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Abstract. This paper underscores the potency of the invariant character of tensor and its derivative 
concepts and accentuate the synergy between isotropic tensor and other tensors and the 
corresponding vector operations. The equivalence of covariant derivative in a curvilinear 
coordinates system embedded with a non-constant vector field and the partial derivative in an 
affine coordinates system ingrained with a constant vector field is interrogated. The corresponding 
role of the Christofell symbols as the affine connector of vectors with their derivatives in a variable 
field are compared to the Frenet-Seret skew-matrix connecting the  trihedrons (i.e. tangent, normal 
and binormal) of a moving space curve with their derivatives. The nexus of the Christofell symbols 
with the geodesics is also shown. The structure of the metric tensor I  and the Levi-Chivita skew-
symmetric tensor ε , as isotropic tensor rank-2 and rank-3 respectively is highlighted, such that the 
usual operations of dot product (or scalar product or inner product) and cross product or (vector 
product or  spin/rotation operation}) are now expressed through the isotropic tensors. Recalling 
the theory of exterior differential form and invoking the Poincare's theorem we show the 
application of the exterior product in establishing exact differential (or total differential) in 
calculus in relation to plane problem of Elasticity. The invariant nature of the tensor objects and 
operations therefrom are then copiously invoked and deployed to establish constitutive relation for 
materials: in finite elasticity, within the context of hyperelasticity; composites, where there is a 
trade-off between heterogeneity and anisotropy through homogenisation process whereby 
differential equations with variable coefficients are converted to differential equations with 
constant coefficients; and plasticity, where application of tensor is exhibited with strain gradient 
plasticity, and shown how the concepts provide balance of microscopic forces, balance of 
macroscopic forces, and plastic flow laws as concise mathematical equations. 
Introduction 
This work, Tensor as a Tool in Engineering Analysis provides a brief survey of what tensor is, its 
relevance and application to continuum mechanics and engineering investigations and analysis. 
Tensor theory, simply and succinctly put, is the the theory of invariants; which encompasses 
familiar physical objects such as scalars, vectors, stress, strain, isotropes and similar objects of 
various ranks and pertinent operations on them. It is even a shorthand tool in underpinning or 
driving home fundamental physical concepts, concisely [1-3]. The richness in the invariant nature 
of tensor, for example, enables us realize the equivalence in the actions of covariant derivative 
operator in a varying field, with curvilinear coordinates system, and the partial derivative operator 
in affine/rectilinear coordinates system. What is more, the effect of covariant derivative of metric 
tensor corresponds to the partial derivative of the Kronecker delta tensor, as a vanishing quantity. 

Tensor as a discipline provides a potent and convenient tool to interrogate and navigate the 
complex labyrinth of the world of continuum mechanics and by implication, the modeling of real 
life phenomenon and engineering designs and analysis [4-5]. So, it is often pertinent and profitable 
to possess good and deep knowledge and understanding of this tool and its deployment in 
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scientific, engineering and technological endeavours. This, we would demonstrate in a number of 
papers that would be presented in this session of the Conference.  
In the setting of engineering mathematics/continuum mechanics as related to engineering design, 
underlining governing rules are deduced from concepts similar to those used in theoretical 
mechanics or dynamics [6]. Fundamental amongst these principles  are the: conservation of mass, 
conservation of linear momentum, conservation of moment of linear momentum, conservation of 
energy. These constitute the so-called conservation laws. They are complimented by the so-called 
constitutive laws, in solving problems for specific material of a continuum; be it elastic, plastic, 
viscoelastic, viscoplastic, fliud - linear or nonlinear [7-8]. 

Here, a formal definition of tensor is given, and the relevance of the Christofell symbols as a 
coefficient of affine connectivity or coefficient of proportionality of a vector to its derivative in a 
varying space in analogy to the Frenet-Seret Matrix for a space curve is highlighted; it also serves 
as a measure of geodesics in an Euclidean space. The theory of exterior form is invoked, through 
the Poincare's Theorem for a differential form, to establish the Airy's stress function for plane 
elasticity [9-12]. The concept of Homogenisation [13-15] for periodic composites is illuminated, 
giving its implication as a process converting a system of partial differential equations with 
variable coefficients to that of constant coefficients, but with an incurred anisotropy as penalty. 
The property of isotropic tensor is explored to navigate the process of tensor derivative of functions 
of tensor argument. The deep endowment of tensor operations is richly displayed with the 
interrogation of strain-gradient-divergence plasticity [16-17]. 
Tensor 
An object ( )n∈ ⊂ ΩT T E  is a tensor in an n-dimensional sub-space of Euclidean space nE  if it is 
invariant under the transformation of coordinates system 𝐪𝐪(𝑞𝑞𝑖𝑖), however, such that the 
components vary linearly and homogeneously, under the said transformation: 

: i iq q′→O , 1, 2,3,...,i n= . 
Let T  be a tensor in a three-dimensional euclidean space nE in which we have introduced an 
arbitrary curvilinear system of coordinates 1 2 3( , , , )q q q= …q  with the accompanying orthogonal 
covariant basis 1 2 3, , ,…e e e  and the corresponding contravariant basis 1 2 3, , ,…e e e .  Then, either 
through the contravariant base vectors (basis) ie  or the covariant base vectors (basis) ie  we can 
express an n-ranked tensor T  as 
 1 2 1 2

1 2 1 2
or .n n

n n

i i i ii i
i i i i i iT T= =T e e e T e e e


    (1.1.1) 

Now, if in nE  in place of q  we introduce another coordinate system ′q , such that these two systems 
relate to one another by the non-singular matrix of transformation (or the so-called fundamental 
matrix) 

 and its inverse ; | | 0,
i i i

i i i
q q q
q q q

′

′ ′

∂ ∂ ∂
≠

∂ ∂ ∂
 (1.1.2) 

then, the invariant character of T  is expressed in the following. 
(i)  1 2 1

2
1 2 1 2

( ) ( ) ( )n n

n n

i i i ii
i i i i i i i

T T′ ′ ′ ′′′ ′ ′ ′
′ ′ ′ ′ ′ ′ ′= =T q q e e e q e e e


    

 1 21 2

1 2 1 2
( ) ( ) ( ).n n

n n

i i i ii i
i i i i i iT T= = =q e e e q e e e T q


    (1.1.3) 
(ii) But, with respect to the components, they transform accordingly and we have 

 
1 2 1 2

1 2 1 2

1 2 1 2 1 2 1 2
( ) ( ) , ( ) ( ) ;

n n
n n

n n n n

i ii i i i
i i i i i i

i i i i i i i ii i i i
q q q q q qT T T T
q q q q q q

′′ ′
′ ′ ′′ ′

′ ′ ′ ′′ ′

∂ ∂ ∂ ∂ ∂ ∂
= =

∂ ∂ ∂ ∂ ∂ ∂
q q q q 

     (1.1.4) 
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1 2 1 2

1 2 1 2

1 2 1 2 1 2 1 2
( ) ( ) ( ) ( ) .

n n
n n

n n n n

i ii i i i
i i i i i i

i i i i i i i ii i i i
q q q q q qT T T T
q q q q q q

′′ ′
′ ′ ′′ ′

′ ′ ′ ′′ ′

∂ ∂ ∂ ∂ ∂ ∂
= =

∂ ∂ ∂ ∂ ∂ ∂
q q q q 

     (1.1.4)’ 

Here, 1 2 ( )ni i iT q  and 1 2 ( )ni i iT ′ ′ ′ ′q  are the contravariant components of the tensor T  in the 
coordinates systems q  and ′q  respectively. Similarly, 

1 2
( )

ni i iT q  and 
1 2

( )
ni i iT ′

′ ′ ′ q  are referred to as 

the covariant components of the tensor T  in the coordinates systems q  and ′q  respectively. For 
example, ijg ,  ijg  the covariant metric tensor, contravariant metric tensor are respectively

·ij i jg ≡ e e  and ·ij i jg ≡ e e . 

Christofell Symbols and Relevance 
The objects ijkΓ  and k

ijΓ  are known as the Christofell symbols of first kind and second kind or 
simply, 1st kind and 2nd kind respectively. The 2nd kind is defined as  

 , ; , , , , , 1, 2,3.
m

k m k k m mkm
im k ik ijm mk ij ij ijki i g g i j k m

q q
∂ ∂

≡ Γ ≡ −Γ Γ = Γ Γ = Γ =
∂ ∂
e ee e  (1.2.1) 

The Christofell symbols, related to one another as above, and to the metric tensor through the 
expression: 

 , , , , , ,
1 1( ), ( ), , , , 1, 2,3.
2 2

m mk
ijk kj i ik j ij k ij kj i ik j ij kg g g g g g g i j k mΓ = + − Γ = + − =  (1.2.2) 

They constitute what is called Symbols of Space Connectivity or Coefficients of Affine 
Connectivity. 
Frenet-Seret Matrix analogous to Christofell Symbols 
It could be noted that in this, the 2nd kind Christofell Symbols plays an anologuous role as the 
Frenet-Seret matrix in the case of space curves, where the matrix relates the non-constant unit 

orthogonal thriedral ( , ,t n b ) (i.e. tangent, normal and bi-normal) to their derivatives ( , ,d d d
ds ds ds

t n b

), on the space curve, parametrised by s , the arclength; ( )s=r r : 

0 0
0 .Frenet-Seret and

0 0

d
ds
d matrix rule
ds
d
ds

κ
κ τ

τ

 
 

   
    = −        −  

  
 

t

t
n n

bb

 (1.2.3) 

The covariant derivative 
The covariant derivative of any mixed tensor 1 2

1 2

m

n

i i i
j j jT 

  is denoted and given by the expression 

1 2 1 2

1 2 1 2

m m

n n

i i i i i i
k j j j j j jkT T

q
∂

∇ ≡
∂

 
 

1 2 1 2 1 2 1 2

2 1 1 3 2 1 2 2 1 1 2 1

m m m m

n n n n n n n

i i i i i i i i i i i ip p p p
pj j j k j pj j j k j j j pj j k j j j p j kT T T T

− − −
− Γ − Γ − Γ − Γ   

       

2 1 3 1 2 2 1 1 2 2 11 2

1 2 1 2 1 2 1 2
.m m m m m m m m

n n n n

pi i i pi i i i i pi i i i i i p ii i
j j j pk j j j pk j j j pk j j j pkT T T T− − − −+ Γ + Γ + Γ + Γ   

     (1.2.4) 
We emphasize, the partial derivative of the Kronecker delta tensor is to the covariant derivative of 
the metric tensor as the rectilinear coordinates (affine coordinates) system is to the curvilinear 
coordinates system. In fact, the partial derivative of Kronecker delta  and the covariant 
derivative of the metric tensor ijg  correspondingly vanish: 

ijδ
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(1.2.2)

, ,0 0.ij ijm m
ij k ij mj ki im jk ki j jk ik k

g g
g g g

q q
δ

∂ ∂
∂ = → ∇ = − Γ − Γ = −Γ −Γ =

∂ ∂
 (1.2.4)’ 

Measure of Geodesics 
The concept of Geodesics derives from the notion of absolute derivative. In fact, let a space curve 
be parametrized on interval I ⊂ R  with parameter t I∈ , such that its position vector is  
 1 2 3( ( ), ( ), ( )) ( ).u t u t u t t= =r r r  (1.2.5) 
Note that  

 
(1.2.1)( ( ))( ( )) ;

k k k
k mi i

i i ik mi k

d u t du duu t
u dt u dt dt

∂∂
= ≡ = = Γ

∂ ∂
e ere e e . (1.2.6) 

Now, we can consider the derivative of a vector i
iv=v e  along this curve in the domain with 

arbitrary coordinates iu  and the orthogonal basis ie . Its derivative with respect to parameter t , 
taking cognizance of the basis ie  not being constant, in a fashion similar to the process of covariant 
derivative, is 

( ) ; ,
i i j i j i j

i i m m i m ii
i i ij m mj i t mj

dd dv dv dv dv dv dv dvv v v v
dt dt dt dt dt dt dt dt dt

= + = + Γ = + Γ ∇ ≡ + Γ
ev e e e e  (1.2.7) 

where  is referred to as the absolute derivative of the component iv  of vector v . This is at 
times also referred to as intrinsic derivative. Note that this notion can be extended to invariants of 
higher rank. 
We can similarly deduce the absolute derivative of the (i) covariant vector ( )iv t , (ii) covariant 
tensor ( )ijT t , (iii) mixed tensor j

iT  and contravariant tensor ijT .   
A geodesic is a curve r  = ( )sr  parametrized with the arclength s  such that the absolute 
derivative of its tangent vanishes. (i.e.  a curve of constant tangent or vanishing acceleration). This 
is given by the expression 

 
2

20.i.e. 0, 0,
i j i j m

i m i
mj mj

d dt du d u du dut
ds ds ds ds ds ds

= +Γ = → +Γ =
t  (1.2.8) 

noting that ,  d
ds

≡
rt .    

Example 
The Gauss curvature and the geodesic line for the Poincare's half plane, 

 
2 2

2
2 , 0du dvds v

v
+

= >  (1.2.9) 

are obtained respectively as 

 
2

2 2 21212 11 22 12
02

11 22 12

1; ( ) .R b b bK u u v c
g g g g

−
= − = = − − + =

−
 

Indeed, taking into recognition (1.2.8) and (1.2.9), the required geodesic line is the family of curves 
 (i.e. shifted circles); noting that for the half plane (1.2.9), 

 11 2 12 21 22 2
11 12 21 222 2

1 1, 0, , 0, .g g g g g v g g g v
v v

= = = = = = = =   

 1 1 1 2 2 2
11 12 22 11 12 22

1 1 10, , 0, , 0, .
v v v

Γ = Γ = − Γ = Γ = Γ = Γ = −   

t i∇ ≡∇

/i it du ds=

2 2 2
0( )u u v c− + =
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The Gauss curvature is deduced from the expression relating the Riemann curvature  and the 
Gauss curvature K  such that 2

1212 11 22 12R gK b b b= − = − , while the determinant of the 1st 
fundamental matrix of the surface is 2

11 22 12g g g g= −  and the determinant of the 2nd fundamental 

matrix of a surface 2
11 22 12b b b−  is 2

2
1( ) .
v

− . 

Exterior Form and Application  
Definition of Exterior Form 
Consider Q , the space of m-$tuple$ tensor product of the conjugate space *ℜ  on itself. That is 

* * * *.Q =ℜ ⊗ℜ ⊗ ⊗ℜ ⊗ℜ Let oQ  be a space of skew-symmetric/anti-symmetric tensor, a 
subspace of Q ; oQ Q⊂ . Then, the element oQΦ∈  is called the Exterior Form, rank-m and 
presented as  
 11 2

1 2 1
, 1, 2,3, ,\m m

m m

i ii i
i i i i mϕ −

−…Φ = Λ Λ Λ = …e e e e  (2.1.1) 

where , 1, 2,3,ki k = …e  are referred to as covectors. 
 
Differential Form 
An Exterior Differential Form ω  is any exterior form constructed on differential basis; when the 
covectors are now the differential, kidx . 
 11 2

1 2 1

1 2 1( , , , , ) ,m m

m m

i ii in n
i i i ia x x x x dx dx dx dxω −

−

−
…= … Λ …Λ Λ  (2.1.2) 

where in any n − dimensional domain Ω , the ring of coefficients 
 1 2 1( , , , , ), ( ); 1.n n qa x x x x a C q−… ∈ Ω ≥  
i.e. a  is q − times continuously differentiable or possesses partial derivatives of order q  
inclusively. 
The base elements (covectors) are the differentials of the variables 1 2 1, , , ,n nx x x x−… , 

1 2 1, , , ,n ndx dx dx dx−… and view them as abstract unit. It is obvious that all the properties of an 
exterior form are endowed any differential forms [11,18]. 
The Exterior differentiation of an exterior differential form (2.1.2) is defined as 
 11 2

1 2 1

1 2 1( , , , , ) m m

m m

i ii in n
i i i ida x x x x dx dx dx dxω −

−

−
…≡ … Λ …Λ ΛD  

 1 2 1 11 2 , 1, 2,3, , 1, .m m m mi i i i i ii ij
i

a
dx dx dx dx dx i n n

x
− −…∂

= Λ Λ …Λ Λ = … −
∂

 (2.1.3) 

We note that The operation of exterior diferential form (like that of covariant differentiation) 
increases the rank of a form by one. And when a change of coordinates is executed we have 

 1 11 2 1 2| | .k k n n n n

i
i i i i i ii i i i

i
xdx dx dx dx dx dx det dx dx dx dx
x

− −

′
′ ′ ′′ ′ ∂

→ → Λ …Λ Λ = Λ …Λ Λ
∂

 

Poincare Theorem 
The second exterior differential of an exterior form is zero, 
 0.ω =DD  (2.2.1) 
Proof: 
The second exterior differential is 

 1 2 1 11 2

2(2.1.3)
.m m m mi i i i i ii ik j

j k

a
dx dx dx dx dx dx

x x
ω − −…∂

= Λ Λ Λ …Λ Λ
∂ ∂

DD  

 1 2 1 1 2 1

1

2 2
1But ( , , ) ( ) .m m m m

m

i i i i i i i in m
i i j k k j

a a
a x x C

x x x x
− −… …

…

∂ ∂
… ∈ Ω → =

∂ ∂ ∂ ∂
  

1212R
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At the same time, the form 11 2 m mi ii ik jdx dx dx dx dx dx−Λ Λ Λ …Λ Λ is skew-symmetric, including in the 
indices k  and j . For this, we have .ω ω− =DD DD   Hence, the required proof, 0.ω =DD  
Example 
Let a linear differential form be Pdx Qdyω = + . By (2.1.3), the exterior differential form is 

(2.1.3) (2.1.3)
( ) ; .P Q Q PdP dx dQ dy dy dx dx dy dx dy dx dy dx dy

y x x y
ω ∂ ∂ ∂ ∂

= Λ + Λ = Λ + Λ = − Λ Λ = − Λ
∂ ∂ ∂ ∂

D (2.2.2) 

We note that (i.) ω  is a total differential if P Q
y x

∂ ∂
=

∂ ∂
, since d dx dy

x y
ω ωω ∂ ∂

= +
∂ ∂

 and 

2 2

.
x y y x
ω ω∂ ∂

=
∂ ∂ ∂ ∂

(ii.) if ω  is a total differential then, P Q
y x

∂ ∂
=

∂ ∂
 and we shall obtain from (2.2.2) that 

0.ω =D  And by the corollary to the Poincare's theorem, ω  is a differential form. (iii.) the concept 
of differential form can be used to establish whether or not an expression constitutes a total 
differential.  
Application of Poincare's Theorem in Elasticity 
The boundary value problem of plane elasticity can be formulated in terms of the Airy's function, 

1 2( , )x xϕ . At the root of this formulation is the Poincare's theorem, deriving from the theory of 
Exterior Form or Exterior Differential Form. This fundamental background, often, is omitted in 
textbooks of elasticity. 

Theorem: 11 12 12 22

1 2 1 2

0; 0
x x x x
σ σ σ σ∂ ∂ ∂ ∂

+ = + =
∂ ∂ ∂ ∂

 if only and only if 11 2 12 1dx dxσ σ−  and 

22 1 12 2dx dxσ σ−  are respectively an exact differentials. 
Proof: By Poincare's theorem, ω  is an exact differential if 0dω = . That is, we can find ϕ  such 
that dω ϕ=  and consequently, 0ddω ϕ= = . Thus, 11 2 12 1dx dxσ σ−  is an exact differential →  

11 2 12 1( ) 0.d dx dxσ σ− =  As a differential form, we have 

 11 2 12 1 11 2 12 1 1 11 2 12 1 2
1 2

( ) ( ) ( )d dx dx dx dx dx dx dx dx
x x

σ σ σ σ σ σ∂ ∂
− = − + −

∂ ∂
 

 11 12 11 12
2 1 1 1 2 2 1 1

1 1 2 2

dx dx dx dx dx dx dx dx
x x x x
σ σ σ σ∂ ∂ ∂ ∂

= Λ − Λ + Λ − Λ
∂ ∂ ∂ ∂

 

 11 12 11 12
2 1 1 1 2 2

1 2 1 2

( ) 0; since 0. ( ) 0.dx dx dx dx dx dx
x x x x
σ σ σ σ∂ ∂ ∂ ∂

= + Λ = Λ = Λ = ⇒ + =
∂ ∂ ∂ ∂

 

Conversely, Let 11 12

1 2

( ) 0
x x
σ σ∂ ∂

+ =
∂ ∂

⇒  11 2 12 1( ) 0.d dx dxσ σ− =  Then, 11 2 12 1dx dxσ σ−  is an exact 

differential. ⇒ ∃  a function 1 2( , );P x x   

 11 2 12 1 1 2 1 2 11 12
1 2 2 1

( , ) ; , .P P P Pdx dx dP x x dx dx
x x x x

σ σ σ σ∂ ∂ ∂ ∂
− = = + ⇒ = = −

∂ ∂ ∂ ∂
 (*) 

Similarly: There exists a function 1 2( , );Q x x   

 22 1 12 2 1 2 1 2 22 12
1 2 2

( , ) ; , .
i

Q Q Q Qdx dx dQ x x dx dx
x x x x

σ σ σ σ∂ ∂ ∂ ∂
− = = + ⇒ = = −

∂ ∂ ∂ ∂
 (**) 

By (*) and (**)  ⇒  ∃  the form 1 2( , )x xϕ  (i.e. Airy's stress function) such that 

 
2 2 2 2

11 22 12 212 2
2 1 2 1 1 2

, , .
x x x x x x
ϕ ϕ ϕ ϕσ σ σ σ∂ ∂ ∂ ∂

= = = = =
∂ ∂ ∂ ∂ ∂ ∂
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Homogenisation of Heterogeneous Medium 
Linear Elasticity: A Sample Elastostatic Problem 
Consider, in a three-dimensional Euclidean space 3E , the already familiar boundary value problem 
of classical elastostatics in terms of displacement 3∈Ω⊂u E , 
 , ,[ ] 0, in ,ijkl k l j iC u Xρ+ = Ω  (3.1) 

 , ,
1 ( ), in ,
2ij i j j iu uε = + Ω  (3.2) 

 , in ,ij ijkl klCσ ε= Ω  (3.3) 

 0 0
,| ; | , on ,

ui i ijkl k l j i uu u C u n S
σ σΣ Σ= = Σ = Σ Σ  (3.4) 

where ijklC  are the generalized Hooke’s material characteristics/constants, iX  is the mass or 
volume body force, iu  is the displacement, ijσ  is the stress, ρ  is the density, ijε  is the strain, 0

iu  
is the displacement specified on u uΣ = ∂Ω , a part of the boundary of Ω , while 0

iS  is the load/force 
specified on σ σΣ = ∂Ω , the other part of the boundary Ω : u uσ σΣ Σ = ∂Ω ∂Ω = ∂Ω  . Here and 

elsewhere, ,
m

m n
n

ff
x
∂

≡
∂

, , , , 1, 2,3i j k l = .  

Alternate Compatibility Equation - Chezaro's Formular: 
Taking advantage of tensor notation and its invariance property, an alternate presentation of the 
compatibility equation (or Cauchy equations) (3.2) is provided by Chezaro [9-10]. This is just the 
solution to the differential equations (3.2); obtained through integration of (3.2): 

 0 0 0( ) [ ( )( )] ,
M jnin

i i ij j j ij n n jM
j i

u u x x x x dx
x x

εεω ε
′ ∂∂′ ′= + − + + − −

∂ ∂∫  (3.2)* 

where the body has been fixed at point 0M , with displacement 0
iu  and rotation tensor 

0 0 0
, , ,

1 ( )
2i j i j j iu uω = − . Now, let Ω  be an heterogeneous medium, say a lamina composite, of isotropic 

elastic layers. 
The tensor rank-4 (i.e. the elastic characteristics) ijklC  will be non-constant, but a periodic function 
of the coordinates  
 ( ) ( , ),ijkl ijklC C=x x l  (3.5) 
where l  is the periodic geometric length. We introduce second argument (or the so-called local 
coordinate or the fast coordinate) ξ  in which case x  is referred to as the global coordinate, and 
then take the asymptotic expansion [13,15] 

 
1 1

( )
,

0
( , ) ( ) ( ); , | | 1,

m m

m m
i ipq q p q q

m
u N vα ξ ξ α

α… …
=

= = <∑ xx ξ x  (3.6) 

where l
L

α ≡  is the so-called small parameter, which is the ratio of characteristic  lengths l  and 

L  of the periodic cell ω  and the whole body Ω  respectively. 
We then insert (3.6) in (3.1), (3.2) to obtain ensuing boundary value problems, now for the 
homogenised medium, howbeit now with acquired anisotropy: 

 
1 2 1 1

( )
,

0
( ) 0,

m m

m m
ipq q p q q i

m
h v Xα

+ +… …
=

+ =∑ x  (3.1)’ 
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1 1 1 1 2 1 1 2 1

( ) 0 ( ) 0
, ,

0 0
( ) ( ) | ; ( ) | ,

m m m m m

m m m m
ipq q p q q i ipq q p q q q i

m m
N v u h v n Sα ξ α

+ + +… … ∂Ω … … ∂Ω
= =

= =∑ ∑x x  (3.2)’ 

where 
 ( ) ( )( ) and

+… …= =
1 m 1 m 2

m m m m
ipq q ipq qN N ξ h h  

are the periodic structural/local function and 
the effective material elastic constants, the latter which is independent of both x  and ξ . 
 ( ) ( )≡ ≡< >p 0v x v x u  
 is the average displacement vector, independent of ξ , 

 
1 if ,

, , 1, 2,3,...; 0 if 0, , 1, 2,3,
0 if ,

p m
ij ij

i j
N i j N m i j

i j
δ δ

=
≡ = = < = = ≠

 (3.7) 

where ijδ  is the so-called Kronecker delta, unit tensor. 

Mechanical Characteristics h  and Conjugate Local Functions ( )N ξ  
To obtain h , the mechanical characteristics, and the corresponding 𝑁𝑁�(𝜉𝜉), the structural functions 
(or local functions)  we solve the so-called non-boundary valued periodic problems ( 1, )m mP + , 
sequentially: 
 

1 2 1 2 1 1 1

( ) ( 2) ( 2)
| | |( ( ) ) ( ( ))

m m l j m m j

m m m
ipq q ijkl ipq q ijq k ipq qh C N C Nξ ξ

+ + + +

+ +
… … …= +  

  
2 1 1 2 1 1

( 1) ( )
| |( ) ( ) , 1,0,1,

m m l m m m l

m m
iq kl kpq q iq kq kpq qC N C N mξ ξ

+ + + +

+
… …+ + = − … 

 
1 2 2 1 1 2 1 1

( ) ( 1) ( )
|( ) ( ) ,

m m m l m m m

m m m
ipq q iq kl kpq q iq kq kpq qh C N C Nξ ξ

+ + + + +

+
… … …= 〈 + 〉  (3.9) 

where for any function ( , )f ∈Ωx ξ , ,( , ) m
m

ff
x
∂

≡
∂

x ξ , while ( , ) |m
m

ff
ξ
∂

≡
∂

x ξ . 

Thus, at the zeroth level, we have the periodic problem (1,0)P . This implies that the boundary value 
problem (3.1)-(3.4), which is a set of equations with variable coefficients, has now become a 
system of differential equations now with constant coefficients; howbeit, with an incurred 
anisotropy:  
 , ,[ ] 0, in ,ijkl k l j ih v Xρ+ = Ω  (3.1)’’ 

 (0)
, ,

1 ( ), in ,
2ij i j j iv vε = + Ω  (3.2)’’ 

 (0) , in ,ij ijkl klhσ ε= Ω  (3.3)’’ 

 0 0
,| ; | ,on ,

ui i ijkl k l j i uv u h v n S
σ σΣ Σ= = Σ = Σ Σ  (3.4)’’ 

Isotropic Tensor and Invariant Operations 
Isotropy 
We recall that isotropy is the property of a material such that every direction in it constitutes an 
axis of rotational symmetry. 
Isotropic Scalar Function: 
A scalar function ( )ijaφ  of a tensor ( )ija=A  is isotropic if it preserves its value and form of 
dependence on those components in any orthogonal mapping H  of the coordinates system 
 ( ) ( ), : , · .ij ij ij ija a a aφ φ ′′ ′= → =r rH H  
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Isotropic Tensor: 
A tensor is isotropic if its components are invariant under any orthogonal mapping of the base 
vectors in which it is defined. (That is, both the tensor and its components are invariant.) 
Note: Any would-be tensor, by definition, is meant to be invariant under mappings of coordinates 
system, while only its components would admit appropriate changes by the imposed rule of 
transformation. But for an isotropic tensor, even its components are required to be unchanged.  
Using these properties of isotropic function and tensor, energy functions can be constructed and 
continuum mechanics problems solved [10,12]. 
Example 
Let O  be an orthogonal tensor that maps base vector ie  into another base vector · t

i i O′ =e e  . 
Consider the unit metric tensor ,i j

ijI g= e e  which is known to be an isotropic tensor. Under 
transformation of its components we have 
 · · · · ·t i j ij i i

ij i j i j i j ij ij i j i ig O O g I g g′ ′ ′ ′ ′= = = = ⇒ = = = =e e e e e e e e e e e e e e    
is isotropic. 
Basic Isotropic Tensor 
The basic isotropic tensors include [10]:  
(i.) The rank-0 isotropic tensor, (the scalar), (ii.) The rank-2 isotropic tensor, (the unit tensor 𝐼𝐼); 
it is the only rank-2 isotropic tensor, and (iii.) The rank-3 isotropic tensor, (the Levi-Chivita tensor 
o�).   
Any other isotropic rank-3 tensor T  at most is a constant multiple of it, ,λ ò  where λ  is a constant 
number (hence, ò  is pseudoisotropic tensor):  

 
1 if ,

; ; , , , , 1, 2,3,
0 if ,

il im in
ijk

lmn jl jm jn ij

kl km kn

i j
I I i j k m n

i j

δ δ δ
δ δ δ δ
δ δ δ

=
= − × = = = ≠

 ò ò ò  (4.1.1) 

where ijδ  is the so-called Kronecker delta. 
 
(iv.) The rank-4 isotropic tensor 4C  consists of the basic isomers 
 , , .i j i j i j i

I i j II i j III i i jC II C C I≡ = ≡ ≡ =e e e e e e e e e e e e e e     (4.1.2) 

Isotropic Tensor in Product Operation with Rank-2 Tensor 
∀  vectors , ,a b c  and rank-2 tensors  ,P Q  we highlight interaction of the isotropic tensors on 
them via indicated operations. 
 ·· · , ·· ,ijk

i j ij i j kI a b a bδ= = = × = =ab a b ab a b e c ò ò  

 · ( )·( ) ( )·· ( ),t
II III III III I I I I I I C C C C= × × = × × = − < − > − = − −T T T             òò  (4.1.3) 

 ·· · · 3 2 ,s k m s
s k s m I I I= − = − = −e e e e e e e e    ò ò  

 1· · ; · · ; ·· ( ) ·· ; ·· ·· ; ·· ·· ,t
I III III I I II II III IIIC P I P C P P C C P I P I P C C P P C P C P P C P= = = = = = = =                        

 1( ·· )· ( ) ; ( ·· ) · ; ( ·· )· · ,t
I II IIIC P Q I P Q C P Q P Q C P Q P Q= = =               (4.1.3)’ 

 1·· · ( · ) ; ·· · · ; ·· · · .t t
I II IIIC P Q I P Q I C P Q P Q C P Q P Q= = =                 
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Lemma 
The space of rank- 4  isotropic tensors 4C  is spanned by its isomers,{ , , }I II IIIC C C   . 

Proof 
Since the set { , , }I II IIIC C C    (4.1.2), forms the basis for the rank-4 isotropic tensor, then given 
constants , ,λ µ ν  we have: 
 4 ( ) ( ).I III II III IIC C C C C Cλ µ ν= + + + −       (4.1.4) 

It could be seen that each of the tensors , , ,C I II IIIα α=  is isotropic. In fact, for ,IIIC  
. .

. .· , · .i i k m i m n m n
m k m i i m n i nO O O O′ ′= = = =e e e e e e e e e e  Then, for IIIC ,   

.
. .i i n m n m n

III i m i n m n n IIIC I O O I I I Cδ′ ′ ′= = = = =e e e e e e e e     This confirms isotropy of ,IIIC  which is 
similarly true for the other two isomers. Further, it would be seen that 

·· , , , , , .C C C I II IIIα β γ α β γ= =    Hence, (4.1.4). 

Remark 
[a] Any isotropic tensor rank- n  ( 2n > ) is expressed through the rank- 2  isotropic tensor, I . 
[b] We further note (i.) that, in consonance with the concept of isometry, there could be other ways 
of writing the basic isotropic tensors; (ii.) any n-ranked tensor has 𝑛𝑛! isomers. 𝐓𝐓�𝑡𝑡 is the isomer of 
T . Likewise, i j k

ijkC e e e  has one of its isomers as .k j i
ijkC e e e ; (iv.) the structure of a given tensor 

determines the number of independent isomers it will possess, such that the existence of symmetry 
in its internal structure reduces the number of independent isomers. 
For this, a rank-4 tensor will possess 4! 24=  isomers. But if this tensor is isotropic, then only 3 of 
its isomers are independent. Hence, for any constants ,λ µ  and ν  any rank-4 isotropic tensor is 
expressed through the 3 isomers: 
[c] In the orthonormal system of coordinates, (4.1.4) reduces to the known Hooke's elastic tensor 
in the case of isotropic material. It is constructed on the rank-4 isotropic tensor ij klδ δ , which has 
the three isomers ( ij klδ δ , ik jlδ δ , il jkδ δ ), for which the elastic tensor ijklC  for isotropic material 
takes the expression ( )ijkl ij kl ik jl il jkC λδ δ µ δ δ δ δ= + + , λ  and µ  are the Lame constants. 

Isotropy 
Further, given any rank-2 tensor T , its cofactor tensor cT  can be obtained simply as the dyad of 
vector i j×e e  and vector ( · ) ( · )i i×T e T e   such that 

 1[( · ) ( · )][ ] .
2

c i i mnp k q s
i j skq n p mT T= × × =T T e T e e e e e   ò ò  (4.2.1) 

Thus, the 1st invariant 1( )I T  and 2nd invariant 2 ( )I T  of tensor T  can be given through the double 
dot product: 

 2 2
1 2 1 1 1

1( ) ·· , ( ) ( ) ·· [ ( ) ( )].
2

c cI I I I I I I= = = = −T T T T T T T          (4.2.2) 

This process can be followed to, compute other invariants, obtain the Hamilton-Cayley relations, 
take tensor derivative of scalar and tensor functions and thus deduce constitutive relations from 
pertinent energy; essentially, using already known operations of dot and cross products on 
invariant objects, vectors inclusive, and many more operations. 
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Hamilton-Kelly's Theorem 
The set 2 , , IT T   , where 0 I≡T  , forms the basis for any tensor. mT  in the space ( )m n∈ ⊂ ΩT T E
, 3m ≥  such that 
 3 2

1 2 1( ) ( ) ( ) .I I I I= − +T T T T T T        (4.2.3) 
i.e. the tensor mT , 3m ≥  is expressible linearly through tensors of lower degree 2 , , IT T   .  
We further recall, in addition to (4.2.2), the following relations for nonsingular tensor T  

 1 2 3 2 3
1 2 3 1 1 1 1

1

1 1[ ( ) ( ) ], ( ) [ ( ) 3 ( ) ( ) 2 ( )],
( ) 6

I I I I I I I I
I

− = − + = − +T T T T T T T T T T
T

          


 

 1 1 1 12 1
1 2 3

3 3 3

( ) ( ) 1( ) , ( ) , ( ) ( ).
( ) ( ) ( )

I II I I det
I I I

− − − −= = = =
T TT T T T
T T T

 
   

  
 

We also note the following relations, including inequalities, 

 
1 2

23 3
1 3 2 3 1 2( ) ( ) 1, 2,3; ( ) 3 ( ), ( ) 3 ( ), ( ) 3 ( ).t

k kI I k I I I I I I= = ≥ ≥ ≥T T T T T T T T         (4.2.4) 

Tensor Derivative of Invariants - Energy Function 
Differentiation in Tensor Argument: Frechet Derivative} 
Frechet Derivative 
Here, the tensor derivative of an invariant is taken from the first principle of variation with respect 
to the {argument} in the sense of Frechet's derivative.  
Thus, we define derivative of a differentiable function ( )F C∈ Ω  as the linear coefficient of the 
variation of the argument due to the variation of the function: 
 ( ) ( ) ( ) ,F F x x F h F x xδ δ δ′= + − =  (5.1.1) 
where Fδ  is the variation of the function ( )F x  due to variation of the argument xδ . Here, ( )F x′  
as the coefficient of xδ  in its linear form, constitutes the derivative of the function F . It is in this 
form that the notion of Frechet Derivative is invoked in respect of invariants/tensors [10]. 
Computation of Derivative of Scalars 
Lemma: The derivative with respect to tensor T  of the 1st, 2nd and 3rd invariants, 1( )I T , 2 ( )I T

, 3 ( )I T , is given respectively as 
 2 3 2

1 1 1( ) , ( ) 2 , ( ) 3 .t tI I I I= = =T T TT T T T T  
       

Proof 
Derivative of Tensor Invariants. 

a. We note that the first invariant of a tensor is a linear scalar function of its argument and it 
is given by the double dot product between the tensor and the unit tensor: 

 
(4.2.2)

1( ) ·· .I I=T T    
Then, from the first principle we have 

(i) 
(5.1.1)

1 1 1 1( ) ( ) ( ) ··( ) ·· ·· ·· . ( ) .tI I I I I I I I Iδ δ δ δ δ= + − = + − = = ⇒ =TT T T T T T T T T T 
                

(ii) Likewise we have 

2 2
1 1 1 1( ) [( )·( )] ( ) ( · · )I I I Iδ δ δ δ δ= + + − = +T T T T T T T T T T          ,  

and ignoring the nonlinear term ·δ δT T   due definition, 
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 2
1·· · ·· · ·· ·· 2 ·· . ( ) 2 .t t tI I Iδ δ δ δ δ= + = + = ⇒ =TT T T T T T T T T T T T

               

(iii) 3 2 2 2 2 3 2
1 1 1( ) ( · · · · ) 3 ·· 3 ·· . ( ) 3 .t t tI I Iδ δ δ δ δ δ= + + = = ⇒ =TT T T T T T T T T T T T T T
               

                Hence, 
2 3 2

1 1 1( ) , ( ) 2 , ( ) 3 .t tI I I I= = =T T TT T T T T  
       

 
b. Derivative of 2nd and 3rd Invariants 
By invoking the Hamilton-Kelly theorem relating tensor of any degree through degree not more 
than two via-a-vis the invariants of that tensor, we deduce the pertinent expressions for the 
derivative of higher invariants. 

(iv)  Indeed, in cognizance of (4.2.4) and the derivatives of first invariants indicated above, we 
obtain the required derivatives of the 2nd and 3rd invariants as  

 2 1
2 1 3 1 2 3( ) ( ) , ( ) ( ) ( ) ( )( ) .t t t tI I I I I I I I −= − = − + =T TT T T T T T T T T T 
             

Theorem: The derivative of any scalar function of tensor argument ( )ϕ T  is  

 2
1 2 3 1 2 1

1 2 3 2 3 3

( ( ), ( ), ( )) ( ( ) ) ( ) .t tI I I I I I I
I I I I I I
ϕ ϕ ϕ ϕ ϕ ϕϕ ∂ ∂ ∂ ∂ ∂ ∂

= + + − + +
∂ ∂ ∂ ∂ ∂ ∂TT T T T T T

        

Proof:  Any scalar function of a tensor argument is ultimately expressed through the invariants of 
the tensor 1 2 3( ) ( ( ), ( ), ( )I I Iϕ ϕ=T T T T    . Invoking the last lemma, the Hamilton-Kelly theorem and 
the established derivatives of invariants, the theorem is proved: 

 1
1 2 3 1 3

1 2 2 3

( ( ), ( ), ( )) [ ( ) ] ( )( )t tI I I I I I
I I I I
ϕ ϕ ϕ ϕϕ −∂ ∂ ∂ ∂

= + − +
∂ ∂ ∂ ∂TT T T T T T T

         

 2
1 2 1

1 2 3 2 3 3

( ( ) ) ( ) .t tI I I I
I I I I I I
ϕ ϕ ϕ ϕ ϕ ϕ∂ ∂ ∂ ∂ ∂ ∂

= + + − + +
∂ ∂ ∂ ∂ ∂ ∂

T T T     

Theorem: Suppose the invariants of tensor, arising from geometry of deformation in elasticity, 
are 
 2

0 4·( )· , ·( ) · ,s U I s U I= − = −c c c c     

where, U  such that 2 ·
o o

tU = ∇ ∇R R  is the symmetric stretch tensor, 
o
∇R  is a non-symmetric rank-

2 tensor of deformation gradient such that ·
o

DU O∇ =R  , 1·
o

DO U −= ∇R   is the deformative rotation 
tensor, I  is the unit tensor, R  is the position vector and c  is a unit directional vector. Then, the 

tensor derivative with respect to 
o
∇R  of 0s  and 4s  are 

 11 ( · · ·) and
2o

o
Do

o o
ss O U

∇

−∂
= = + ∇
∂∇R

cc cc R
R

   

 14
4 2 · · · · .

o

o o
D

o
ss O U

∇

−∂
= = ∇ − − ∇
∂∇R

cc R cc cc R
R

   

Proof: The proof of this follows directly from the application of the previously enunciated 
procedure for Frechet derivative of a tensor, on any I , T  and 2T . 
Theorem: 
Suppose in addition to the invariants given in the previous theorem we have also 
 2

1 1 2 1( ) ··( ) and ( ) ··[( )·( ).s I U I I U I s I U I I U I U I= − = − = − = − −             
Now let the scalar energy function W be given as 
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 2 2
2 1 2 1 1 0 0

1 1( ) , ( ) ,
2 2

i W s s ii W s s sµ λ λ λ λ= + = + +  

respectively for an isotropic elastic material, for a plane transversely isotropic material [19-20]. 

Then the Piola stress tensor resulting from the derivation of W with respect to 
o
∇R , is respectively 

 1
1 1( ) 2 [ 2 ] [( 2 ) 2 ]· ,

o o
D

o
Wi P s O s Uµ λ µ λ µ µ−∂

≡ = ∇ + + = − + ∇
∂∇

R R
R

   

 2 1 1 2 0( ) 2 ( 2 ) · ,
o o

D
o
Wii P s Oλ λ λ λ∂

≡ = ∇ + − + ∇
∂∇

R cc R
R

  

where λ  and µ  are the so-called Lame's constants from elasticity, 0λ , 1λ  and 2λ  are pertinent 
constants associated with the anisotropy of the elastic composite materials [20]. 
Proof: The proof of this follows directly from the application of the procedure for Frechet 
derivative of a tensor on T , 2T  and I  and the previous theorem, straightforwardly. 
Theory of Strain-Gradient-Divergence Plasticity 
Plasticity is an aspect of elasticity, when irreversible process takes place. Here, the robustness of 
tensor operations and the concepts therein, such as: scalar functions and invariants and their tensor 
derivatives; multiple scalar products and conjugacy between geometric and mechanical 
characteristics have been deftly applied to upgrade the theory of strain-gradient plasticity of Gurtin 
and Anand [17] to obtain the theory of strain-gradient-divergence plasticity [16]. 

Now, consider a body Ω  undergoing plastic deformation. Suppose ( , )tu x  denotes the 
displacement vector of an arbitrary point x  in a region Ω  describing a body composed of 
manifolds of particles. The classical theory of isotropic plastic solids undergoing small 
deformations is based on the kinematic relations given by the decomposition of the displacement 
gradient; 
 1; ( ) ·· 0.e p p p pH H trH I H H I∇ = + = = =u        (6.1) 

 1 1( ); ( ),
2 2

e e et p p ptE H H E H H= + = +       (6.2) 

where eE  represents rotation and stretching while pE  denotes the plastic distortion characterizing 
the evolution of dislocations and other defects through the structure. 1( ) 0pI H =  defines the 
condition of plastic incompressibility. The elastic and plastic strains are defined by (6.2), while 

e eW skwH=   and p pW skwH=   are the elastic and plastic rotation tensor respectively. 
Let the internal and external virtual power expenditure over a micro-region P ⊂ Ω  be 
 [ ·· · · ·· ] ;e

int P
W E dV= + ∇ + + ∇∫ p p p p pT χ E T E K E        

       ( , ) [ ( )· ( )·· ] · ,p
ext P P

W P V E dA dV
∂

= + +∫ ∫t n u K n b u  

for which, given the set of virtual velocities 
.

( , , )e eH Eϑ δ δ δ= u    , by the principle of virtual power 
we have ( , ) ( , )int extW P W Pϑ ϑ= , which results in the set of macrobalance force with the 
corresponding macrotraction and microbalance force with the corresponding microtraction: 
 · and · ,∇ + =T b T n t   (6.3) 
 ( ) · and ( ) · ,p p p

o o osym K K sym K= − ∇ −∇ = ⊗ +T T χ χ n n      (6.3)’ 



Advanced Topics in Mechanics of Materials, Structures and Construction - AToMech1-2023 Materials Research Forum LLC 
Materials Research Proceedings 31 (2023) 422-436  https://doi.org/10.21741/9781644902592-44 
 

 
435 

where 1 (tr )
3o I= −T T T     is the deviatoric part of the macrostress T , ( )osym ∇χ  is the symmetric 

deviatoric part of the gradient of the microforce χ , while ⊗χ n  is a dyad. Note that symmetric-

deviatoric part of tensor T  is 1 1[ ( ) (tr ) ]
2 3

t
osym I≡ + −T T T T     . 

Here, the internal microforce χ  is energy conjugate to · pE∇  , macrostress T  is energy conjugate 
to eE , microstress pT  is energy conjugate to pE , the polar microstress rank3 tensor pK  is energy 
conjugate to the rate of plastic strain gradient pE∇  . b  is a body force in P , t  is a microtraction 
vector and K  a rank2 microtraction tensor both on P∂ , n  is the outward unit normal vector, 
orientating the surface P∂ .  

By the second law of thermodynamics, the free energy imbalance for this plastic process is 
taken, due (6.3), as  
 ·· · · ·· ,e p p p p pE E E K Eψ ≤ + ∇ + + ∇T χ T        
which nudges us to take $\psi$ as the Helmholtz free energy in the form  
 ( , , · , ).e p p pE E E Eψ ψ= ∇ ∇×     (6.4) 
Following from the previous theory, we then take the tensor derivative of the scalar (i.e. the free 
energy) with respect to each argument to obtain the corresponding conjugate mechanical 
parameter: 

 , , ( ) ( ) ,
·

p p
en en jqp o jqpe p p K sym P

E E E
ψ ψ ψ∂ ∂ ∂

= = = =
∂ ∂ ∂∇

T T χ  
  

 (6.5) 

where ( ) jqp ipq
ij

P
G
ψ∂

=
∂

ò  and , .p
ij irs js rG E= ò  

Consequently, the energy is obtained in the quadratic form as  

 2 2 2 2 2 2 2
1

1 1 1 1( ) | | | | | · | | | ,
2 2 2 2

e e p p p
oI E E E Q E L Eκ µ µ µ µ+ + + ∇ + ∇×      (6.6) 

where Q  and L  are called energetic length scales associated with · pE∇   and pE∇×   respectively. 
The dissipative microstresses based on the von Mises yield criterion are given in terms of their 
corresponding power conjugates as follows 

 2 2
dis dis en

·( ) ; ( ) ; ( ) ,
p p p p p p

m p m p m
o o op p p

o o o

d E d E d Eq S S K l S
d d d d d d

∇ ∇
= = =χ T

  
   (6.7) 

oS  is the initial yield strength, od  is the initial flow rate, m  is the rate sensitivity parameter and 
pd  is the effective flow rate defined by  

 2 2 2 2 2| | | · | | | ,p p p pd E q E q E= + ∇ + ∇    
where q  and l  are called dissipative length scales associated with · pE∇   and pE∇   respectively. 
Putting (6.5) and (6.7) into the microforce balance and microtraction condition (6.3)′ , we obtain 
the interested viscoplasticity flow rule, which is a generalization of the Gurtin-Anand model: 
 2 2 2 2 2·( ( ) ( · ) ) ( ) ( ( [( ) ])) ·[( ) ].

p p p p p p
p p p m m m

o o o o o op p p
o o o

d E d E d EL E Q L sym E E S q S sym l S
d d d d d d

µ ∇ ∇
+ ∆ + − ∇∇ − = − ∇ − ∇T
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