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Abstract. Within the general framework of frequency-domain topology optimization of Multi 
Input-Multi Output (MI-MO) dynamic systems, suitable norms of the input/output transfer matrix 
are introduced as possible merit functions to be minimized. Among them, the by now classical 
𝐻𝐻∞-norm (i.e. the supremum of the maximum singular value over the whole frequency range), and 
the so-called nuclear norm (i.e. the sum of all the positive singular values are considered. Heuristic 
motivations are given that suggest which norm should one choose according to the practical 
objective to be pursued alongside a few numerical examples on topology optimization of 2D 
linear-elastic multiload SI-SO and MI-MO dynamic systems.   
Introduction and Motivation 
Topology optimization of dynamical systems presents a few peculiarities among which the most 
important ones may be listed as follows: 
• Time versus frequency domain approaches. This preliminary choice gives rise to two different 

families of solving approaches that do not share much but, possibly but not certainly, the final 
result. As a matter of fact, time domain approaches lead to optimal designs that depend 
strongly on the specific choice of the time-dependent loading functions [1]. On the other side, 
frequency domain methods work on the frequency response function that is expected to enjoy 
a few desirable features, at least in the frequency range of interest. 

• Focusing the attention on frequency-domain approaches, [2] minimizes the dynamic 
compliance of the system via an incremental frequency approach that operates at low or high 
value of the excitation frequency whereas [3] sets the problem as a minimum 𝐻𝐻∞-norm of the 
frequency response function, in a sense broadening to open-loop systems the well-established 
𝐻𝐻∞-norm-based active control strategy in a closed-loop feedback framework.  

From a practical point of view, (for SI-SO systems) the 𝐻𝐻∞-norm of the frequency response 
function is the peak of the function itself and is therefore crystal clear the motivation behind the 
adoption of such a design approach. However, looking at the methodology from a more algebraic 
perspective is likely to shed new light onto the method itself and opens the way to a few potentially 
useful extensions that are in fact the object of this contribution. The idea is then to define a novel 
goal function that depends on a few singular values (and not only on the first one as is the case 
when the minimization of the 𝐻𝐻∞-norm is pursued). Mutatis mutandis, there are similarities with 
those eigenvalue optimization strategies that, at least to overcome the singularity of the min-max 
eigenvalue problem, introduce a goal function that depends on a few eigenvalues, see e.g. [4]. By 
so doing, eigenvalue crossing in the design space is no longer an issue, loss of regularity does not 
show up and standard gradient-based approaches are shown to work properly. 

Having in mind a MI-MO rectangular frequency-response matrix, the usefulness of its Singular 
Value Decomposition (SVD) for a full understanding of the dynamic features of the system is 
highlighted next. The physical meaning of the singular values and associated left and right singular 
vectors is described along with the algebraic relation between singular values and 𝐻𝐻∞-norm. 



Theoretical and Applied Mechanics - AIMETA 2022  Materials Research Forum LLC 
Materials Research Proceedings 26 (2023) 405-410  https://doi.org/10.21741/9781644902431-66 

 

 
406 

Reference is made to [5, 6] for a comprehensive exposition of such concepts from an algebraic as 
well computational point of view.  
The Singular Value Decomposition 
To start off, a formal definition of SVD of a rectangular, possibly non-symmetric, matrix is given 
next. 

Singular Value Decomposition. Let 𝐺𝐺 be an 𝑚𝑚 by 𝑛𝑛 (possibly complex valued) matrix. Two 
sets of singular vectors exist such that: 

• 𝑛𝑛 right singular vectors 𝑣𝑣1, … , 𝑣𝑣𝑛𝑛 are orthogonal to each other in ℝ𝑛𝑛; 
• 𝑚𝑚 left singular vectors 𝑢𝑢1, … ,𝑢𝑢𝑚𝑚 are orthogonal to each other in ℝ𝑚𝑚; 
• left and right singular vectors are connected by an “eigen-like” relation 𝐴𝐴𝐴𝐴 = σ𝑢𝑢 that 

may be written component wise as 
 
   𝐺𝐺𝑣𝑣1 = σ𝑢𝑢1, … ,𝐺𝐺𝑣𝑣𝑟𝑟 = σ𝑟𝑟;    𝐺𝐺𝑣𝑣𝑟𝑟+1 = 0, … ,𝐺𝐺𝑣𝑣𝑛𝑛 = 0,                                              (1) 
 
where 𝑟𝑟 is the rank of 𝐺𝐺 and one may show that there exist 𝑟𝑟 non-negative singular 
values that are usually cast in descending order: σ1 ≤ σ2 ≤ ⋯ ≤ σ𝑟𝑟 . 
 

The singular value decomposition of 𝐺𝐺 finally reads: 
 
   𝐴𝐴 = 𝑈𝑈Σ𝑉𝑉𝑇𝑇.                   (2) 
 
More explicitly, the matrix 𝐺𝐺 may be written as a finite sum of rank-1 matrices as: 
 
   𝐺𝐺 = 𝑈𝑈Σ𝑉𝑉𝑇𝑇 = σ1𝑢𝑢1𝑣𝑣1𝑇𝑇 + ⋯+ σ𝑟𝑟𝑢𝑢𝑟𝑟𝑣𝑣𝑟𝑟𝑇𝑇 .               (3) 
 
The following two propositions show a few reasons why the first singular values (and not only the 
largest one) are worth being investigated. 

Theorem of Eckart-Young. Let 𝐺𝐺𝑘𝑘 = σ1𝑢𝑢1𝑣𝑣1𝑇𝑇 + ⋯σ𝑘𝑘𝑢𝑢𝑘𝑘𝑣𝑣𝑘𝑘𝑇𝑇 be the rank-𝑘𝑘 SVD approximant to 
𝐺𝐺. Then 𝐺𝐺𝑘𝑘 is the overall best rank-𝑘𝑘 approximant to 𝐺𝐺, i.e. 

 
   �|𝐺𝐺 − 𝐺𝐺𝑘𝑘|� ≤ �|𝐺𝐺 − 𝐵𝐵|�  ∀𝐵𝐵 with rank 𝑘𝑘.                                                                          (4) 

 
On the properties and computation of the second-largest and further singular values. The 

solution of the Problem: 
 
   𝑚𝑚𝑚𝑚𝑚𝑚

𝑥𝑥

�|𝐺𝐺𝐺𝐺|�
�|𝑥𝑥|�

 under the condition 𝑣𝑣1𝑇𝑇𝑥𝑥 = 0,             (5) 

 
is σ2 at 𝑥𝑥 = 𝑣𝑣2.  

Matrix Norms, Singular Values and 𝑯𝑯∞-Norm of a Transfer Function Matrix 
Let 𝑝𝑝 be the design variable vector (that contains the element densities in a topology optimization 
framework) and 𝐺𝐺(𝑖𝑖ω,𝑝𝑝) the frequency response matrix function. For the sake of introducing a 
few key concepts in algebra of non-square and non-symmetric matrices, it is convenient to fix both 
the frequency ω and the design variable vector 𝑝𝑝, say ω = ω∗ and 𝑝𝑝 = 𝑝𝑝∗,  so that 𝐺𝐺∗ = 𝐺𝐺(𝑖𝑖ω∗, 𝑝𝑝∗) 
is any complex-valued rectangular matrix.  

The 2-norm of a matrix 𝐺𝐺∗. The “largest growth factor” concept [5] appears to be the most 
natural to introduce the norm of a transfer function matrix that governs the input/output relation of 
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a dynamical systems. In a more analytic format we may also refer to matrix norms induced by 
underlying (and previously defined) vector norms. One may write 

 
   �|𝐺𝐺∗|� = 𝑠𝑠𝑠𝑠𝑠𝑠

𝑣𝑣≠0

�|𝐺𝐺∗𝑣𝑣|�
�|𝑣𝑣|�

 ,                                                                                                                  (6) 

 
where each vector norm at the right hand side induces a corresponding matrix norm at the left hand 
side. If the 2-norm is used, one may show that 
 
   �|𝐺𝐺∗|�

2
= σ1,                                                                                                                            (7) 

 
i.e. the 2-norm of a matrix is its largest singular value. If now the dependence of 𝐺𝐺∗ on the 
frequency 𝜔𝜔 is recovered, one may quickly realize that the 𝐻𝐻∞-norm of a frequency-response 
matrix (that from an engineering point of view is the maximum amplification factor over the whole 
frequency axis, i.e. the “largest growth factor”) is defined as the supremum of the first singular 
value of 𝐺𝐺(𝑖𝑖ω,𝑝𝑝∗) with respect to the whole frequency axis, i.e. 
 
   �|𝐺𝐺(𝑖𝑖ω,𝑝𝑝∗)|�

∞
= 𝑠𝑠𝑠𝑠𝑠𝑠

ω∈(0,∞)
σ1(ω).                                                                                              (8) 

 
It is interesting to note that the 𝐻𝐻∞-norm of a matrix transfer function is in fact a 2-norm maximized 
over the frequency axis. From a numerical point of view, computing the 𝐻𝐻∞-norm is quite a hard 
task as is the evaluation of the frequency at which the norm itself is attained. Alongside the 𝐻𝐻∞-
norm that depends exclusively on the largest (first) singular value, two more norms are 
theoretically suitable as goal functions when optimizing the topology of dynamical systems, i.e. 
the Frobenius norm and the Nuclear (the one adopted herein) norm that are respectively defined 
as: 
 
   �|𝐺𝐺|�

𝐹𝐹
= �σ12 + σ22 + ⋯+ σ𝑟𝑟2,    �|𝐺𝐺|�

𝑁𝑁
= σ1 + σ2 + ⋯+ σ𝑟𝑟 .           (9) 

 
Numerical Studies 
Input data. As for the geometry of the problems investigated herein reference is made to Fig. 1 that 
also shows loads and constraints. By now standard aspects of topology optimization such as the 
SIMP idealization to handle intermediate materials, the nonlocal filters that are adopted to avoid 
checkerboarding, the finite elements that are used to derive the discrete version of the problem, 
not to mention the numerical scheme that is used to solve the optimization problem may be found 
in [7] among others and are not explicitly described herein. 
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Figure 1 – The two-loaded beam: overall representation and symmetric problem 

The problems under investigation. Three different optimization problems are considered and 
solved that are best defined referring to the so-called descriptor state-space formulation that reads: 

 

   �𝐸𝐸𝑥̇𝑥  =  𝐴𝐴𝐴𝐴 +  𝐵𝐵 𝑢𝑢
𝑦𝑦 =  𝐶𝐶𝐶𝐶 +  𝐷𝐷 𝑢𝑢 ,                                                                                                             (10) 

 

where Eq. 10.1 is in fact the equation of motion in which 𝑥𝑥 is the state vector that piles nodal 
displacements and velocities, 𝑢𝑢 is the load vector, 𝐸𝐸 is the descriptor (mass) matrix. 𝐴𝐴 is the 
structural matrix that depends on the stiffness and damping matrices, and 𝐵𝐵 is a topological matrix 
that distributes the loads to the degrees-of-freedom. Equation 10.2 is classically referred to as 
output equation and in fact 𝑦𝑦 is the output vector that encompasses all the quantities that the 
optimization process should explicitly take care of (i.e. minimize). What is actually minimized is 
a suitable norm of the transfer-function matrix 𝐺𝐺(𝑠𝑠) that defines the Laplace-domain input/output 
relation 𝑌𝑌(𝑠𝑠) = 𝐺𝐺(𝑠𝑠)𝑈𝑈(𝑠𝑠) that may be shown to be equivalent to Eq. 10 and is graphically 
interpreted by the block in Fig. 2.  

 
Figure 2 – Input-output Laplace-domain version of the system dynamics. 

Given the system dynamics of Eq. 10.1, the specific optimization problem is fully defined by: 

− The choice of the output vector 𝑦𝑦 through a proper selection of the matrices 𝐶𝐶 and 𝐷𝐷. At 
this regard both single-output and multi-output systems may inherently be handled by the 
proposed formulation. It should be noted that both single-output and multi-output cases 
give rise to a scalar minimization problem since a suitable norm of the resulting transfer 
function is the actual goal function that is minimized. Alternative approaches of vector 
minimization in a Pareto framework are left to future investigations.  

− The selection of a proper matrix norm that is expected to address from a system-theoretic 
point of view the engineering goals that are expected to be reached by the designer. 

Given this general scenario, the following optimization problems are considered. 
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1. Dynamic compliance 𝐻𝐻∞-norm minimization (SI-SO). The two loads 𝑃𝑃(𝑡𝑡) and 𝑄𝑄(𝑡𝑡) are 
supposed to belong to the same load combination (Single-Input), whereas the output is the 
so-called dynamic compliance [3]; 

2. The two loads 𝑃𝑃(𝑡𝑡),  𝑄𝑄(𝑡𝑡) and the dual displacements 𝑢𝑢𝑣𝑣(𝐴𝐴), 𝑢𝑢𝑣𝑣(𝐵𝐵) define a 2-inputs, 2-
outputs (MI-MO) transfer function of which the 𝐻𝐻∞-norm is minimized; 

3. Same as previous Problem 2 (MI-MO) but for the choice of the system norm to be 
minimized. A weighted version of the nuclear norm is chosen, i.e. 𝑎𝑎1𝜎𝜎1 + 𝑎𝑎2𝜎𝜎2. 

Main results are briefly showcased next. 

Problem 1: dynamic compliance 𝐻𝐻∞-norm minimization. Figure 3 shows the optimal topology 
that solves the classical dynamic compliance problem along with the maximum-singular-value vs 
frequency curve (that for SI-SO systems is the same as the amplitude of the frequency response). 
The value of the goal function at convergence is 7.36 dB that is attained for ω = 0.28 rad/s. 
 

 
Figure 3 – Design case 1 – Optimal topology and maximum singular value vs frequency 

 
Problem 2: 𝐻𝐻∞-norm minimization of the 2×2 transfer function. Figure 4 shows the optimal 

topology that solves the MI-MO min 𝐻𝐻∞-norm problem along with the maximum-singular-value 
vs frequency curve. The value of the goal function at convergence is 15.52 dB that is attained for 
𝜔𝜔 = 0.048 rad/s. 

 
Figure 4 – Design case 2 – Optimal topology and maximum singular value 

Problem 3: Nuclear-norm minimization of the 2×2 transfer function. Figure 5 shows the optimal 
topology that solves the MI-MO min 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 −norm problem along with the maximum-singular-
value vs frequency curve. The value of the goal function at convergence is 53.87 dB that is attained 
for 𝜔𝜔 = 0.028 rad/s. 
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Figure 5 – Design case 3 – Optimal topology and maximum singular value 
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