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Abstract. This paper presents a strategy for Progressive Failure Analysis (PFA) of laminated 
plates, including Variable Stiffness ones, based on the Ritz method. The formulation is developed 
using a mixed variational principle, where the unknowns are the stress function and the out-of-
plane deflections. A linear degradation model is implemented to account for damage evolution. To 
ensure accurate predictions, emphasis is placed on the method's ability to correctly handle the 
laminate's elastic couplings. The iterative nature of this type of analysis is effectively managed due 
to the reduced number of degrees of freedom required. Exemplary results are reported, and 
comparisons with Abaqus results are provided to demonstrate the quality of the predictions. 
Introduction 
Thin plates are elementary structural components of many engineering structures, including those 
employed in aerospace constructions. In this field, lightweight designs are of crucial importance 
and, for this purpose, it is beneficial to exploit the plate load-carrying capabilities in the 
postbuckling field. Indeed, after the panel buckles, internal stress redistribution allows further 
loads to be sustained. The failure mechanisms of composite panels can be relatively complex and 
may involve geometrically and materially nonlinear phenomena such as mode-jumping, intra- and 
inter-laminar failures ‒ independent on each other or in combination. The behavior can be even 
more complex due to internal load redistribution mechanisms arising from the interaction with the 
surrounding parts of the structure, such as in the case of the local buckling of stringers [1].  

Simplified approaches, such as the ones based on the effective width concept, are a useful mean 
for predicting the failure load in the preliminary design phases. These strategies offer the potential 
to obtain an estimate of the loads, but, for many purposes, tend to be oversimplified. The designers 
would benefit from the availability of more advanced tools, where insight can be gathered into the 
underlying mechanisms leading the structure to the failure. These considerations are even more 
true for the composite structures of the next generation based on the Variable Stiffness (VS) 
concept [2,3]. The availability of more design variables, as well as the possibility of tailoring the 
internal load paths, make the adoption of fast yet accurate tools even more appealing.  

Continuum Damage Mechanics (CDM) is a well-consolidated framework for modeling damage 
response at macro-scale level and predicting failure in composites. Matzenmiller et al. [4] proposed 
a degradation procedure for fiber-reinforced composites exhibiting elastic-brittle behavior. Based 
on his work, Lapczyk and Hurtado [5] presented a linear damage evolution law with focus on finite 
element implementation. A few studies in the past have shown that CDM can be successfully 
coupled also with semi-analytical methods to simulate progressive damage modeling of 
postbuckled composite plates [6,7]. All previous works in this context are restricted to isotropic 
plates and classical straight-fiber composite laminates. To the best of the authors’ knowledge, a 
recent work by Campagna et al. [8] is the only attempt to account for VS configurations too. The 
Ritz model of [8] refers to a displacement-based approach and allows for improved computational 
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efficiency. In the present effort, a Ritz method is developed along with continuum damage 
capabilities. As opposed to [8], the formulation proposed here refers to a unitary variational 
principle based on a mixed formulation [9,10,11], the main advantage being the reduction of the 
unknown fields from five to two. This framework is extended here, for the first time, to account 
for a CDM model aiming at achieving improved failure load prediction capabilities. The proposed 
extension not only involves the implementation of the damage model, but includes a novel strategy 
to appropriately account for elastic couplings that can affect the accuracy of the predicted failure 
load and the identification of the critical spots. 
Mixed Formulation 
Goal of this investigation is the failure analysis of Variable Stiffness plates operating in the 
postbuckling field. These plates are characterized by nonuniform elastic properties, hence 
appropriate methods capable of capturing any relevant elastic coupling effect are of concern. The 
plate is assumed to be thin such that Kirchhoff assumptions can be applied. The dimensions are 
defined with lx and ly, while the thickness is h. The layup is symmetric, so membrane and bending 
anisotropy effects can be considered. These effects play an important role in the plate failure 
mechanisms, as discussed later. 

The plate model aims to represent the skin of a stiffened panel, such as those employed in 
aeronautical structures. Any set of flexural boundary conditions can be considered, i.e. clamped, 
free or simply-supported, while in-plane ones are based on the assumption of unloaded edges free 
to translate but forced to remain straight. Loading conditions of uniaxial compression are 
considered, and the load is introduced via prescribed displacement Δ𝑢𝑢. A sketch of the structure is 
reported in Figure 1. 

 

Figure 1. Sketch of the plate. 

The problem is formulated by considering von Kármán-type geometric nonlinearity. This 
assumption leads to a non-objective strain measure, so care is needed when using this 
approximation. Previous studies have proven its validity when boundary conditions allow 
significant postbuckling stress redistribution [12], as in the case investigated here. 

The mixed formulation relies upon the unitary functional presented in [9,10,11], where the 
unknowns are the out-of-plane displacement and the Airy stress function. Specifically, the 
functional reads: 
 Π∗ = Π𝑚𝑚 + Π𝑏𝑏 + Π𝑛𝑛𝑛𝑛 + Π𝑖𝑖𝑚𝑚𝑖𝑖 + Π𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙  (1) 

with: 

 Π𝑚𝑚 = −
1
2
�[𝑟𝑟4𝑎𝑎11(𝜉𝜉, 𝜂𝜂)𝐹𝐹,𝜂𝜂𝜂𝜂

2 + 2𝑟𝑟2𝑎𝑎12(𝜉𝜉, 𝜂𝜂)𝐹𝐹,𝜉𝜉𝜉𝜉𝐹𝐹,𝜂𝜂𝜂𝜂 + 𝑎𝑎22(𝜉𝜉, 𝜂𝜂)𝐹𝐹,𝜉𝜉𝜉𝜉
2 + 𝑟𝑟2𝑎𝑎66(𝜉𝜉, 𝜂𝜂)𝐹𝐹,𝜉𝜉𝜂𝜂

2

�̅�𝑆
− 2𝑟𝑟3𝑎𝑎16(𝜉𝜉, 𝜂𝜂)𝐹𝐹,𝜂𝜂𝜂𝜂𝐹𝐹,𝜉𝜉𝜂𝜂 − 2𝑟𝑟𝑎𝑎26(𝜉𝜉, 𝜂𝜂)𝐹𝐹,𝜉𝜉𝜉𝜉𝐹𝐹,𝜉𝜉𝜂𝜂]𝑑𝑑𝑆𝑆̅ 

(2) 
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 Π𝑏𝑏 =
1
2�[𝐷𝐷11(𝜉𝜉,𝜂𝜂)𝑤𝑤,𝜉𝜉𝜉𝜉

2 + 2𝑟𝑟2𝐷𝐷12(𝜉𝜉,𝜂𝜂)𝑤𝑤,𝜉𝜉𝜉𝜉𝑤𝑤,𝜂𝜂𝜂𝜂 + 𝑟𝑟4𝐷𝐷22(𝜉𝜉,𝜂𝜂)𝑤𝑤,𝜂𝜂𝜂𝜂
2 + 4𝑟𝑟2𝐷𝐷66(𝜉𝜉,𝜂𝜂)𝑤𝑤,𝜉𝜉𝜂𝜂

2
𝑆𝑆�

+ 4𝑟𝑟𝐷𝐷16(𝜉𝜉,𝜂𝜂)𝑤𝑤,𝜉𝜉𝜉𝜉𝑤𝑤,𝜉𝜉𝜂𝜂 + 4𝑟𝑟3𝐷𝐷26(𝜉𝜉,𝜂𝜂)𝑤𝑤,𝜂𝜂𝜂𝜂𝑤𝑤,𝜉𝜉𝜂𝜂]𝑑𝑑𝑆𝑆� 
(3) 

 Π𝑛𝑛𝑛𝑛 =
1
2𝑟𝑟

2� �𝐹𝐹,𝜂𝜂𝜂𝜂𝑤𝑤,𝜉𝜉
2 +𝐹𝐹,𝜉𝜉𝜉𝜉𝑤𝑤,𝜂𝜂

2 − 2𝐹𝐹,𝜉𝜉𝜂𝜂𝑤𝑤,𝜉𝜉𝑤𝑤,𝜂𝜂� 𝑑𝑑𝑆𝑆�
𝑆𝑆�

 (4) 

 Π𝑖𝑖𝑚𝑚𝑖𝑖 = −𝑟𝑟2 ��𝐹𝐹,𝜂𝜂𝜂𝜂𝑤𝑤0𝑤𝑤𝜉𝜉𝜉𝜉 − 2𝐹𝐹,𝜉𝜉𝜂𝜂𝑤𝑤0𝑤𝑤𝜉𝜉𝜂𝜂 + 𝐹𝐹,𝜉𝜉𝜉𝜉𝑤𝑤0𝑤𝑤𝜂𝜂𝜂𝜂�
�̅�𝑆

 (5) 

 Π𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙 = −
𝑙𝑙𝑥𝑥𝑟𝑟2

4
�� 𝐹𝐹,𝜂𝜂𝜂𝜂 |𝜉𝜉=−1𝑑𝑑𝜂𝜂 + � 𝐹𝐹,𝜂𝜂𝜂𝜂 |𝜉𝜉=1𝑑𝑑𝜂𝜂

1

−1

1

−1
� Δ𝑢𝑢 (6) 

where r=lx/ly is the plate aspect ratio, w0 represents the initial imperfection, while Dik, aik are 
the bending stiffness and the membrane compliance according to the standard notation used for 
laminate analysis. Integration is carried out in the nondimensional domain (𝜉𝜉, 𝜂𝜂) ∈ [−1 1] ×
[−1 1]. 

The variational principle based on Eq. (1) requires the first variation of Π∗ to be zero. This leads 
to the governing equations for the problem, which are the out-of-plane equilibrium and the in-
plane compatibility. 
Solution by Accounting for Anisotropy Effects 
Previous studies suggested the use of the Ritz method as an effective mean for obtaining an 
approximate solution with improved computational efficiency. In particular, Wu et al. [10] 
proposed an approach based on Legendre polynomials. Despite its effectiveness, this approach 
cannot account for membrane anisotropy. Strategies for overcoming this restriction have been 
discussed in [11] based on Lagrange multipliers. Here, we propose a relatively straightforward 
approach that can be used to account for the above mentioned elastic couplings with no need to 
resort to Lagrange multipliers. 

The out-of-plane deflection is approximated as presented in [10,11]. A new strategy is proposed 
for the description of the Airy stress function. In particular, the following requirements need to be 
fulfilled: 

1. the edge force Nx0 must be allowed to have different distributions at 𝜉𝜉 = ±1. Similarly, Ny0 
must be allowed to have different distributions at 𝜂𝜂 = ±1. 

2. shearing force at all the edges, 𝑁𝑁𝑥𝑥𝑥𝑥0, must be equal to zero. 
3. the lateral edges are free to move but constrained to remain straight, thus: ∫ 𝑁𝑁𝑥𝑥0𝑑𝑑𝜉𝜉

1
−1 = 0 

An expansion respectful of these three conditions is carried out as: 
 𝐹𝐹(𝜉𝜉, 𝜂𝜂) = 𝐹𝐹0(𝜉𝜉, 𝜂𝜂) + 𝐹𝐹1(𝜉𝜉, 𝜂𝜂) + 𝐹𝐹2(𝜉𝜉, 𝜂𝜂) (7) 

where: 
 

𝐹𝐹0,𝜉𝜉  (𝜉𝜉, 𝜂𝜂) = −
1
2
𝑋𝑋1(𝜂𝜂)(1 − 𝜉𝜉2)�𝑑𝑑1𝑗𝑗𝑀𝑀𝑗𝑗(𝜉𝜉)−

1
2
𝑋𝑋2(𝜂𝜂)(1 − 𝜉𝜉2)�𝑑𝑑2𝑗𝑗𝑀𝑀𝑗𝑗(𝜉𝜉)

𝐽𝐽

𝑗𝑗=0

𝐽𝐽

𝑗𝑗=0

 (8) 

 
𝐹𝐹1,𝜂𝜂 (𝜉𝜉, 𝜂𝜂) =

𝑙𝑙𝑥𝑥2

4
𝑁𝑁�𝑥𝑥𝜂𝜂 −

1
2
𝑋𝑋1(𝜉𝜉)(1 − 𝜂𝜂2)�𝑐𝑐1𝑘𝑘𝐿𝐿𝑘𝑘(𝜂𝜂)

𝐾𝐾

𝑘𝑘=0

−
1
2
𝑋𝑋2(𝜉𝜉)(1 − 𝜂𝜂2)�𝑐𝑐2𝑘𝑘𝐿𝐿𝑘𝑘(𝜂𝜂)

𝐾𝐾

𝑘𝑘=0

 (9) 

and: 
 

𝑋𝑋1(𝜉𝜉) =

⎩
⎨

⎧1 −
(𝜉𝜉 + 1)2

2
, −1 ≤ 𝜉𝜉 < 0

(𝜉𝜉 − 1)2

2
, 0 ≤ 𝜉𝜉 ≤ 1

 (10) 

 
𝑋𝑋2(𝜉𝜉) =

⎩
⎨

⎧
(𝜉𝜉 + 1)2

2
, −1 ≤ 𝜉𝜉 < 0

1 −
(𝜉𝜉 − 1)2

2
, 0 ≤ 𝜉𝜉 ≤ 1

 (11) 
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The functions 𝑋𝑋1 and 𝑋𝑋2 can be either 1 or 0 at 𝜉𝜉 = ±1, and their derivatives at 𝜉𝜉 = ±1 are 
zero. These properties are exploited to model the skewness in the internal forces and to satisfy 
boundary conditions, too. 

The coefficients 𝑑𝑑1𝑗𝑗,𝑑𝑑2𝑗𝑗 , 𝑐𝑐1𝑘𝑘, 𝑐𝑐2𝑘𝑘,𝑁𝑁�𝑥𝑥 are the new unknowns to be calculated by minimizing the 
unitary functional. 
Damage Model 
The Ritz formulation presented above allows postbuckling simulations to be carried out. Aiming 
at gathering insights into the failure mechanisms of postbuckled panels, a damage model is 
implemented. In this regard, the failure load of the structure can be estimated with an approach 
that is more physically sound than simpler strategies, such as the first ply failure criterion. 

The constitutive law of each orthotropic ply composing the stacking is expressed as: 
 

𝑸𝑸𝒅𝒅 =
1
𝐷𝐷
�

(1 − 𝑑𝑑𝑓𝑓)𝐸𝐸1 (1 − 𝑑𝑑𝑓𝑓)(1 − 𝑑𝑑𝑚𝑚)𝑣𝑣21𝐸𝐸1 0
(1 − 𝑑𝑑𝑓𝑓)(1 − 𝑑𝑑𝑚𝑚)𝑣𝑣12𝐸𝐸2 (1 − 𝑑𝑑𝑚𝑚)𝐸𝐸2 0

0 0 𝐷𝐷(1 − 𝑑𝑑𝑠𝑠)𝐺𝐺12
� (12) 

where three damage variables, df, dm, ds are introduced to represent fiber, matrix, and shear 
failure modes, and: 

 𝐷𝐷 = 1 − �1 − 𝑑𝑑𝑓𝑓�(1 − 𝑑𝑑𝑚𝑚)𝑣𝑣12𝑣𝑣21 (13) 

It is assumed that the damage variable for the shear, ds, is not independent and is expressed as 
a function of two other damage variables: 
 𝑑𝑑𝑠𝑠 = 1 − �1 − 𝑑𝑑𝑓𝑓�(1 − 𝑑𝑑𝑚𝑚) (14) 

Hashin and Rotem criteria are employed to predict damage initiation. This criterion has been 
suggested in past studies, e.g. [21,23,24]. Specifically, the Hashin and Rotem criterion 
distinguishes between failure modes based on the following set of subcriteria: 

 

𝜎𝜎11 ≥ 0 𝐹𝐹𝑓𝑓𝑓𝑓 = �
𝜎𝜎11
𝑋𝑋𝑓𝑓
�
2

= 1

𝜎𝜎11 < 0 𝐹𝐹𝑓𝑓𝑓𝑓 = �
𝜎𝜎11
𝑋𝑋𝑓𝑓
�
2

= 1

𝜎𝜎22 ≥ 0 𝐹𝐹𝑚𝑚𝑓𝑓 = �
𝜎𝜎22
𝑌𝑌𝑓𝑓
�
2

+ �
𝜏𝜏12
𝑆𝑆𝐿𝐿
�
2

= 1

𝜎𝜎22 < 0 𝐹𝐹𝑚𝑚𝑓𝑓 = �
𝜎𝜎22
𝑌𝑌𝑓𝑓
�
2

+ �
𝜏𝜏12
𝑆𝑆𝐿𝐿
�
2

= 1

 (15) 

where 𝑋𝑋𝑓𝑓,𝑋𝑋𝑓𝑓,𝑌𝑌𝑓𝑓,𝑌𝑌𝑓𝑓, 𝑆𝑆𝐿𝐿 are the strength of material in the directions fiber extension, fiber 
compression, matrix tension, matrix compression and shear, respectively. 

As per the approach proposed in [5], the material properties are decreased linearly once damage 
initiation occurs. The evolution law is expressed in terms of equivalent stress, 𝜎𝜎𝑒𝑒𝑒𝑒, and equivalent 
strain, 𝜖𝜖𝑒𝑒𝑒𝑒. For both the fiber and matrix in tension and compression, they are defined as: 

 𝜎𝜎11 ≥ 0 𝜖𝜖𝑒𝑒𝑒𝑒.𝑓𝑓𝑓𝑓 = ⟨𝜖𝜖11⟩ 𝜎𝜎𝑒𝑒𝑒𝑒.𝑓𝑓𝑓𝑓 =
⟨𝜎𝜎11⟩⟨𝜖𝜖11⟩
𝜖𝜖𝑒𝑒𝑒𝑒.𝑓𝑓𝑓𝑓

𝜎𝜎11 < 0 𝜖𝜖𝑒𝑒𝑒𝑒.𝑓𝑓𝑓𝑓 = ⟨−𝜖𝜖11⟩ 𝜎𝜎𝑒𝑒𝑒𝑒.𝑓𝑓𝑓𝑓 =
⟨−𝜎𝜎11⟩⟨−𝜖𝜖11⟩

𝜖𝜖𝑒𝑒𝑒𝑒.𝑓𝑓𝑓𝑓
= ⟨−𝜎𝜎11⟩

𝜎𝜎22 ≥ 0 𝜖𝜖𝑒𝑒𝑒𝑒.𝑚𝑚𝑓𝑓 = �⟨𝜖𝜖22⟩2 + 𝛾𝛾122 𝜎𝜎𝑒𝑒𝑒𝑒.𝑚𝑚𝑓𝑓 =
⟨𝜎𝜎22⟩⟨𝜖𝜖22⟩ + 𝜏𝜏12𝛾𝛾12

𝜖𝜖𝑒𝑒𝑒𝑒.𝑚𝑚𝑓𝑓

𝜎𝜎22 < 0 𝜖𝜖𝑒𝑒𝑒𝑒.𝑚𝑚𝑓𝑓 = �⟨−𝜖𝜖22⟩2 + 𝛾𝛾122 𝜎𝜎𝑒𝑒𝑒𝑒.𝑚𝑚𝑓𝑓 =
⟨−𝜎𝜎22⟩⟨−𝜖𝜖22⟩ + 𝜏𝜏12𝛾𝛾12

𝜖𝜖𝑒𝑒𝑒𝑒.𝑚𝑚𝑓𝑓

 (16) 
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The Macaulay bracket operator is denoted by ⟨⟩.The damage variables di evolve based on the 
stress-strain relation shown in Figure 2, where 𝜖𝜖𝑒𝑒𝑒𝑒0  is the equivalent strain at which the damage 
criteria for the corresponding mode is satisfied, and 𝜖𝜖𝑒𝑒𝑒𝑒

𝑓𝑓  is the one at which the material is 
completely damaged for that mode. The area below the graph is the fracture energy, 𝐺𝐺𝑓𝑓. 

 

Figure 2. Equivalent strain/stress for linear damage evolution law. 

The strain 𝜖𝜖𝑒𝑒𝑒𝑒
𝑓𝑓  can be related to 𝜖𝜖𝑒𝑒𝑒𝑒0   either by specifying the energy dissipation during damage, 

𝐺𝐺𝑓𝑓, or simply with a factor 𝛼𝛼: 

 𝜖𝜖𝑒𝑒𝑒𝑒
𝑓𝑓 = 𝛼𝛼𝜖𝜖𝑒𝑒𝑒𝑒0  (17) 

In this work, a value of 𝛼𝛼 = 2 has been used for each of failure mode [6]. When damage is 
detected in the fiber or matrix direction, depending on whether the stress state is tensile or 
compressive, the corresponding damage variable, 𝑑𝑑𝑖𝑖is calculated with the following formulation: 

 𝑑𝑑𝑖𝑖 =
𝜖𝜖𝑒𝑒𝑒𝑒
𝑓𝑓 (𝜖𝜖𝑒𝑒𝑒𝑒 − 𝜖𝜖𝑒𝑒𝑒𝑒0 )

𝜖𝜖𝑒𝑒𝑒𝑒(𝜖𝜖𝑒𝑒𝑒𝑒
𝑓𝑓 − 𝜖𝜖𝑒𝑒𝑒𝑒0 )

 (18) 

Results 
In this section, exemplary results are presented to illustrate the capabilities of the method. In the 
first part, postbuckling results are presented to show the ability of the proposed method to capture 
skewness in postbuckling membrane resultants. This effect is crucial to guarantee accurate failure 
predictions. In the second part, a parametric study is conducted on different VS configurations and 
failure loads are reported based on the application of PFA. 

In all the tests, the material properties are those summarized in Table 1, while the ply strengths 
are given in Table 2 [1,13]. 

Table 1. Carbon/epoxy engineering properties. 
E11 (GPa) E22(MPa) G12(MPa) ν12 

150 9080 5290 0.32 
 

Table 2. Ply strenghts. 
XT(MPa) XC(MPa) YT(MPa) YC(MPa) SL(MPa) 

2323 1200 160.2 199.8 130.2 

The plates are square with dimension equal to 1000 mm and total thickness fixed to 9.6 mm. 
Simply-supported boundary conditions are considered. Imperfections are introduced with a shape 
equal to the first buckling mode and maximum amplitude equal to 0.096 mm, corresponding to 
1% of the plate thickness. 
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Example 1 
In this test case, the plate is characterized by the stacking [±⟨0|45 ⟩]3𝑆𝑆, where use is made of the 
notation proposed in [3]. This configuration is characterized by a non-null degree of 
bending/twisting coupling, that is quantified by referring to the nondimensional parameters 
proposed by Nemeth [14]: 

 𝛾𝛾 =
𝐷𝐷16

�𝐷𝐷113 𝐷𝐷22
4  , 𝛿𝛿 =

𝐷𝐷26
�𝐷𝐷11𝐷𝐷223
4  (19) 

For the laminate at hand, these nondimensional parameters are function of the position due to 
fiber steering. At the plate center they are null, while they are equal to 0.1895 at the plate loaded 
edges. These values suggest a significant degree of flexural anisotropy, hence leading to skew 
buckled shapes. Due to nonlinear coupling between in-plane and out-of-plane response, skew 
waves promote nonsymmetric membrane resultant redistribution. This effect is illustrated in 
Figure 3, where the membrane resultant is reported in the deep postbuckling range, at a load level 
equal to Δ𝑢𝑢 = 10Δ𝑢𝑢𝑓𝑓𝑐𝑐. The results are presented by considering two Ritz simulations, both 
performed with J=K=17: the first, denoted as “Ritz–full”, is the one proposed in this work; the 
second, “Ritz–simplified”, is the formulation obtained by neglecting the corrections proposed in 
Eqs. (8) and (9) and corresponds to the approach proposed in [Error! Bookmark not defined.]. 
The comparison of Figure 3 reports also the results obtained via Abaqus simulations. 

   

(a) (b) (c) 
Figure 3. Membrane resultant Nxx at 𝜟𝜟𝜟𝜟 = 𝟏𝟏𝟏𝟏𝜟𝜟𝜟𝜟𝒄𝒄𝒄𝒄: (a) Ritz– full, (b) Ritz–simplified, (c) 

Abaqus. 

As seen, the pattern is characterized by a certain degree of skewness that is not captured by the 
Ritz–simplified approach. On the contrary, the proposed formulation allows for an accurate 
prediction of this effect. The contours illustrate that different membrane resultant patterns are 
achieved. This, in turn, determines different spots to be the most heavily loaded ones. An 
appropriate prediction of damage onset is then affected by the ability to account for this elastic 
coupling effect.  

In addition to the mentioned local effects, a proper description of the postbuckling stress 
redistribution has an effect on the panel global response in the deep postbuckling range. The plot 
of Figure 4 illustrates the force-shortening curve obtained with different strategies. 
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Figure 4. Load-shortening curve. 

The curves of Figure 4 illustrate the close agreement between the Ritz– full formulation and the 
Abaqus results. On the contrary, noticeable discrepancies are observed in the deep postbuckling 
field when the Ritz-simplified approach is employed.  
Example 2 
The formulation is applied here to predict the failure loads of different VS configurations using 
Progressive Failure Analysis. The geometry and the material properties of the plate are the same 
of the previous example.  

The layup is now given by the stacking of 24 plies oriented at [±[〈45|𝑇𝑇〉]6𝑆𝑆, where T is the 
orientation at the plate edge ranging from 0 to 90 degrees with steps of 10 degrees. Each 
configuration is associated with different stiffness distributions. In particular, different bending 
stiffnesses have influence on the buckling load; a combined effect of bending and membrane 
stiffnessess determines different postbuckling responses. The results are summarized in Figure 5, 
where Ritz–full computations are compared against costly Abaqus PFA simulations. For the 
former, results are obtained by using 19 trial functions along both directions.  

 

Figure 5. Failure loads for layups [±[〈𝟒𝟒𝟒𝟒|𝑻𝑻〉]𝟔𝟔𝟔𝟔. 

The results demonstrate a good matching between Ritz and FEM simulations. Maximum 
discrepancies of approximately 10% can be noted, which is believed satisfactory owing to the 
complex combined effects of material and geometric nonlinearities. More important, the Ritz 
approach is able to predict the trend correctly. This feature is of interest from a design perspective. 
The proposed tool can be used for preliminary studies aimed at understanding how the response 
of the plate is affected by changing one or more design parameters. For the problem at hand, the 
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maximum failure load is achieved for T=50°. Clearly, this configuration does not represent an 
absolute optimum. Many other requirements – e.g. linear stiffness, postbuckling stiffness, buckling 
load – would be part of a more realistic design scenario.  

For the laminate corresponding to T=0°, the plot of the membrane resultant is reported in Figure 
6 at the load level corresponding to the laminate failure. 

  

(a) (b) 
Figure 6. Membrane resultant Nxx at failure: (a) Ritz– full, (b) Abaqus. 

In this case, the laminate undergoes a damage mechanism that is driven by matrix failure in 
tension. Specifically, large tensile forces develop at the middle of the transverse edges as a 
response to the straightness condition. The plot of the corresponding damage variables, dm, is 
reported in Figure 7 for the first ply of the stack. 

  

(a) (b) 
Figure 7. Damage variable dm: (a) Ritz– full, (b) Abaqus. 

The contours of Figure 7 demonstrate the ability of the method to identify the critical spots 
involved in the failure mechanism. Indeed, both Ritz and Abaqus predictions display similar 
damaged patterns. In this regards, the proposed Ritz method is a useful mean not only to predict 
the failure load, but also to gather insight into the whole failure process. 
Conclusions 
This work presented a novel approach to perform fast preliminary evaluations to estimate the 
failure load of laminated plates. Advanced configurations with fibers running along curvilinear 
paths can be considered within the proposed framework. The approach is developed on the basis 
of a mixed variational approach, and the Ritz method is combined with a linear degradation model.  

This approach can accurately predict the laminate response, not only in the initial postbuckling 
field, but up to the deep postbuckling range, where material failure usually takes place. To achieve 
this capability, a refined approximation of the stress function has been proposed to accurately 
capture stress redistribution effects induced by bending/twisting coupling. This capability is of 
crucial importance to guarantee an accurate prediction of the failure load, as well as identifying 
the regions involved in the failure process. The comparisons against Abaqus simulations 
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demonstrate the excellent quality of the predicted internal stresses and failure loads. The potential 
of the approach to investigate the effects of fiber steering on the laminate failure load has been 
shown with a parametric study. More realistic design scenarios including multiple design 
requirements will be investigated as part of future investigations. 
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