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Abstract. In the present study, a static response of functionally graded plate and spherical shells
is investigated using higher-order trigonometric shear and normal deformation theory. A need of
the shear correction factor is obviated and the effect of actual cross-sectional warping has been
considered to get the realistic behaviour of transverse shear stresses across the thickness of the
shell. The Navier solution technique has been used to analyse the simply-supported boundary
conditions of the shell. To verify the theory, the numerical results obtained using the present theory
are compared with other higher-order shear deformation theories available in the literature. The
numerical results are obtained with and without considering the effects of transverse normal strain

(2).

Introduction

The development of functionally graded materials (FGM) has broad applications in the fields of
off-shore structures, aerospace, rocket casing, nuclear mining, power plants, etc. It consists of two
distinct materials that behave separately to obtain specific desired features depending on the
application for which FGM is used. These materials have quite varied engineering properties. It is
a substance whose physical characteristics, such as its density and coefficient of thermal
expansion, gradually change along a single (usually along its thickness) or multiple directions. A
material's gradation in a specific direction improves properties such as thermal conductivity,
corrosion resistance, hardness, stiffness, weldability, etc. The most often used FGM composites
are made of ceramic and metal, where the former offers strong thermal insulation and corrosion
resistance, and the latter offers good fracture and toughness coupled with weldability. Classical
shell theory [1] neglects the effects of transverse shear stresses therefore provides inaccurate
results of displacements and stresses for thick plates and shells. Mindlin [2] has developed a first
order shear deformation theory which considers the effect of transverse shear stresses for thin and
moderately thick plates and shells, but it does not satisfy realistic shear stress conditions at the top
and the bottom surfaces of the shell. This necessitated the development of higher-order refined
shear deformation theories which consider the effects of both transverse shear and normal
deformations. A new sinusoidal shear deformation theory is developed by Thai and Vo [3] for the
bending, buckling, and vibration analysis of FGM plates. Shyang and Yen [4] investigated the
elastic behaviour of moderately thick, rectangular, simply-supported FGM plates. Mantari et al.
[5] used the Carrera unified formulation for the static analysis of FGM single-layer and multi-
layered sandwich plates including the trigonometric, exponential, and hyperbolic type functions in
the displacement fields. Response of FGM plate under thermo-mechanical loading is investigated
by Bhandari and Purohit [6, 7] for varied boundary conditions and aspect ratios. The impact of the
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shear correction factor on the static behaviour of porous FGM plates is evaluated by Mota et al.
[8]. With the use of two refined higher-order models, Punera and Kant [9] examined the
elastostatics behaviour of laminated and FGM sandwich cylindrical shells. For the thermal analysis
of FGM plates, Swaminathan and Sangeetha [10] explored several modelling methodologies and
its solutions, using the four variable refined plate theory, Zidi et al. [11] investigated the bending
response of a FGM plate supported by an elastic foundation and exposed to hygrothermal and
mechanical loadings. A literature on the stress, vibration, and buckling analysis of FGM plates is
reviewed by Swaminathan et al. [12]. The effectiveness of a novel fifth-order shear and normal
deformation theories for the static and dynamic responses of sandwich FGM plates and shells is
examined by Shinde and Sayyad [13, 14]. A bending response is studied for FG beam using semi-
analytical and by shear deformation theory under transverse loading conditions by Yadav et al.
[15]. A static and free vibration analysis of doubly-curved FGM shells using different types of
higher-order shell theories via unified formulation is presented by Sayyad and Ghugal [16].
Analysis of FG sandwich plates using a fifth order shear deformation theory is carried out by Thai
et al. [17]. For the bending analysis of FGM plates based on the four variable plate theory,
Demirhan and Taskin [18] employed the Levy solution. The observations that need further study
are based on the literature review that is done.

1. Laminated composite and FGM plates' mechanical analyses have been extensively studied
in the literature. However, there is very little study on mechanical analysis of FGM shells
in the entire body of literature.

2. Researchers are paying more attention to cylindrical shell analyses. There is, however, a
dearth of information on mechanical analysis of doubly curved FGM shells.

3. Many theories available in the literature ignores the effects of transverse normal strain on
the analysis of FGM shells which plays an important role for the accurate structural
analysis of FGM shells under mechanical/environmental loading conditions.

Methodology

The analysis in the current study takes into account a single layer FGM shell that is simply-
supported at edges as shown in Fig. 1. It has curved dimensions of "a" and "b" along x-y directions
and "h" is the thickness of the shell along z-direction. The principle radii of curvature of the mid-
plane along the x-y directions are R and R, respectively. The distance between the shell's top and
bottom surfaces from the mid-plane surface is (z =-4/2) and (z = +h/2), respectively. A transverse

load of intensity ¢(x,y) is applied to the top surface of the shell.
8]

Fig. 1 Geometry and coordinate systems of FGM shell
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The FGM used to create the shell has gradations of material properties in the direction of thickness
i.e. z-direction according to the power-law. Following is the simple form of power law.

E(z)=E, +(E.-E,)V;.
(1
where, E(z) is the value of modulus of elasticity at any point of the shell in the z-direction; £,, and

E.are the modulus of elasticity of metal and ceramic, respectively; V7 is the volume fraction which
is given as

v, = (0.5 +%j . )

where p is the power law factor. When p = 0 shell is fully ceramic whereas for p = oo it is fully
metallic.

Formulation
The displacement field of the present higher-order trigonometric shear and normal deformation
theory is written as

Ulx,y,z) = (1 )uo(x y)—z +Zsm(hz)6x,
V(ix,y,z) = (1 +E) vo(x,y) —zaa—y+%sin (TZ) 0y, 3)

W(x,y,z) = wy(x,y) + C;cos (%) 0,.

where, U, V, W are the displacements of any point in the x-, y-, and z- directions respectively;
ug(x,y), vo(x, y)andw, (x, y)are the displacement of a point on the mid-plane in x-, y-, and z-
directions respectively; 6,(x,y),0,(x,y)andf,(x,y)are the shear slopes. (%sin %) is the

trigonometric function associated with the transverse shear strain. (1 + z/R;) and (1 + z/R,) are
the Lame’s constant; and C) is the arbitrary constant account for the consideration of effects of
transverse normal strain. When C1=0, & = 0 and when C; =1, & # 0. Using linear theory of
elasticity, the normal strain and shear strain components are obtained.

_ du, a wo aex (z)ez
Ex_ax axz +f() +Cl R,

gy — dvg 6 WO +f( )693’ _I_WO + le (Z)ez

dy Ry
& = le”(Z)HZ, (4)
Yy =‘%+% 25t D+ D5,
= f'(2)6 + Cof (2 )"’92
= /@)y + Cuf (D) 52
where
f(z) =2(sin), f'(2) = cos (), f"(2) = —sin () . )
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Stress components associated with the strain components mentioned in Eq. (4) are obtained using
the following stress-strain relationship which is also called as generalized Hooke’s law.

Ox Q11 Q12 @3 O 0 07 /¢&
(Uy] Qiz Q22 Q23 O 0 0 Ey
Oz | _|Qiz Q23 Q33 O 0 0 €z ©)
Tyy 0 0 0 Qg 0 0 |)ra
TXZ 0 0 0 0 Q4_4 0 VXZ
) Lo 0 0 0 0 QslWe
where
_ _ _ E@0-w
Q11 =022 =033 = YR
E
Q12 = Q13 = Q21 = Q23 =031 =032 = %; (7)
E
Q44 = Os5 = Qg6 = 2(1(21)-

where, (O‘x, Oy, Oz Txys Txz) Tyz)are the normal and shear stress components,
(sx, €y €2 Yayr Vyzo yxz)are the normal and shear strain components,

(Q11,Q12,Q13, 022, Q23, Q33, Q44, Qss, Qge)are the reduced stiffness matrix components, E(z) is the
modulus of elasticity and u is the Poisson’s ratio. The principle of virtual work is used to derive
the governing differential equations and boundary conditions associated with the present theory.

a
b +h/2 a b
fo f—h/z (0x6£x +0,0e, + 0,08, + ToyOVuy + TazOV¥xz + TyZ(YyyZ) dxdydz = -fo fo qgéwdxdy. (8)
0

Substituting Eqgs. (4) - (6) in Eq. (8), performing triple integration by parts and collecting the
coefficients of unknown variables, the following six governing differential equations are derived.

ON. ON,
Suy: == + = =
0" 5x + ady

dN dN.
X X ),
ay x

0,

9)

where

120

Materials Research Forum LLC
https://doi.org/10.21741/9781644902592-13



Advanced Topics in Mechanics of Materials, Structures and Construction - AToMech1-2023 Materials Research Forum LLC

Materials Research Proceedings 31 (2023) 117-127 https://doi.org/10.21741/9781644902592-13

+h/2
h/2

(Mfg, My, Msy) f+h/2 f(2 (ax, Ty, Txy) dz,
(Sx' Sy: Qx: Q;) J‘ h/2 f (Z) (Ux' Oy, Txz Tyz) dz,

+h/2 n
§$ = [ £ (2o, dz.

(Ny, Ny, Ny, M2, M2, M2,) = |

Xy (ax, Oy, Txys Z0x, Z0y, ery) dz,

(10)

where the in-plane force resultants are (Ny, N,, Nyy); the shear force resultants are (Sy, Sy, O, Oy,
S5*); the resultant bending moments are (M., M,?, M,,*); and the resultant shear moments are (M.,
M,’, M,)*). The superscript "b" stands for traditional bending effects, while the superscript "s"
stands for shear effects. After substitution of stress resultant expressions from Eq. (10) into six
governing equation stated in Eq. (9), one can derive governing equations in terms of unknown
variables.

9%u 1 0w, 3w, 926 3%y, 1 0w, 3w, 820
6u A ( 0 0) B O C 7 Ux A ( 0 __0) _ 0 y
0- 11 \ gx2 +R1 ax 1on Tlugs tan dxdy = R, ox 12 Hxay2 tlp axdy (1)
il @)%C D aezC 4 (6 U 6%) _op. Pwo L - (fﬂex 6%) _
+ (R1 + R,/ 0x 11 Di3 1+ Ao dy?2 + 0xdy 66 dxdy? R dy? t axay)
0%u 1 0w 23w 9%0 v 1 0w F, Fy\ 06
Svn: A ( 0 0)_ 0 % 44 ( 0 __0) (2 22) 2%
0--112 0xdy R1 ay 12 0x20y 12 0xdy REY dy? + Ry 0y + Ry + R, 1 (12)
93 wo azey 26, %uy 921, 33w, 820, 629y
B C Dys SECy + A ( —)—ZB C ( —)=0.
22 tlngn t D350+ Ags (57 % t o= 66 5y 26y+ 66 \5xay t52
33u 1 3 w 3 w 639 J11 ]12 6 0 6 Vo 1 62W0
Swq: B (—° ") Hy 2%y, 2% ( )C %% 4 p ( 1 )
0- 711\ gx3 R 0x2 1 + 11 + Ri Ry 1 9x2 + B 0x20y + Ry 0x2
64W0 6 6 6 0 63u0 1 6 Wy 64W0 636x
—H hy o+ Kiy 22 C, + B (— ) — Hy, 2o g, 06
12 gx29y2 +li; ax2dy t K35z Gt Bre 9xdy? | R, 0y? 12 axZay 12 3xay2 +
]12 ]22) C 6 02 B (63170 1 6 Wo) H 3 WO I K 3 GZC
0 Uy 6 Vo 6 Wy 636x 639y A11 auo Wy Bll 62W0
2B (— ) 4H 21 (— - ==+ =+==
+2B66 9xdy? + ax2dy 66 9x2gy2 + 2les 9xdy? + ax2dy) Ry \ox + R, + Ry 0x2
_&%_i(”n Fn)c _ A (""”04_@) Biz0®Wo _ (1290 _ Dz - p _2(%4_@)
Ry dax Ry \ Ry 1 ay Ry Ry ayz Ry ay Ry 1%z 0x
By, 0%w, C1, 06 1 (F F Ay (v w By, 0%w Cpp 06 D
ﬁ_o_ﬁ_’C__(ﬁ_}_ 22)51 22( 0+_0) B 0wy % Dupg o= g
RZ 6x2 Rz ox Rz R1 RZ 6y Rz RZ 6y2 Rz 6y RZ
0%u 1 dw 3w, 2920 %y 1 dw 3w
86,:C ( 0 ——") ALy i S ( 0 ——")—1 Swo
x i\ G2 T r ox 115s Thuga tle 6x6y+R2 ax 12 3xay2
@ @) %C L 29}7 N 692 C C (6 Upg 6 170) _ a3W0
+ ( Ry + R, ) dx 1 tligg + 13 1 ¥ Ces ay? + axdy 66 9xdy2 + (14)
820, azey 36,
Los (5 + 5252) = Oss = Os5 521 = 0.
0%u 1 dw, 3w 920 %y 1 dw, 3w
56.:C ( 0 __0) 0 x ( 0 __0) _ 0
Y21 \gxay +R1 ay 21 gx29y ! axdy 252 Tx ay 22 5y3
My M22) aezC L azey N 26, C c (a ug | 92 vo)
F (4 TR) T+ Ly T2 Nos T2 G+ o (G + 52 (15)

33w, 820, 626 36,
_2166 axZBO + L66 (axay + #) - 04493/ - 04_4_ Cl = 0.
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a0 6 0 agy 629 F11 6u0 ]11
80,: Oss (a_xx Gt Cl) t Os ( Git+57 Cl ) Cl (6x Rl) Ry Cl ax2

_@%C F12C1(6”0+R)+]1_2C Wo_i(oll 012)6'1 _@%Cl
2

Ry dax 6y 1 By Ry \ Ry Ry 6y
P13 _ F12 (Buo _0) ]1_2 6 Wo M12 69x FZZ (61.70 _0) ]2_2 aZWO
C1 0, C'1 3 + R, + R, (o o R, ox ¢ — C'1 P + R, + R, (o o7 (16)

0 o) M,, 06 P, dug 6W 69x

0 a? P. P.
—D23C1 ( VO ) + K23C1 ;VO ( 13 + ﬁ) Clzez - N23 gcl - S33C1 92 = 0-

Ri Ry
where
(A, Bij, Cip, Dy, Fy) = Qs [y 11,2, £ (2), f(2), £ (@)]z,
(Hl],ll],]l], i U) Qij +hh//22[ L f(@)z f'(2)z f"(2)z,f (2)*]dz, (17)

+h/2

(Mij, Nij, 04y, Pij, Syj) = Qij I, 5 [f @ @), f'@f @), f'(2)%, £ (2)f (@), f ' (2)*]dz.
/

The Navier Solution

The closed-form semi-analytical solution for the static analysis of FGM shell for a simply-
supported boundary condition can be obtained by using the Navier solution technique. Following
are the simply supported boundary conditions associated with the present theory.
Attheedgex=0and x=a

Vo=wo=M>=MS=Nx=0 (18)
Attheedgey=0and y=5
uo =wo=MpP=MF=N,=0 (19)

Therefore, the unknown variable according to the Navier technique in the form of double
trigonometric series satisfying boundary conditions stated in Eqgs. (18) and (19) can be expressed
as

Uy = UpmnCOoSaxsinfy, vy = Uy, Sinaxcosfy, wy = wy,,sinaxsinfy,

0y = Oy, cosaxsinfy, 6, = Hymnsinaxcosﬁy, 0, = 0,,,,sinaxsinfy. (20)

where a=mn/a, f=nn/b, and (umn,vmn,wmn, Osemns Oymn,s HZmn) are the unknown coefficients.
The uniform mechanical load acting on the top surface of the shell is also expressed in double
trigonometric series as follows.

Q('x’ y) = qmn Sln axsn] ﬁy (21)
where, gmn 1s Fourier coefficient of load; for sinusoidal load g, = go where go is the maximum

intensity of the load with m =1 and n = 1. Substituting Egs. (20) and (21) in to Egs. (11) — (16)
leads to the six simultaneous equations which can we written in the following matrix form.

[K1{4} = {f}. (22)

where matrices [K], {f} and {A} are the stiffness matrix, the force vector and the vector of

unknowns, respectively.
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Numerical Results and Discussion

In this section, the accuracy of the present higher-order trigonometric shear and normal
deformation theory is verified by applying it for the static analysis to FGM plates and shells. The
FGM shell is made up from the following materials.

E,=380GPa,E, =70 GPa,and 1 =0.3

where E. and E, are the modulus of elasticity for ceramic (alumina) and metal (aluminium)
respectively.

Following non-dimensional forms are used to present the numerical values of displacements and
stresses.

—(a b __10Ech® . ra b __ 100Ech® — fa b h) _ h - b z\ _h—
w(2.3.0)= w(3,3,0) = 5 (3.3-3) = 5200 Txz (0.3.%) = =T @3)

4 4
qoa Joa Joa

For a single layer FGM plate and FGM spherical shell, the transverse displacement, in-plane, and
transverse shear stresses are calculated with and without considering the effects of transverse
normal strain. The FGM plate and FGM spherical shell results are shown here for a range of R/a
ratios and for an a/h value of 10. The results obtained are contrasted with those of Shinde and
Sayyad [14], Thai et al. [17], and Demirhan and Taskin [18]. Table 1 shows the comparison of
displacements and stresses for FGM plate under sinusoidal loading with those presented by Shinde
and Sayyad [14], Thai et al. [17], and Demirhan and Taskin [18]. Table 1 show that the transverse
displacements increase whereas stresses are decreases with increase in the power-law index which
is the effect of decrease in stiffness of material with increase in the power-law index. Fig. 2 shows
through-the-thickness distributions of stresses in FGM plate. Table 2 shows the effects power law
factor and radius of curvature on the dimensionless transverse displacement of FGM spherical
shell under sinusoidal load. Table 2 reveals that the increase in radius of curvature and the power-
law index increase the non-dimensional displacements and stresses in FGM spherical shell under
the action of transverse sinusoidal load. Fig. 3 shows distribution of stresses through-the-thickness
of the spherical shell.
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Table 1 Comparison of non-dimensional transverse displacements and stresses in FGM plate

Thickness Coordinate (z/1)

S
'S

S
o

=]

S
()

N
FN

S
, &
o)

)/ Theory w o, (h/3) Tyz (h/6)
1 Present (g,#0) 0.5680 1.4158 0.2613
Present (e,=0) 0.5889  1.4893 0.2621
Shinde and Sayyad [14 ] (e.#0)  0.5695  1.4588 0.2607
Thai et al. [17] (.= 0) 0.5875 1.5062 0.2510
Demirhan and Taskin [18] (,=0) 0.5889 1.4894 0.2622
Thai et al. [17] (.= 0) 0.5890  1.4898 0.2599
2 Present (g, #0) 0.7198  1.3041 0.2754
Present (e,=0) 0.7573  1.3953 0.2763
Shinde and Sayyad [14 ] (e, #0)  0.7225  1.4588 0.2763
Thai et al. [17] (.= 0) 0.7570  1.5062 0.2510
Demirhan and Taskin [18] (,=0) 0.7573  1.4894 0.2622
Thai et al. [17] (.= 0) 0.7573  1.3960 0.2721
4 Present (g, #0) 0.8402  1.0801 0.2572
Present (e,=0) 0.8818 1.1782 0.2580
Shinde and Sayyad [14 ] (e,#0)  0.8429 1.1456 0.2630
Thai et al. [17] (.= 0) 0.8823  1.1985 0.2362
Demirhan and Taskin [18] (e,=0) 0.8819 1.1783 0.2580
Thai et al. [17] (.= 0) 0.8815 1.1794 0.2519
8 Present (g,#0) 0.9431 0.8634 0.2114
Present (e,=0) 0.9750  0.9463 0.2120
Shinde and Sayyad [14 ] (e.#0)  0.9466  0.9088 0.2145
Thai et al. [17] (e,=0) 0.9738  0.9687 0.2262
Demirhan and Taskin [18] (,=0) 0.9750 0.9466 0.2121
Thai et al. [17] (e,=0) 0.9747  0/9477 0.2087
-0.6 |
Present / N~ -0.4 \.
—0 = » L
= Il
o i = N
B Present .
/ § 0 —o p=] \\.\.\
(@) —o p=2 \’\
/ % o—e p=4 \>y
7 g 0.2 p=38 _»
_ = 04 /..//
=0 @ F
' ' ' ' ' ) ' : 0.6 ! T T T T T T 1
So43 ;2 -1 0 1 2 0 0.04 0.08 0.12 0.16 0.2 0.24 0.28
Oy Transverse Shear Stress (<)

Fig. 2 Variation of in-plane normal stresses and transverse shear stresses with respect to
thickness coordinate for FGM plate at various power law index.
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Table 2 Effects of radii of curvature and various power law factors on a non-dimensional
transverse displacement and stresses in FGM spherical shell.

Ci=1 (g, # 0) Ci=0(g, = 0)

Rla w G, T, w* 7, z.,
1 0.182285 0.8867 0.059227 0.196709 0.877621 0.062162
2 0426848 1.616985 0.136448 0.447698 1.5721 0.141477
5 0.683527 2.161396 0.217494 0.696549 2.048913 0.220116
10 0.747757 2.210737 0.237775 0.756631 2.081884 0.239102
20 0.765746 2.185615 0.243455 0.773307 2.054303 0.244372
50 0.770939 2.153269 0.245095 0.778108 2.022706 0.245889
100 0.770939 2.139642 0.245331 0.778799 2.009705 0.246107
1 1 0333162 1.340047 0.054467 0.345392 1.344237 0.059081
2  0.818613 2.534497 0.138501 0.827979 2.435844 0.141629
5 1.345933 3.434034 0.233552 1.360064 3.225955 0.232645
10 1.467366 3.479844 0.256964 1.497545 3.267515 0.256162
20 1.494501 3410171 0.26295 1.536371 3.206274 0.262803
50 1.497965 3.33761 0.264315 1.547605 3.141506 0.264725
100 1.496925 3.308512 0.264385 1.549224 3.115356 0.265001
2 1 0436394 1.661697 0.057442 0.447408 1.660349 0.062031
2 1.062913 3.088568 0.146551 1.069408 2.952679 0.148269
5 1.722104 4.084018 0.244961 1.751018 3.836549 0.242771
10 1.867198 4.097459 0.268509 1.926424 3.854851 0.26709
20 1.897397 3.996052 0.274366 1.975908 3.766159 0.273951
50 1.899644 3.900158 0.275612 1.990222 3.68 0.275935
100 1.897695 3.862666 0.275638 1.992284 3.645959 0.276221
4 1 0.558303 2.093204 0.06188 0.571133 2.08663 0.066412
2 1.307231 3.711913 0.151393 1.314225 3.552994 0.152819
5 2.033347 4.674429 0.242421 2.067377 4410728 0.240396
10 2.184533 4.629893 0.263082 2.251721 4.376198 0.261832
20 2.215168 4.496298 0.268138 2.303061 4.257186 0.267802
50 2.21703 4.380945 0.269192 2.317858 4.152421 0.269522
100 2.214852 4.336984 0.269206 2.319988 4.112156 0.26977
8 1 0.677125 2.620321 0.054154 0.697486 2.62067 0.058081
2 1.524411 4.474527 0.125934 1.536758 4314154 0.127968
5 2.293287 5.459686 0.193726 2.317603 5.18519 0.19299
10 2.450173 5.382528 0.208615 2.498998 5.116218 0.208095
20 2.483345 5.227416 0.21229 2.548872 4976183 0.212248
50 2.486733 5.097692 0.213098 2.563196 4.858044 0.213441
100 2.485059 5.048693 0.213129 2.565255 4.813208 0.213613

o

Conclusions

In the current study, the static response of FGM plate and shell is studied using refined higher-
order trigonometric shear and normal deformation theory. The currently used theory yields realistic
boundary condition at the top and the bottom surfaces of the shell. The Navier technique has been
used to calculate transverse displacements and stresses for FGM plates and spherical shell under
the action of sinusoidal load. The obtained results are compared with previously published results.
It is concluded that, the present results of static analysis of FGM plate and shell shows a good
agreement with the previously published results when the effects of transverse normal strain is

125



Advanced Topics in Mechanics of Materials, Structures and Construction - AToMech1-2023 Materials Research Forum LLC
Materials Research Proceedings 31 (2023) 117-127 https://doi.org/10.21741/9781644902592-13

considered. The other theories available in the literature overestimate the results due to neglecting
the effects of transverse normal strain.
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Fig. 3. Variation of in-plane normal stresses and transverse shear stresses with respect to
thickness coordinate for FGM spherical shell at various power law index (R/a = 1, €, # 0).
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