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Abstract. A new application of the elastic no-tension material model is developed through 
Sequential Linear Analysis (SLA) to analyze masonry structures. The approach has been 
demonstrated to be more robust compared to incremental analysis procedures. In the SLA 
framework, the equilibrium state of a masonry-like material is sought through a series of linear 
elastic analyses. In the loading process, cracking strains are simulated by sequential reduction of 
the directional stiffness upon violation of the no-tension constraint in terms of principal stresses. 
Some applications are presented to show the effectiveness of the proposed method in analyzing 
masonry structures under the effect of gravity, lateral loading, and ground settlements. 
Introduction 
In the last decades a number of refined models have been developed for masonry structures based 
on the theory of plasticity and damage mechanics [1]. Although they have been shown to be quite 
accurate in simulating the mechanical behavior of masonry specimens and small-scale buildings 
tested in the laboratory, these models require many input parameters, which are hardy available in 
practical situations. A comparison between limit analysis solutions and finite element methods in 
the stability assessment of masonry structures was addressed in [2]. An alternative is the so-called 
no-tension material model, which completely neglects the limited tensile strength of masonry 
[3][4]. The reduced number of parameters required by the no-tension model makes it very 
appealing for unreinforced masonry constructions, compared to more refined constitutive models. 

Despite the apparent simplicity of the linear elastic no tension (ENT) model, numerical issues 
arise as discontinuities in the stress and displacement fields have to be dealt with, leading to 
convergence issues. In fact, the application of ENT material models remains still limited. Readers 
may refer in particular to Angelillo [5], who proposed a finite element solution based on a 
complementary energy theorem for ENT bodies, or to Bruggi and Taliercio [6], who reformulated 
the analysis of no-tension structures as an energy-based problem introducing an equivalent 
orthotropic material. 

In this contribution, the analysis of no-tension structures in plane stress conditions is dealt with 
through the application of a procedure of Sequential Linear Analysis (SLA). This technique 
provides a robust alternative to traditional incremental-iterative methods for finite element 
simulations, since it transforms the problem into a series of linear elastic analyses, see in particular 
[7]. The implementation presented here is developed through the combined application of a user 
subroutine in Abaqus, Python and Matlab scripts.  

Two benchmark cases have been analyzed to assess the capabilities of the proposed model 
under vertical loads, lateral loads, and ground settlements. 
Governing equations 
According to [3][8], a no-tension masonry-like material has to fulfill a prescribed set of conditions. 
The stress tensor must be negative semidefinite: 

𝜎𝜎𝑖𝑖𝑖𝑖 ∈ 𝑆𝑆𝑆𝑆𝑚𝑚−, (1) 



Theoretical and Applied Mechanics - AIMETA 2022  Materials Research Forum LLC 
Materials Research Proceedings 26 (2023) 319-324  https://doi.org/10.21741/9781644902431-52 

 

 
320 

where 𝑆𝑆𝑆𝑆𝑚𝑚− is the closed cone of negative semi-definite symmetric second-order tensors.  
The strain tensor is assumed to consist of two parts, an elastic part 𝜀𝜀𝑖𝑖𝑗𝑗𝑒𝑒  and a latent part 𝜀𝜀𝑖𝑖𝑗𝑗𝑐𝑐  

accounting for cracking:  

𝜀𝜀𝑖𝑖𝑖𝑖 = 𝜀𝜀𝑖𝑖𝑗𝑗𝑒𝑒 + 𝜀𝜀𝑖𝑖𝑗𝑗𝑐𝑐 .   (2) 

Finally, the elastic strain is related to the stress 𝜎𝜎𝑖𝑖𝑖𝑖 through the elasticity tensor 𝐶𝐶𝑖𝑖𝑖𝑖ℎ𝑘𝑘, while the 
latent strain, 𝜀𝜀𝑖𝑖𝑗𝑗𝑐𝑐 , follows the normality condition: 

𝜎𝜎𝑖𝑖𝑖𝑖𝜀𝜀𝑖𝑖𝑗𝑗𝑐𝑐 = 0     and    𝜀𝜀𝑖𝑖𝑗𝑗𝑐𝑐 ∈ 𝑆𝑆𝑆𝑆𝑚𝑚+, (3) 

where 𝑆𝑆𝑆𝑆𝑚𝑚+ is the closed cone of the positive semi-definite symmetric second order tensors. 
Sequential Linear Analysis Methodology 
The domain occupied by the structure is discretized by 4-node plane-stress finite elements with 
one integration point (Fig. 1a). The SLA consists in a series of elastic analyses with modified 
stiffness and orientation of each element, until a stable value of the total strain energy is reached. 
This criterion is used as convergence condition for the iterative procedure.  

Upon violation of the condition that states that all the principal stresses must be negative, the 
original isotropic material is replaced by an equivalent orthotropic one, with vanishing stiffness in 
tension. The symmetry axes, 𝑧̃𝑧1, and 𝑧̃𝑧2, of the equivalent orthotropic material and the principal 
stress directions, 𝑧𝑧𝐼𝐼 and 𝑧𝑧𝐼𝐼𝐼𝐼, of the no-tension medium share the same orientation with respect to 
the general reference system 𝑂𝑂𝑧𝑧1𝑧𝑧2 (Fig. 1b). This is achieved through a process of alignment of 
the symmetry axes of the equivalent orthotropic material with the principal stress directions, zα, α 
= I, II, detected in the no-tension medium. 

The principal stresses are computed as the eigenvalues of the stress tensor at the Gauss points, 
whereas the principal directions are found as the relevant eigenvectors. 

In order to track cracking strains, at each Gauss point, two nondimensional material densities 
𝜌𝜌𝑖𝑖 ∈ (0,1] are introduced along the material axes; these parameters govern the stiffness 
penalization of the orthotropic material along 𝑧̃𝑧1 and 𝑧̃𝑧2. The material density 𝜌𝜌𝑖𝑖 is related to the 
damage variable 𝐷𝐷𝑖𝑖 through the expression 𝐷𝐷𝑖𝑖 = (1 − 𝜌𝜌𝑖𝑖). If any of the principal stresses becomes 
positive, the material density variable is initialized with a value, 𝜌𝜌0 = 0.25, whereas further 
reductions are performed using a quadratic reduction factor, i.e.: 

𝜌𝜌𝑘𝑘+1,𝑖𝑖 = 1 − �1 − 𝜌𝜌𝑘𝑘,𝑖𝑖�
2

, 𝑖𝑖 = 1,2. (4) 

In each material direction, the model can capture elastic (negative) compressive strains, or 
positive strains, which correspond to cracking strains. In the latter case, a scaled stiffness is 
computed in the direction where the principal stress becomes positive, to account for cracking.  

The stress-strain law written in matrix form in the general reference system reads: 

𝝈𝝈 = 𝑫𝑫 𝜺𝜺 (5) 
where: 

𝑫𝑫 = 𝑻𝑻(𝜃𝜃)  𝑫𝑫�   𝑻𝑻(𝜃𝜃)𝑇𝑇 (6) 

being T a transformation matrix and θ the angle between z1 and 𝒛𝒛𝑰𝑰. In plane stress, the stiffness 
matrix in the material (principal stress) reference system reads: 

𝑫𝑫� = 1
1−𝜈𝜈�12𝜈𝜈�21

�
𝐸𝐸�1 𝜈𝜈�12𝐸𝐸�2 0

𝜈𝜈�21𝐸𝐸�1 𝐸𝐸�2 0
0 0 𝐺𝐺�12(1 − 𝜈𝜈�12𝜈𝜈�21)

� (7) 
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being 𝐸𝐸�1 and 𝐸𝐸�2 the elastic moduli of the equivalent orthotropic material along the axis 𝑧̃𝑧1 and 
𝑧̃𝑧2, respectively, 𝐺𝐺�12 the in-plane shear modulus, and 𝜈𝜈�12 𝜈𝜈�21 the material Poisson’s ratios such 
that 𝜈𝜈�21𝐸𝐸�1 = 𝜈𝜈�12𝐸𝐸�2. When the negative stress criterion is violated at any Gauss point, the equivalent 
moduli are reduced with respect to those of the original material as follows: 

𝐸𝐸�1 = 𝜌𝜌1𝐸𝐸0,   𝐸𝐸�2 = 𝜌𝜌2𝐸𝐸0,   𝐺𝐺�12 = 𝜌𝜌1𝜌𝜌2
𝐸𝐸0

2(1+𝜈𝜈)
 (8) 

being E0 and ν the elastic constants of the original isotropic material. At the same time, the 
Poisson’s ratios of the equivalent orthotropic material are given by: 

𝜈𝜈�12 = 𝜌𝜌2𝜈𝜈,   𝜈𝜈�21 = 𝜌𝜌1𝜈𝜈. (9) 
 

 
        a)     b)    c) 

Fig. 1. State of stress in a plane element: a) initial state, b) alignement of the material axes with 
the principal stress directions, c) damage onset normal to a nonnegative principal stress. 

Applications no. 1: Masonry panel under gravity loads and soil settlements 
The aim is to test the ability of the ENT model to simulate the behavior of a masonry wall over a 
strip foundation subjected to ground settlements along a portion of its constrained boundary. The 
wall is supposed to be 3.2 m long, 0.6 m high and 0.1 m thick; only the central part, for an extension 
of 1.2 m, is affected by settlements (Fig. 2). The initial modulus of elasticity, E0, is assumed to be 
equal to 1020 MPa. The panel is discretized with a mesh 75 x 75 mm2. The wall is analyzed under 
self-weight condition, while settlements are simulated by removing all the constraints at the nodes 
of the central region. 
 

 
Fig. 2. Scheme of a masonry wall experiencing ground settlements in the central region. 

The numerical simulations show the formation of a relieving arch (Fig. 3), which is typical of 
no-tension bodies. Starting from the ends of the fixed boundary, the direction of the principal 
compressive stress decreases and becomes horizontal at the middle of the unconstrained region. 
The rest of the model is not affected by settlements, and only nearly vertical compressive stresses 
are found.   

The formation of the arch-like compressive stress path affects the displacement field 
significantly. In fact, compared to the conventional elastic case (Fig. 4a), where settlements affect 
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also the neighboring regions, in the case of the ENT material displacements of non-negligible 
amplitude arise only beneath the inner arch (Fig. 4b). The zone above experiences much smaller 
displacements, whereas the rest of the model is virtually undeformed. This is in line with the 
schemes proposed by Mastrodicasa [9] regarding the effects of settlements in masonry walls. 
 

 
Fig. 3. Wall with settlements. Principal stresses from the ENT simulation. 

 
Fig. 4. Wall with settlements. Displacement contour plots: a) elastic model with symmetric 

behaviour in tension/compression, b) Elastic No-Tension model. 
Application no. 2: Masonry panel under vertical pressure and horizontal loading 
A slender masonry panel with dimensions 2.7m x 1.1m x 0.102m was tested at TU Delft [10] 
(experiment TUDCOMP-20): this experiment will be now adopted to validate the proposed 
numerical procedure. The top of the panel is loaded with a uniform vertical pressure of 0.63MPa. 
The pressure is applied through a horizontal steel beam and is kept constant during the experiment. 

The domain is discretized by 100 mm x 100 mm square elements. The top steel beam is 
modelled though a row of elastic elements in the mesh, and is allowed to rotate similarly to the 
experimental setup. The material properties are: 𝐸𝐸0=4972 MPa, 𝜈𝜈=0.16. The compressive strength 
of the material, 𝑓𝑓c, reported by the experimenters, is of 6.35 MPa. 

In Fig. 5 the distribution of the principal stresses and that of the “void” phase (elements with 
biaxial damage, in blue) are both shown at the first converged stage in which any of the principal 
compressive stresses reaches the strength limit 𝑓𝑓c.  
 

 
Fig. 5. Panel under horizontal loading, first SLA stage in which 𝑓𝑓𝑐𝑐 is reached in some element: 
a) distribution of the principal stresses in the masonry wall, b) distribution of “void” elements, 

i.e. those with biaxial damage (in blue). 
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The collapse load is estimated in 12.77 kN. This value matches quite well the horizontal branch 

of the experimental curve whose maximum value is 12.8 kN.  
The analytical calculation considering a simple panel overturning under vertical and horizontal 

loads gives a value of 14.4 kN, if the hinge is formed at the corner, or a value of 13.1 kN, if the 
hinge is considered 50 mm far away. The second value seems to be more representative of the 
considered case, since in the numerical model the hinge is allowed to occur at the midpoint of the 
side of a finite element, that is, at 50mm from the corner. Therefore, the difference between the 
numerical failure load and the analytical model is about 2.4%. 

Regarding the displacement capacity, it must be remarked that limit analysis can predict only 
the limit load. However, if we consider a finite strength in compression, the predicted 
displacements when 𝑓𝑓c is reached is 13.2 mm. Additional converged steps were obtained, but the 
compressive strength of masonry is exceeded. 
Conclusions 
In this contribution, the ENT model has been implemented in the framework of sequential linear 
analysis, which consists in a number of elastic analyses sequentially launched. The properties of 
the equivalent orthotropic material that replaces the ENT material to avoid the occurrence of tensile 
stresses are obtained through a penalization procedure. 

The proposed approach was used to analyze masonry structures subjected to prescribed loads 
or ground settlements. In the latter case, the cracking strains computed by the SLA procedure 
match the real crack pattern expected at incipient collapse fairly well. Also, the limit load of a 
panel tested under increasing horizontal load and dead vertical load was predicted with good 
accuracy. 

An advantage of the proposed approach compared to traditional incremental approaches is its 
inherent robustness.  

 

 
Fig. 6. Panel under horizontal loading. Comparison of experimental and numerical shear vs 

displacement capacity curve. Displacement are in mm, loads in kN.  
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