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Abstract. The problem of imposing the reference conditions in a floating frame of reference 
formulation is coupled with the necessity to reduce the interfaces to virtual nodes required to define 
the multibody joints. Two methods are implemented for rigid and interpolation multipoint 
constraints, and the reference condition matrix is derived employing all the interface dofs. The 
case study of a slider-crank mechanism is discussed to show how different sets of reference 
conditions can modify the system’s dynamics. 
Introduction 
Interface reduction is a recurring problem in substructuring and model reduction theory [1]. In 
flexible multibody dynamics, the interfaces are primitive geometric features employed to form a 
joint. In practice, what is done is to individually reduce each interface to a single virtual node, 
usually a not collocated node outside the volume of the body. This reduction occurs through two 
types of multipoint constraints (MPCs): the rigid multipoint constraint, usually referred to as the 
RBE2 element, and the interpolation multipoint constraint, usually referred to as the RBE3 element 
[2]. Subsequently, the virtual nodes of the two interfaces are linked through kinematic constraints 
necessary to define a joint. In [3], the authors raised the problem of the scarce use of RBE3 in 
multibody simulations and identified the disappearance of the dependent coordinates, operated by 
FE software after eliminating the multipoint constraints, as one of the possible causes. The method 
proposed in [3] has practical implications to be used in commercial FE software. Still, it neglects 
essential aspects related to the presence of MPCs and generic reference conditions (RCs) within 
the Floating Frame of Reference Formulation (FFRF) [4]. 

Here, a different approach is presented that is perfectly integrated inside the FFRF working with 
every RCs. Both types of MPC are treated, and the interpolation MPC exploits all interface DOFs 
without the need to select dependent nodes or to introduce selection criteria. MPCs are directly 
connected to the reference conditions necessary to define the floating frame correctly. This issue 
has only been marginally addressed in the literature without providing a general treatment for any 
RC. 

The paper is organized as follows. First, the mathematical background of the FFRF and the role 
of the RCs are introduced. Then, the method to apply the reference conditions to the virtual nodes 
of rigid and interpolation MPCs is provided. The reference condition matrix is obtained in explicit 
form for both cases. The case study of a flexible crank is analyzed, and three different sets of RCs 
have been applied to the interface virtual nodes of the component. Finally, the crank is assembled 
with a flexible connecting rod and a rigid piston to simulate a single cylinder of an internal 
combustion engine. 
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Figure 1: Floating frame of reference nomenclature and reference conditions 

Background 
The Floating Frame of Reference formulation describes the motion of a flexible body composing 
the gross motion of a particular frame, i.e., the floating frame and the local deformation with 
respect to the floating frame. In the finite element theory, the shape function necessary to describe 
the elastic behavior of a deformable body must be able to represent the rigid-body motion. 
Otherwise, the body cannot satisfy the objectivity property. The rigid-body motion provided by 
the shape function can be a duplicate or interfere with the gross motion of the floating frame. A 
set of linear constraints must be applied at some points Cij to remove the rigid-body motion. These 
constraints are referred to as the reference conditions (RCs) and define the nature of the floating 
frame. 

Denoting with Ri and Ai the position and the rotation matrix of the floating frame (xiyizi) with 
respect to the inertial frame (XYZ), and with uij the position of a generic point Pij with respect to 
the floating frame, we write 

𝒓𝒓𝑖𝑖𝑖𝑖 = 𝑹𝑹𝑖𝑖 + 𝑨𝑨𝑖𝑖𝒖𝒖�𝑖𝑖𝑖𝑖 = 𝑹𝑹𝑖𝑖 + 𝑨𝑨𝑖𝑖𝑺𝑺𝑖𝑖𝑖𝑖(𝒒𝒒0 + 𝑩𝑩2𝒒𝒒𝑓𝑓) (1) 

where 𝑺𝑺𝑖𝑖𝑖𝑖 is the shape matrix, 𝒒𝒒0 and 𝒒𝒒𝑓𝑓 respectively are the vectors of elastic coordinates in 
the undeformed and deformed configuration and 𝑩𝑩2 is the reference condition matrix that removes 
the rigid-body motion from the elastic displacements. It is noteworthy that the gross motion 
defined by Ri and Ai is not, in general, a rigid-body motion. Only when the RCs impose a fixed 
constraint at point Oi the gross motion becomes a rigid-body motion. The RCs can be applied at 
any point of the body, respecting that the final structure is isostatic or hyperstatic. Although this is 
the only prescription imposed on the RCs, however, further advice based on the experience is 
advisable: 

 
1. the RCs should be a subset of the multibody joints, meaning that the body should deform 

following shapes allowed by the actual joints. 
2. different RCs yield different results and should be experimentally validated. 

 
The first advice comes from a recent paper [5] in which it is demonstrated that the free-free or 

mean-axis RCs, in particular system layouts, do not satisfy the mechanical joints. If the RCs must 
respect the mechanical joints, they must be applied on the same nodes used to define those joints. 
These nodes can be points of the structure, as in the case of beam or plate elements, or they can be 
virtual points, as in most cases where three-dimensional elements are used. 

The second piece of advice comes from the evidence that different RCs create different 
component modes of the reduced system and eventually modify the elastic response of the system. 



Theoretical and Applied Mechanics - AIMETA 2022  Materials Research Forum LLC 
Materials Research Proceedings 26 (2023) 653-658  https://doi.org/10.21741/9781644902431-105 

 

 
655 

This probably stems from the finiteness of the component mode set employed to obtain the 
reduced-order model. In [6-10], the authors investigated this problem by providing different planar 
and spatial examples based on beams. 

In summary, it would be convenient to use different sets of RCs. Advisable FFR-based methods 
must be able to apply the RCs to any physical or virtual point of the structure to create the 
component modes necessary for the dynamic analysis [11]. In FEA, this issue is solved using the 
rigid and the interpolation multipoint constraints (MPC), often referred to as RBE2 and RBE3 
elements, respectively. In flexible multibody systems, as for structures, the RBE elements are also 
employed to create multibody joints. In RBE2, a group of dependent nodes follows the rigid body 
displacements of a single independent node. In RBE3, the displacement of a given dependent node 
is calculated using the displacements of a group of independent nodes. 
Methodology 
Given a component discretized into FE, let B, I, and V be the sets of boundary, internal, and virtual 
nodes, respectively. All interface nodes belong to B, while V contains the virtual nodes necessary 
to create an MPC; the remaining nodes belong to I. The virtual nodes are essential creating an 
MPC and can be collocated, that is, physical nodes of the mesh or non-collocated nodes, i.e., nodes 
not belonging to the body’s volume. Then, the RBE2 element can be described in terms of the 
mentioned sets: 

𝑭𝑭:𝐵𝐵
        
��𝑉𝑉, 𝒒𝒒𝐵𝐵 = 𝑭𝑭𝒒𝒒𝑉𝑉 (RBE2) (1) 

Fort he and RBE3 element, it follows 

𝑮𝑮:𝑉𝑉
        
��  𝐵𝐵, 𝒒𝒒𝑉𝑉 = 𝑮𝑮𝒒𝒒𝐵𝐵 (RBE3) (2) 

where F and G are linear functions of the independent nodes whose expressions are reported in 
[2, 3]. The vectors qB and qV contain the displacements of nodes belonging to B and V, respectively. 
Usually, dim(V) < dim(B), and this explains the limited use of RBE3 in multibody applications. 
While imposing the RCs on the virtual nodes of the RBE2 elements is often immediate, doing the 
same with the RBE3 element needs some tricks. Applying the RCs on the virtual nodes of V, the 
RCs can be expressed through the following linear constraint equations 

𝑫𝑫𝒒𝒒𝑉𝑉 = 𝟎𝟎 (3) 
where D is a matrix containing the coefficients of these equations. 
 

RBE2 element 
By introducing Eq.(1) into Eq.(3), we derive 

𝑫𝑫𝑭𝑭†𝑭𝑭𝒒𝒒𝑉𝑉 = 𝟎𝟎 →  𝑫𝑫𝑭𝑭†𝒒𝒒𝐵𝐵 = 𝟎𝟎 → 𝑩𝑩2 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑫𝑫𝑭𝑭†) (4) 

where 𝑭𝑭† is the generalized inverse of 𝑭𝑭 and 𝑩𝑩2 is the matrix of the RCs such that 𝒒𝒒𝐵𝐵 = 𝑩𝑩2𝜸𝜸 
being 𝜸𝜸 a reduced set of independent elastic parameters.  

Usually, this procedure is not needed as 𝑩𝑩2 can be directly found by removing the constrained 
dof from 𝒒𝒒𝑉𝑉, i.e. 

𝒒𝒒𝑉𝑉 = 𝑩𝑩2𝒒𝒒𝑽𝑽∗    (5) 

where 𝒒𝒒𝑽𝑽∗  is the reduced set of independent elastic coordinates. Exploiting Eq.(5), it is derived 
that 

𝒒𝒒B = 𝑭𝑭𝑭𝑭2𝒒𝒒V∗ →  𝑻𝑻 = 𝑭𝑭𝑭𝑭2 (6) 

in which 𝑻𝑻 is the transformation matrix that contains both the RBE2 and RCs. 
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RBE3 element 
By introducing Eq.(2) into Eq.(3), we have 

𝑫𝑫𝑫𝑫𝒒𝒒𝐵𝐵 = 𝟎𝟎 →  𝒒𝒒𝐵𝐵 = 𝑩𝑩2𝝆𝝆, 𝑩𝑩2 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑫𝑫𝑫𝑫) (7) 

By substituting into Eq.(2), we obtain 𝒒𝒒𝑉𝑉 = 𝑮𝑮𝑩𝑩2𝝆𝝆. In this case, the direct substitution carried 
out in the RBE2 element is not possible, and the final transformation matrix 𝑻𝑻 = 𝑮𝑮𝑩𝑩2 maps a 
reduced set of independent elastic parameters into the virtual node displacement vector 𝒒𝒒𝑉𝑉. 
Numerical simulation 
The method presented in the previous sections is applied to a slider-crank mechanism. In Figure 
2, the crank is modeled considering tetrahedrons. The interface nodes of set B are highlighted using 
red dots. The three interfaces refer to the revolute joints employed to connect the crankshaft to the 
frame (B1 and B3) and the revolute joint between the crank and the connecting rod (B2). Only RBE3 
elements are employed, and a virtual node is defined at the geometric center of each interface. 
Then, the three virtual nodes are used to determine the revolute joints. To define 𝑩𝑩2 as in Eq.(7), 
a set of RCs must be imposed by means of the matrix D of Eq.(3). Here, we consider three sets of 
RCs as reported in Tab. 1. All sets lead to an isostatic structure.  

  
Figure 2: Crank layout and interface nodes highlighted using red dots. 

Table 1: Three sets of reference conditions. T and R stand for forbidden translations and 
rotations. 

RCs Interface B1 Interface B2 Interface B3 
Set 1 Spherical (TxTyTz) - Universal (TxTyTzRy) 
Set 2 Spherical (TxTyTz) Translation (Tz) Translations (TxTz) 
Set 3 - Fixed (TxTyTzRxRyRz) - 

 
The three sets of RCs are used to define the normal modes, i.e., eigenmodes of the component 

constrained using the RCs [4]. Retained sets of normal modes serve as a basis for reducing the 
elastic coordinates. The final set of coordinates includes only gross motion coordinates and the 
modal amplitudes corresponding to the retained normal modes. As can be shown in Fig. 3, the 
modes and their corresponding frequencies change, passing from one set to another. As already 
remarked, this modifies the dynamics of the system.  

To observe how the elastic field modifies the dynamics of a system, we assembled a slider-
crank mechanism simulating an internal combustion engine with a single-cylinder. The connecting 
rod has been modeled using tetrahedrons and simply supported RCs, while the cylinder has been 
modeled as a rigid body. An external force arising from the in-cylinder pressure shown in Fig. 4 
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has been applied to the piston, as detailed in [12]. Two torques simulating the starter electric motor 
and the external load applied to the crankshaft have also been included in the model. All 
components and the dynamics simulation have been performed using the commercial software 
Matlab®. The implicit generalized-alpha method has been employed to integrate the equations of 
motion. 

Set 1 Set 2 Set 3 

 

 

 

 

 

 

Figure 3: The first two normal modes for each set of reference conditions. 
As can be observed in Fig. 4, after a transitory phase in which the system accelerates, the angular 

speed of the crankshaft stabilizes. The oscillations around the regime speed are typical of a single-
cylinder system due to unbalanced forces during the rotation. Comparing the three sets of RCs, the 
angular velocity of the crankshaft starts to differ for high speeds. This effect comes from the 
different frequency ranges of the three normal mode sets employed in the reduction process.  

   
Figure 4: Simulation snapshot of the slider-crank system, in-cylinder pressure, and angular 

speed of the crankshaft considering the three sets of RCs of Table 1. 
Conclusions 
This paper presents a method to combine interface reduction and reference conditions to create 
component modes to be used for the dynamics of flexible multibody systems. The procedure is 
applied to both rigid and interpolation multipoint constraints. For the latter, all interface dofs are 
employed without resorting to any selection criteria of the independent dofs. The case study of a 
slider-crank mechanism simulating an internal combustion engine with a single cylinder is 
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provided to demonstrate how different sets of reference conditions can influence the dynamics of 
a complex multibody system. 
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