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Abstract. This work deals with the limit analysis of structures through the lower-bound theorem, 
using dislocations based finite elements and eigenstress modelling. The lower bound approach is 
based on the knowledge of the self-equilibrated stresses that constitutes the basis of the domain 
where the optimal solution should be searched. A twofold strategy can be used to get self-
equilibrated stresses, i.e., eigenstresses. The first one pursues the calculation of the self-
equilibrated stress through the numerical approximation of the differential equilibrium equation in 
homogeneous form through an a posteriori discretization that used polynomial representation of 
finite degree. The second one consists of Finite Element implementation of the self-equilibrated 
stress calculation by discontinuous finite elements based on Volterra's dislocations theory. Both 
the formulations are written in terms of the strain and precisely in terms of the strain nodal 
displacement parameters. Consequently, it is possible to formulate an iterative procedure starting 
from the knowledge of the dislocation at the incoming collapse, in Melan’s residual sense, and 
calculate the structural ductility requirement. Several numerical examples are presented to confirm 
the method's feasibility. 
Introduction 
The application of limit analysis and plasticity to structural safety concerns a wide range of 
engineering fields. Starting from the pioneer works of Prager, Drucker, and Greenberg's [1,2] and 
Massonnet and Save [3,4] that address the plastic response of structures introducing the collapse 
calculation for one-dimensional beams assembly as the main topic the matter has been formalized 
in the mathematical treatise of Hill [5], a two-fold approach is the way the limit analysis has been 
applied. The first, the kinematic method, consists of finding the collapse load as the load infimum 
among that in equilibrium with the stress linked to a compatible collapse mechanism. The second, 
the static approach, is based on the research of the supremum of the load in equilibrium with an 
admissible stress state that is a combination of self-equilibrated stress with the particular solution 
of the elastic equilibrium equation to the applied loads. An extensive chapter in the limit analysis 
is devoted to the mechanics of masonry structures following the work of Heyman [6], who extends 
the primary approach of limit analysis to the not tensile resistant materials (NTRM) modeling 
masonry. The limit analysis, and in a more general sense the plasticity modeling, is highly required 
when one must interpret the results of monitoring campaign since the structures during their life 
generally undergo permanent strain and cracks [7,8]. In the field of the biomechanics, the limit 
equilibrium is used as a primary tool to assess the fracture risk of prosthesis implants and relative 
optimization strategies as reported in [9,10,11]. 
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The main topic of the limit analysis when addressed using the lower-bound approach is to define 
the field of the self-equilibrated stress that constitute the kernel of the equilibrium operator. The 
way the self-equilibrated stress is obtained characterizes the work here presented. Namely, a first 
strategy is based on mixed numerical-analytical solution of the equilibrium differential equations. 
The procedure evaluates the collapse load multiplier for masonry domes and vaults [12,13] and 
concrete caps. The results from the proposed formulation showed a good agreement with the 
experiments reported in [14]and with calculation presented in [15] that uses a kinematic approach 
based on the energy balance about crack lines which constitutes a typical pattern of collapse for 
plates and slender domes under radial load [16].  
Alternatively, one can resolve the self-equilibrated stress, and consequently the domain within one 
must define the admissible stress state, with reference to finite element discretization of the model. 
The second procedure relates the permanent strain modeled as Volterra’s dislocation to nodal 
parameters analogous to finite element nodal displacement. The formulated displacement base 
FEM gives the linear operator that relates the self-equilibrated stress domain to nodal parameters 
and boundary displacements. The dimensions of the self-equilibrated stress domain is the rank of 
the linear operator that in the case of truss and frames structures coincide with the redundancy 
degree of the structure. 
Semi analytical method (SAM) 
The first procedure consists of the search of the collapse multiplier through a mixed numerical and 
analytical procedure. The equilibrium equation for vaults and domes is solved through an 
optimization constrained problem. We have used a generalized stress formulation; hence the stress 
has been described through the internal forces, N, T, and M that are the resultant components, 
axial, and shear forces respectively, and the resultant bending moment of the stress acting on the 
section. Where the subscript { }1,2 refers to the meridian or parallel cross section of the structure. 
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The set of equilibrium equation is solved numerically starting from a set of shape function and 
collocating the equation at the discrete colatitude angle 𝜃𝜃𝑗𝑗  .  
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The limit multiplier of prescribed load paths, either monotonically increasing or randomly 
variable, is obtained by maximizing the static multiplier of loads under the constraint that the sum 
of elastic response, plus any self-equilibrated time-independent stress solution, belongs to the 
admissible domain. Hence it results that the optimization program has the load multiplier as 
objective function and the parameters c as design variables. The optimization constraints are the 
linear inequalities representing the limit domain in terms of c. The elastic solution under the actual 
loads must be obtained from the equilibrium equation in any way. Namely, if closed form solution 
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exists one can use it or can be obtained employing FEM analysis. The vectors 𝑁𝑁𝑖𝑖𝑒𝑒 ,𝑀𝑀𝑖𝑖
𝑒𝑒 collected 

the effective generalized stress. Collocating the equations at discrete angles, i.e., at a finite number 
of 𝜃𝜃𝑗𝑗  with 𝑗𝑗 ∈  {1, … … ,𝑚𝑚}, where m was the number of points along the meridian curve, one gets 
the desired solution. Finally, the optimization program, has the following discretized form: 
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(3) 

Where 𝛽𝛽 accounts for the presence of tensile resistance 𝜎𝜎0 such that axial limit stress is 𝑁𝑁0 =  𝜎𝜎0ℎ 
following the material constitutive properties. 
Discontinuous finite element procedure (DFEP) 
An alternative procedure uses finite elements in a discontinuous form to write the discrete operator 
that relates the set of self-equilibrated stress in the structure to discrete nodal displacement-like 
parameters. The approach is devoted to relating the permanent strain equivalent to Volterra’s 
dislocation to nodal parameters. Moreover, the permanent strain and the corresponding self-
equilibrated stress can be represented in terms of constraints displacements too. The representation 
can be assumed as a span of the eigenstress space. It can be seen that the span is not independent 
and that the base of the eigenstress is a proper subset of the parameters manifold.  

In conclusion, any equilibrated stress under prescribed load can be calculated as the sum of the 
elastic response plus self-equilibrated stress, depending on the application of the linear operator 𝑉𝑉 
that maps the nodal dislocation parameter to the eigenstress.  

The load collapse multiplier results as the 'sup' of the load multiplier in the constrained 
optimization program 

𝑠𝑠𝛼𝛼 = sup𝑘𝑘|𝑓𝑓(𝑘𝑘σ∗ + Vδ) ≤ 0,𝛼𝛼 = �𝑠𝑠𝑠𝑠   shakedown
𝑐𝑐   collapse  

 

(4) 

where σ∗ is the stress in the structure calculated as being indefinitely elastic at any time during 
the load path, δ is the nodal dislocation parameter vector. 
Results 
Slender concrete caps have been analyzed following the SAM procedure and compared with 
experimental results obtained by [14,17] are reported in the following Fig.1 and Fig.2. 

 

 

Figure 1 Thrust Surface and limit domain 
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Figure 1. Result comparison among experimental results (Gent), analytical solution (UNSW) 

and proposed method (SAM) for different speciement 𝑲𝑲𝒊𝒊 

The DFEP has been applied to two-dimensional and three-dimensional examples. The first 
represent simple approximation of the Prestwood bridge Figure.3, whose collapse has been 
experimented in [18]. 

 

 

Figure 3 Bridge load condition 

 

In Tab.1 the results for each mesh sizing are reported. The value of experimental load multiplier, 
in the destructive test conducted by Page is 228 KN. 

 

Table 1 Load Multiplier values for each mesh size 

 
The 3D example has modeled the plastic behavior of the cross section of a femur [9], modeled 

as a hollow cylinder, Fig.4, , after a hip prosthesis implant.The limit load multiplier has been 
compared with Ansys nonlinear analysis solution. 

 
Table 2 Result comparison of femur limit load 

Ansys Nonlinear solution DFEP solution 
13.64 MPa 12.86 Mpa 
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Gent vs UNSW vs SAM

Gent UNSW SAM

Case Element number along X Element number along Y Load Multiplier 
1 18 5 701 
2 36 5 423 
3 72 5 312 
4 72 10 258 
5 88 12 233 
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Figure 4 Approximation of the femur to a cave cylinder and elastic solution of the generic 
section (blue, undeformed shape/ red, deformed shape) 

Both the examples confirm the accuracy of the procedure. 
Conclusions 
Two procedures have been set up. The first one, SAM, starts with the analytical solution of 
spherical domes to calculate any self-equilibrated stress. Moreover, a finite element elastic solution 
is obtained from the actual loads and was used as the purely elastic solution introduced into Melan's 
theorem. The analytical solution of the homogeneous equation of spherical domes is used to model 
the eigenstress of parabolical, conic, and slender domes through an approximate interpolation of 
the parabola with a sphere. The approximation allowed us to use the analytical solution to different 
non-spheric geometries. The proposed results were presented in terms of thrust lines. The results 
have been compared with numerical results obtained through commercial software of numerical 
analysis and experimental results. The thrust lines confirmed that the analyzed domes are safe 
under the applied loads or confirmed the collapse load multiplier under prescribed loads. The 
proposed method allowed us to calculate the safety factor under prescribed load patterns and assess 
the safety of the prescribed load level. Both presented strategies have shown the feasibility of the 
methods. 
In second one, DFEP, the problem's schematization does not depend on its size.  

The advantages of the procedure are manifold. First, the method allows the implementation of 
the load conditions, and the value of the collapse multiplier is computed without necessarily 
following the load path. Furthermore, being a FEM-based procedure, it can be borrowed from 
other commercial computing platforms for numerical analysis. 

It should be noted that the DFEP procedure is structured in the deformation space. This fact has 
to be intended as a passage to an optimization problem in the displacement field, having chosen 
both the basic parameters of the self-stresses and the compatibility domain of the stresses in the 
displacement space. Therefore, in the proposed solution strategy, it is possible to control a 
posteriori the demand for structural ductility, which is essential for permanent deformations to 
unfold up to the desired load level without affecting the results obtained with a fragile local 
collapse. 
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