty accurately but the 

corresponding wavelength is little offset. SCG training algorithm has fared comparitively better as 
compared to other two when predicting the absorptivity for wavelength above 8 µm. BR algorithm 
resulted in most noisy response in predicting absorptivity above 8 µm wavelength while at the 
same time it has also predicted the absorptivity most accurately for wavelength value of upto 6µm. 
SCG algorithm has also been able to capture the upper and lower limit of the absortivity value as 
compared to other two training algorithms.  
 

 
(a)                                                                      (b) 

 
              (c) 
Fig.5 Comparison of the forecasted and actual absorptivity value for (a)LM at DC = 7.8 and LT 

=0.002, (b) SCG at DC= 7.8 and LT = 0.002 (c) BR at DC=6.8 and LT=0.002 
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Conclusions 
Designing metamaterial and to have desired process is a iterative process which requires time and 
money. Simulation of these type of materials also requires huge computing power and the 
validation of simulated result is another hurdle. The rise of ML has given another approach for 
designing these type of materials. We have simulated and validated a model metamaterial which 
is capable of absorptivity up to 1 using COMSOL Multiphysics to create a data set for our NARX 
NN training. 

We have used three different training algorithms and found that BR algorithm has predicted the 
absorptivity most accurately for wavelength value of upto 6 µm after which it has given somewhat 
noisy results. SCG has been able to capture the absorptivity level more accurately in the later half 
of wavelength i.e after 6 µm. 

The results demonstrate that the NARX NN is effective in predicting the absorptivity behaviour 
of the designed metamaterial. However, like any ANN, the accuracy of the predictions is heavily 
influenced by the amount of training data available. To improve prediction accuracy, increasing 
the size of the training data set would be beneficial. 
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