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Abstract. Nowadays, high accuracy measurements provided by terrestrial laser scanner and vision 
sensors allow to collect useful and exhaustive information about the conditions of the existing 
structures, useful to detect defects and geometry anomalies and to better understand their 
mechanical behavior. These avant-garde technologies were found to be particularly effective for 
the structural health assessment of the cable-stayed pedestrian bridge described in this paper. 
Considering a continuous mono-dimensional model of an inclined perfectly flexible cable, the 
axial tension is locally tangent to the cable profile. Thus, determining the cable static response 
under self-weight consists of a geometric shape-finding problem. Through terrestrial laser 
scanning, a 3D point cloud model of the bridge was acquired, including a data-abundant 
description of the actual static configuration of the stays. Therefore, cable configuration was no 
longer an unknown of the static problem, which can be inverted to assess the static tension. 
Furthermore, modal analysis was conducted also through image-based vibrations measurements 
to identify the fundamental frequencies of the cables. The independent identification of the axial 
forces from static (geometric) and dynamic (spectral) data provided results in good agreement. 
Introduction 
Structural cables are primary load bearing elements in different civil engineering systems, such as 
cable-stayed and suspension bridge. The assessment of their integrity condition and stress level 
are key tasks in the health monitoring of such structures. Among the techniques used to identity 
cable forces, direct methods make use of load sensors, while indirect methods estimate cable 
tension through different quantities such as strain, or natural frequencies [1],[2]. 

The dynamic identification method based on determining the unknown cable tension from the 
geometric stiffness that can be evaluated for measured frequencies (known the cable mass) is the 
most used, because it is a nondestructive method which guarantees high efficiency [3],[4],[5]. 
Similarly to other model based methods, this approach requires refined mechanical formulations 
describing the dependence of the spectral properties on the structural parameters [6],[7]. In 
addition to traditional accelerometer sensors, different technologies are used to record cable 
vibrations. Microwave interferometry has been used to measure the vibration response of cables 
in cable-stayed bridges [8],[9]. Frequencies and cable tensions have been identified through radar 
technique with the same accuracy of the ones obtained with conventional sensor measurements. 
Modal analysis and axial force identification of stay cables are also performed through vision-
based measurement, with motion magnification methods used to amplify microvibration of stay 
cable captured by video camera [10]. If not based sufficiently refined mechanical methods, 
frequency-based approaches often neglect or underrate the effects of the chord inclination angle, 
cable extensibility, flexural stiffness, complex boundary conditions and cable-beam interactions. 
All these effects could lead to significant errors in tension identification.  
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In this work, the 3D point cloud model of a cable-stayed pedestrian bridge was exploited to 
evaluate the actual static configuration of the stays and to identify their axial forces by comparing 
the quadratic term coefficient of the cubic function interpolating the acquired geometry data with 
the quadratic term of the cubic equation obtained from an approximate solution of the static 
problem. The quality of the estimation of cable force was evaluated through the definition of an 
error function based on the cubic term the interpolating function and thorough the comparison with 
the tension identified through frequency-based method.  
Bridge description and data acquisition  
The bridge is a steel truss structure located in Beinasco, Turin province, in Italy. It is a cycle and 
pedestrian cable-stayed bridge and consists of an access ramp and a deck both supported by steel 
columns and cables anchored to a steel tubular pylon (see Fig. 1) with star reinforcements in 15 
mm thick shaped sheets, hinged at the base. The deck (80 m long, 3 m wide and 1.65 m height) is 
made of three main tubular members and smaller cross-members and it is supported by 7 cables 
(42 mm diameter), all prestressed during assembly to avoid loosening. The first part of the access 
ramp is simply supported on columns while the second part is suspended by other stays (28 mm 
diameter) converging on the same pylon that supports the deck. Several cables (40 and 42 mm 
diameter) connect the pylon to the ground, to ensure stability and counterbalance the loads of the 
deck and ramp. On the side of the ramp, the steel truss-type beam of the deck is also supported by 
an access concrete staircase which is located at the center of the ramp. 

Experimental data were acquired by different technologies to collect both geometry and 
vibration information of the structure. The terrestrial laser scanner Cam2 Laser Scanner Focus 
Faro x 130 (130 m unambiguity interval, 0.6 m - 130 m Range Focus3D X 130 HDR, 
122000/244000/ 488000/976000 points/sec measurement speed, ±2 mm distance error) was used 
to acquire actual geometry configuration of the whole structure; during the scans, it acquired 
measurements by the appropriate laser and photographs in both color and black and white. The 
given color allowed to obtain three-dimensional RGB models (see Fig. 1b). 

Wireless and wired accelerometers and a high-speed camera were used to record structural 
dynamic response under ambient excitation. The vibrations of the cables were recorded by using 
6 uniaxial piezoelectric wired accelerometers, PCB 393B31 with ICP technology (10.0 V/g 
sensitivity, 0.5 g pk measurement range, 200 Hz sampling frequency). Furthermore, the high-speed 
camera IO Industries Flare 12M125xCL (monochrome, F-mount, 4096 x 3072 resolution, 5.5 x 
5.5 µm pixel size, 100-200 fps sampling frequency) was installed on the concrete cantilever of the 
stairs located in the central area of the ramp to record the vibration of cables SP15 and SP16 (Fig. 
4a). The displacement time histories were obtained by processing the captured images with Digital 
Image Correlation (DIC) technique.  

a)  b)  
Fig. 1. Beinasco bridge: a) plan view of the cable-stayed; b) side view of the 3D point cloud 

model. 
Cable tension identification from static configuration 
Consider a suspended cable hanging on a vertical plane under self-weight. Let S be the set of N 
laser-scanned points belonging to the cable, pointed by the configuration vector ( , , )i i i iX Y Z=X , 
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within an orthogonal Cartesian reference system in a three-dimensional space (with 1,...,i N= ). 
The vertical midplane of the N coordinate points is sought through the equations 

y ax b= + ,   1
ija a

M
= ∑ ,    1

ijb b
M

= ∑ , (1) 

where the coefficients aij and bij are determined by taking 2
rM N=  pairs of points (i, j) from the 

cable point cloud model, according to the formulas 
i j j i

ij ji
i j j i

Y Y Y Y
a a

X X X X
− −

= = =
− −

,    i j j i j i i j
ij ji
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− −

= = =
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where a subset of 2 rN N< points has been selected, namely rN points iX  and rN points jX close 
to the lower and upper cable support – respectively – with the aim of maximizing the accuracy of 
the coefficient estimates by maximizing the denominators in equations (2). The coefficients aij and 
bij, obtained for each pair of points considered, are represented in the plane (a, b) in Fig. 2. It can 
be noted that the results associated to the same point iX  are approximately aligned. This behaviour 
can be easily justified by considering that, with respect to a fixed lower point iX , the positions of 
the upper points jX (that are close to each other) determine small variations of the coefficients aij 
and bij, that can be estimated through their first variations 
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ij j j

j j

a X Y a X Y
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X Y
δ δ δ

∂ ∂
= +

∂ ∂
,   
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δ δ δ

∂ ∂
= +

∂ ∂
,         (3) 

so that it can be demonstrated that the ratio ij ij ib a Xδ δ = −  is a constant. The midplane identified 
with this procedure is represented in Fig. 2b. A roto-translation of the reference system are 
performed to make the Cartesian plane ( , )X ZΠ coincident with the midplane of the cable. 

The geometric curve to be identified based on the cable points is postulated to be describable 
by a cubic function ( )Z X . Suited dimensionless variables and parameters are introduced 

Zz
L

= ,   Xx
L

= ,   ( )arctg B Lθ = ,  (4) 

where the lengths L and B are the horizontal and vertical distance between the supports of the cable 
(assumed known) and  𝜃𝜃 is the angle of the cable chord with respect to the horizontal.  

 

a)  b)  

Fig. 2. Midplane of the 3D point cloud of cable: a) coefficients aij and bij; b) vertical 
midplane identified (blue) and 3D point cloud model of the cable (red). 

By employing nondimensional variables, the generic expression of the cubic function ( )z x
depends on four unknown coefficients iγ , according to the formula  

3 2
0 1 2 3( )z x x x xγ γ γ γ= + + + . (5) 

Therefore, by imposing the geometric boundary conditions 0( ) 0xz x = =  and 1( ) tanxz x θ= = − , 
the cubic expression becomes 
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3 2
0 1 1 0( ) ( tan )z x x x xγ γ γ γ θ= + − + + , (6) 

where the coefficients 0γ  and 1γ  are unknown, but univocally determinable for each pair of 
laser-scanned points 1 1 1( , )x z=x  and 2 2 2( , )x z=x  lying on the midplane through the formulas 

1 2 1 2 1 2 1 2
0

1 2 1 2 1 2

(1 ) (1 ) ( , )
(1 )(1 )( )

x z x x z x x x
x x x x x x

γ − − − −∆
=

− − −
,      

2 2
2 1 2 1 2 1 1 2 1 2

1
1 2 1 2 1 2

(1 ) (1 ) ( ) ( )
(1 )(1 )( )

x z x x z x x x x x
x x x x x x

γ − − − + + ∆
=

− − −
,      (7) 

where 1 2 1 2 1 2( , ) ( ) tanx x x x x x θ∆ = − . A subset of 2 sN N< points has been selected, namely sN  
points 1x  and sN points 2x  close to the lower and upper thirds of the cable profile, respectively, 
with the aim of maximizing the accuracy of the coefficient estimates by maximizing the 
denominators in equations (7). The coefficients 0γ  and 1γ , obtained for each pair of points 
considered, are represented in the plane ( 0γ , 1γ ) in Fig. 3. Again, the alignments of the results can 
be justified by considering that, with respect to a fixed lower third point 1x , the positions of the 
upper third points 2x  (that are close to each other) determine small variations of the coefficients 

0γ  and 1γ , and that the ratio of the first variations is 1 0 1( 1)xδγ δγ = − +  is constant. 

a)  b)  

Fig. 3. Geometric interpolation of cable axis: a) coefficients of cubic function, b) 
overlap of the cubic interpolation with the point cloud model. 

The nonlinear ordinary differential equation governing the static equilibrium under self-weight 
of the inextensible cable, considering constant weight per unit natural length w , reads 

 1 228 cos 1 ( )z zδ θ  ′′ ′= − +  ,            with    ( ) (8 cos )wL Hδ θ= ,                                           (8) 

where H  is the unknown horizontal reaction. It is known that this equation admits the catenary 
function as exact solution. Since the catenary solution can be difficult to handle, equation (8) can 
be attacked employing a classic perturbation scheme. Setting the parameter and variable ordering  

1δ εδ= ,          2 3
1 2 3( ) ( ) ( ) ( ) ...z x z x z x z xε ε ε= + + +        (9) 

where ( ) ( ) tanz x z x x θ= −  describes the depth of the cable with respect to the chord and 1ε <<  
is a small auxiliary nondimensional parameter with mere bookkeeping role. 

From the physical viewpoint, it is important to note that the ordering entails that the cable 
weight-to-tension ratio is small ( ( )Oδ ε= ) and the depth of the cable is shallow ( ( ) ( )z x O ε= ). 
Introducing the ordering in equation (8), expanding in ε -power series, collecting same-order terms 
and solving the resulting ordered hierarchy of linear ordinary differential equations up to the 
second order with the boundary conditions (0) 0iz =  and (1) 0iz = , the solutions are 
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1 1 (1 )4z x xδ= − ,   28
2 13 sin(2 ) (1 )(1 2 )x x xz θδ − −= . (10) 

After reconstruction, the direct comparison of the cubic function (5) and the cubic perturbation 
solution 𝑧𝑧(𝑥𝑥) = 𝑧̃𝑧(𝑥𝑥) + 𝑡𝑡𝑡𝑡𝑡𝑡 𝜃𝜃 ≃ 𝑡𝑡𝑡𝑡𝑡𝑡 𝜃𝜃 + 𝜀𝜀𝑧̃𝑧1(𝑥𝑥) + 𝜀𝜀2𝑧̃𝑧2(𝑥𝑥) allows to identify the unknown 
parameter δ  by equating the respective quadratic and cubic coefficients. To circumvent the 
redundancy, the identification can be based on the quadratic coefficient 1γ , being larger. The 
equality reads 

14 (1 2 sin(2 ))δ δ θ γ+ =                                                                                                            (11) 

and establishes a quadratic equation in the unknown δ , that must be solved for positive values 
*δ . The comparison between cubic coefficients, being smaller, can provide an estimate of the 

identification inaccuracy 216
0 *3 sin(2 )eδ γ δ θ= − − . Once the parameter δ  is determined, the 

horizontal reaction H  and the cable tension 𝑁𝑁 ≃ 𝐻𝐻
𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃

 can be assessed by inverting the parameter 
definition, provided that the cable weight w  is known. The mean values (and their variance) 
obtained with this approach are listed in Tab.1 for seven stays of the Beinasco bridge. 
Frequency-based cable axial force identification 
The small-amplitude free oscillations of the bridge stays have been investigated according to the 
linearized undamped dynamics of suspended cables. According to the Irvine cable model [11], 
[12], which is based on assuming parabolic static profile, linear elastic behavior and negligible 
longitudinal inertia, the cable axial force can be identified by employing the circular frequency jω  
of j-th out-of-plane modes, according to the direct and inverse (string-like) relations 

cos
j

j N
L m

π θω = ,   
2 2

2 2 2cos
jm L

N
j

ω
π θ

= ,            (12) 

where m the uniformly distributed mass density. Accordingly, the j-th frequency is expected to 
be directly and linearly related to the out-of-plane mode number j  in the peak-picking frequency 
identification based on the Power Spectral Density (PSD) of the experimental signals. Such linear 
relation is clearly noticeable in the PSD of the camera signal, more than the accelerometer one 
(Fig. 4), because camera signals allow to identify the fundamental frequencies of the cables, which 
appeared to be lower than 1 Hz. The mean values (and their variance) obtained with this tension 
identification approach are listed in Tab. 1 for seven stays of the Beinasco bridge. 

 

a)  b)  c)  
Fig. 4. Frequency identification of cable SP15: a) plan view of cable and camera position; b) 

PSD of accelerometer signals, c) PSD of image-based displacement signal. 

Concluding remarks 
The paper investigates the static and dynamic response of the stays supporting a cable-stayed 
pedestrian bridge, by exploiting experimental data concerning both geometry configuration and 
vibration response to ambient excitation. By referring to a continuous perfectly flexible model of 
inclined suspended cable, and by considering the laser-scanned geometry of the stays, the static 
configuration under self-weight has been consistently described. This description allowed the 
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static (geometry-based) identification of the cable tension, which has resulted in good agreement 
with the tensions evaluated through the dynamic (frequency-based) output-only identification 
method, applied to both accelerometer and image-based vibration signals.  

Tab. 1. Cable tension from static identification sN  and from dynamic identification dN . 

Cable 0γ  
0

2
γσ  1γ  

1

2
γσ  𝜃𝜃 *δ  

*

2
δσ  eδ  2

eδ
σ  sN  [kN] dN  [kN] 

SP10 4.84E-04 1.09E-05 3.22E-02 2.63E-05 0.57 7.94E-03 1.56E-06 -7.91E-04 1.02E-05 97.19 94.89 
SP11 -7.35E-03 2.41E-05 5.12E-02 4.64E-05 0.65 1.25E-02 2.63E-06 6.55E-03 2.20E-05 59.39 58.78 
SP12 1.35E-02 4.21E-05 1.22E-01 8.32E-05 0.73 2.89E-02 4.18E-06 -1.79E-02 3.44E-05 26.19 26.02 
SP13 -3.50E-03 8.55E-05 1.75E-01 1.87E-04 0.83 4.05E-02 8.67E-06 -5.21E-03 6.36E-05 18.39 19.54 
SP14 -9.73E-04 2.77E-04 6.14E-02 6.48E-04 0.94 1.49E-02 3.60E-05 -1.56E-04 2.45E-04 54.25 41.68 
SP15 -2.06E-02 1.91E-04 2.49E-01 4.68E-04 1.04 5.67E-02 2.01E-05 5.59E-03 1.30E-04 16.32 17.83 
SP16 2.95E-02 7.65E-04 7.59E-02 2.12E-03 1.11 1.84E-02 1.15E-04 -3.10E-02 6.58E-04 53.78 44.31 
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