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Abstract. Despite the continuous progress in computer vision, its application to many industrial 
tasks like the detection and size measurement of non-trivial defects is still a demanding problem. 
In this paper, typical challenges, workflows, and key performance indicators are discussed and the 
application of AI-based Semantic Image Segmentation methods is demonstrated to the detection 
of minute damages on metal surfaces using the d-fine vision toolbox. A performance improvement 
for a public data set above prior results is reported and the successful transfer of the approach to 
real-world sheet metal parts produced by voestalpine Automotive Components Schmölln GmbH 
is shown.  
Introduction 
Computer vision is an essential enabler of the end-to-end digitalization of production processes. 
Use cases like object tracking, pattern recognition, event detection or visual servoing (vision-based 
robot control) are among the fundamentals of intelligent, autonomous, and self-optimizing 
production processes [1]. Industrial computer vision can detect problems in an autonomous, 
continuous, and reliable manner and supply feedback into production processes and machines 
directly, e.g., in case of high failure rates due to incorrect machine calibration. 

Fig. 1: Industrial computer vision applications 
 
Virtually all modern applications of computer vision are based on neural networks with so 

called convolutional architectures [2] playing the most prominent role. When applied properly, 
this technology allows to automate analyses and processes that hitherto required a human’s ability 
to interpret data. The following is an overview of the most important steps and the challenges 
involved. 



Sheet Metal 2023  Materials Research Forum LLC 
Materials Research Proceedings 25 (2023) 371-378  https://doi.org/10.21741/9781644902417-46 

 

 
372 

Data quality. Stable imaging conditions and good image quality are crucial for the success of 
computer vision. Deficiencies can only be partially compensated for by smart preprocessing 
methods and image resolution and lighting conditions must be carefully controlled. 

Preprocessing. In most computer vision use-cases, the available data is imbalanced. The 
training data contain only a small fraction of NOK-parts and do not cover possible damage 
manifestations. To generate a more representative image base and to at least partially remedy these 
deficiencies algorithmic preprocessing can generate additional synthetic images (see e.g. [3] for 
an overview) with altered lighting and noise conditions, aspect ratios and sub-crops. 

Deep Learning architecture. (Convolutional) Neural networks (CNNs) are inspired by the 
connectivity structure of neurons in the mammalian brain but should not be taken to represent a 
cognitive process. Their performance depends on a suitably chosen architecture, the quality of the 
input data and the careful tuning of the training strategy. [4] provides an excellent introduction 
into the architectural principles and the way CNNs build a hierarchical representation of image 
content.  

Postprocessing. Algorithmic segmentation of the image into regions of different characteristics 
is not sufficient in productive applications. The results must be transformed into a suitable format 
for (quality-) experts and decision makers. This includes both a visual representation of the 
identified damages and performance dashboards for error rates or product quality assessments. 
Benchmarking computer vision systems 
Four practical requirements have proven crucial for a successful defect detection scheme, namely: 
robustness, data efficiency, accuracy and performance. 

Robustness. Computer vision systems are affected by lighting situation and perspective and are 
negatively impacted by contamination and reflections. A good system should be robust with 
respect to such real-life disturbances and deviations from ideal conditions. 

Data efficiency. Defect types, part shapes as well as location and orientation of the components 
to be inspected may vary between images. An ideal vision tool can be trained on a limited set of 
components with few images taken from only a subset of defect types and can still apply its 
“cognitive” abilities to new and hitherto unseen parts, defect types and perspectives within a given 
production process. 

Accuracy. To ensure that the system can take over tedious and repetitive QA tasks, detected 
errors must coincide well with defect labels provided by a human supervisor. At the same time 
False Positives (errors reported without an actual error being present) and False Negatives (errors 
missed by the AI) must be reduced as much as possible.  

Performance. Detection accuracy does not provide a competitive advantage if data throughput 
is low due to computational complexity. In particular for real-time applications on the shopfloor 
the achievable processing rate is a critical quantity. 
Related work  
Deep learning and computer vision provide robust solutions to the tasks shown in Fig. 1, including 
object tracking [5], object recognition [6] and visual servoing [7].  

Vision-based quality inspection offers the possibility to perform non-destructive inspection 
processes in industry. Huang et al. [8] provide an overview of inspection tasks in the semi-
conductor industry that can potentially be automated. Defect detection in an industrial context 
using CNNs on X-ray images has been investigated in [9]. The detection of cracks is part of many 
research projects. Detecting cracks in concrete using deep learning has been studied by [10]. 
Surface inspection is an important part of industrial quality assurance. The authors of [11] 
investigate the use of deep learning for this application and present essential design requirements. 

In [12], U-Nets were presented to segment anomalies in biomedical data. U-Nets comprise a 
contracting and an expanding data path (see left side of Fig. 2 for an example) and are also used 



Sheet Metal 2023  Materials Research Forum LLC 
Materials Research Proceedings 25 (2023) 371-378  https://doi.org/10.21741/9781644902417-46 

 

 
373 

in this work. Their output is a mask with probabilities for each pixel indicating whether the pixel 
is or is not part of a labelled region (e.g., “DEFECT” / “OK”). The horizontal and vertical 
dimensions of the output are identical to the input dimensions of the image such that the results 
can be visually overlaid for ease of interpretation later. [13] has achieved state of the art results 
using U-Nets for magnetic tile inspection. 

Deep learning enables very good detection rates but requires very large amounts of data. 
Especially in the industrial environment it can be difficult to generate and annotate these correctly 
for training.  

In [14] the authors address the data efficiency by applying networks trained in other domains 
to new data sets (transfer learning). In [15] a special loss function (“focal loss”) for training is 
introduced that emphasizes hard to learn image areas to increase network performance. Finally, in 
[16] a special sampling method is proposed that increases the weight of entire images that contain 
hard to learn content. 

Fig. 2: Left: A simplified U-shaped neural network architecture. Right: Intersection over Union 
of a training mask and a network output mask as metric for the evaluation of image segmentation 

methods 
Approach  
The objective of this work is to design a defect detection system that provides for robustness, data 
efficiency and computation performance while achieving state-of-the-art results for accuracy and 
to demonstrate its applicability not only to laboratory data but to real-world images from an 
industry-grade production process. As described in [15], the training of semantic segmentation 
algorithms suffers twofold from data imbalance: First, “OK”-parts are overrepresented. Second, 
the defects to be detected are very small compared to the size of both the component itself and the 
image on which they are to be found. For this purpose, this paper investigates the visual inspection 
capabilities of a U-Net trimmed for data efficiency in combination with a modified focal loss 
function, emphasizing the hard to train image regions and hiding out the component background.  

To cope with the small number of input images, the training data set is enriched using various 
geometric and photometric data augmentations and innovative sampling strategies that enhance 
the “NOK”-regions’ fraction in the data set by transferring damaged regions between images.  

The used U-Net architecture includes five skip connections that copy input data from early 
layers to later layers. This allows the model to keep local information together and prevents 
information loss. Careful tuning of the network details ensures that the system is already highly 
data efficient at the architectural level. 

Finally, a post-processing routine incorporating domain-specific knowledge about typical 
defect sizes enhances the performance of the semantic segmentation approach and suppresses false 
positives. This comprises i.a. a threshold set upon the probability level with which the network 
considers a pixel to be part of a defective area. To finally measure the recognition accuracy, it is 
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common practice to compare the manually provided defect mask and the output mask of the 
network. Their agreement is usually quantified as the ratio between the intersection of the two 
areas and their union (“IOU-metric”) [17] – see right side of Fig. 2. 
Example use case: ball screw drives 
To demonstrate the performance of the image segmentation and defect detection pipeline and to 
determine quantitative KPIs, a publicly available data set of ball screw drive images is used and 
the workflows and the results obtained are discussed. 

Data set. The data set “Industrial Machine Tool Element Surface Defect Dataset” [18] by the 
Karlsruhe Institute of Technology (KIT) contains images of ball screw drives (BSDs). BSDs are 
roller bearings used for translating rotary motion into linear motion and “one of the most wear-
prone machine tools” [19]. The data set consists of 394 images each with at least one defect, which 
was labelled by a human expert using a polygonal mask along the boundary of the damage region 
(see Fig. 3). The defect regions are of different sizes and the images show soiling as it is typical 
for industrial manufacturing environments.  

Fig. 3: Image taken from the KIT ball screw drive data set showing a defect (left) and the 
corresponding defect mask (right). 

 
Data split and preprocessing. The data is split into subsets as proposed by the authors [18]. The 

training proceeds in so called “epochs” during with the system tries to optimize recognition results 
on the training data set. The performance is measured independently after each training epoch 
using the validation data set. The final performance KPIs reported below however are determined 
on the test data set which has never been presented to the network before.  

Training details. The system has been trained on Google Cloud Platform for 62 hours using a 
Nvidia V100 GPU with 16 GB RAM. 

Results. Fig. 4 shows the results achieved when applying the network to previously unseen error 
samples. Defects on the test data set are detected with a mean IoU of 45.3%, which is a noticeable 
improvement compared to the previously published value of 31.6% (see [19]). For all practical 
applications it is necessary to decide at some point whether a region with a “defect”-label is to be 
classified as an actual defect or to be rejected as a false positive candidate (as may be done with 
very small defect regions in practice). Fig. 5, shows the classification results of the approach for a 
set of 60 selected test-images. Each image is represented by a dot on a two-dimensional map, with 
the horizontal and vertical extension of the damaged region (measured relative to the total image 
size) used as coordinates. Orange dots indicate correctly detected damages, blue ones indicate 
missed ones. The toolchain presented in this paper detects even small defects more reliably when 
compared to results shown in [20]. The undetected defects have a small relative size compared to 
the image’s dimension. A higher resolution or an inspection using image sub-crops might help to 
further improve the performance.  
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Fig. 4: Left: Training images with damaged regions - defect masks provided during the training 
phase are shown in red; Right: Separate validation with unseen data - damage masks identified 

by the trained network are shown in amber. 

Fig. 5: Detected and missed defects and their relative horizontal and vertical spread in the 
image. The solution almost perfectly detects all but the most minute damages.  

Application to sheet metal components 
To demonstrate the feasibility of defect detection outside the lab with real-world shop-floor data 
with comparable challenges, the method is applied to several sheet metal parts that belong to the 
automotive chassis. The parts were produced and photographed in the press plant of voestalpine 
in Schmölln, Germany.  

Data set and enrichment. The images for this analysis were taken on a separate inspection island 
from a single camera perspective under reproducible and calibrated lighting conditions. The 
dataset contains 179 images taken from 3 different sheet metal component shapes. 107 images 
were used for training, 36 for validation and 36 for testing. The high resolution of the images and 
the need to detect also small defects mandate that the defect recognition is applied to image sub-
crops to ensure reliable detection. Also, the use of image cropping allows to increase the proportion 
of damaged regions during training and thus to equalize the ratio between “OK” and “NOK” 
images in the data set.  
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Foreground segmentation and damage detection. To find the damaged sections, the AI-based 
segmentation method has been applied twofold: First it masks the component part (“foreground”) 
and separates it from the uninformative image “background”. The images on the left of Fig. 6 show 
typical masks resulting from this step with reddish pixels indicating the image sections that the AI 
ascribes to the part. This step also works reliably when new shapes are presented to the background 
segmentation step. Damage detection itself proceeds subsequently. Typical results for images from 
the test data set are shown in the right side of Fig. 6. Here pixels to which the AI ascribes a 
“damaged” label are marked in green. Pixels in blue are “missed pixels”: They have been labelled 
manually as “damage region” before the training phase but have not been recognized by the AI. 

Fig. 6: A sheet metal components inspected with the two-stage segmentation approach. Left: 
foreground separation; right: damage detection 

 
Results. While applying the methodology allows to train a neural network with the very small 

data set, a statistical analysis of the results would not provide meaningful and reliable performance 
numbers. As described in the review paper [21], crack detection algorithms are usually trained on 
data sets that are about 100 times larger in scale. To provide quantitative, statistically sound results 
a data set of at least five times the one available at present would be needed. A qualitative analysis 
shows however, that the trained network detects damages also in the test data set if they are 
optically similar to defects presented during training. Using sufficiently well resolved image sub-
crops, also very small defects can be detected that are hardly visible to the human eye on a full-
scale image. As the training of the damage detection step is performed on image sub crops it should 
be agnostic with respect to the specific component shape under inspection. This is an important 
feature for real life applications because it substantially reduces the need to retrain the AI for new 
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shapes and different camera perspectives. However, a larger data set is required to verify this 
unambiguously.  
Summary 
Using convolutional neural networks, an AI-based image segmentation method is developed which 
detects even small defects on sizable metallic surfaces. The method is data efficient in that it 
requires only a very limited amount of training data and thus greatly reduces the labelling effort 
required before training. It generalizes well to unseen data and outperforms prior results on a 
publicly available data set. The developed preprocessing, training and postprocessing cascade is 
applied to real world images from a sheet metal plant. While statistical performance KPIs can not 
be given due to the limited amount of available data promising qualitative results are achieved. A 
fully quantitative evaluation of the performance KPIs on a larger data set is required next to 
develop the system into a flexible, scalable AI system for end-of-line quality control for sheet 
metal parts and other components with metallic surfaces. 
Acknowledgement 
The authors would like to thank the staff of voestalpine Automotive Components Schmölln GmbH 
for explanation of their image acquisition setup and the provision of the data set and the voestalpine 
data science team for fruitful technical exchange. 
References 
[1] B. Vogel-Heuser, T. Bauernhansl, M. ten Hompel, eds., Handbuch Industrie 4.0 Bd.4, 
Allgemeine Grundlagen., Springer, 2017. https://doi.org/10.1007/978-3-662-53254-6 
[2] Y. Lecun, Y. Bengio, Convolutional networks for images, speech, and time-series, in: M.A. 
Arbib (Ed.), The Handbook of Brain Theory and Neural Networks, MIT Press, 1995.  
[3] C. Shorten, T.M. Khoshgoftaar, A survey on Image Data Augmentation for Deep Learning, J. 
Big Data. 6 (2019) 60. https://doi.org/10.1186/s40537-019-0197-0 
[4] I. Goodfellow, Y. Bengio, A. Courville, Deep learning, MIT press, Cambridge, MA, USA, 
2016.  
[5] S. Mojtaba Marvasti-Zadeh, L. Cheng, H. Ghanei-Yakhdan, S. Kasaei, Deep Learning for 
Visual Tracking: A Comprehensive Survey, ArXiv E-Prints. (2019) earXiv:1912.00535. 
[6] J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You Only Look Once: Unified, Real-Time 
Object Detection, ArXiv E-Prints. (2015) earXiv:1506.02640. 
https://doi.org/10.1109/CVPR.2016.91 
[7] Q. Bateux, E. Marchand, J. Leitner, F. Chaumette, P. Corke, Visual Servoing from Deep Neural 
Networks, ArXiv E-Prints. (2017) earXiv:1705.08940. 
[8] S.-H. Huang, Y.-C. Pan, Automated visual inspection in the semiconductor industry: A survey, 
Computers in Industry. 66 (2015) 1–10. https://doi.org/10.1016/j.compind.2014.10.006 
[9] M. Ferguson, R. Ak, Y.-T.T. Lee, K.H. Law, Detection and Segmentation of Manufacturing 
Defects with Convolutional Neural Networks and Transfer Learning, ArXiv E-Prints. (2018) 
earXiv:1808.02518. https://doi.org/10.1520/SSMS20180033 
[10] D. Einarson, D. Mengistu, Deep Learning Approaches for Crack Detection in Bridge Concrete 
Structures, in: 2022 International Conference on Electronic Systems and Intelligent Computing 
(ICESIC), 2022: pp. 7–12. https://doi.org/10.1109/ICESIC53714.2022.9783576 



Sheet Metal 2023  Materials Research Forum LLC 
Materials Research Proceedings 25 (2023) 371-378  https://doi.org/10.21741/9781644902417-46 

 

 
378 

[11] D. Martin, S. Heinzel, J. Kunze von Bischhoffshausen, N. Kühl, Deep Learning Strategies for 
Industrial Surface Defect Detection Systems, ArXiv E-Prints. (2021) earXiv:2109.11304. 
https://doi.org/10.24251/HICSS.2022.146 
[12] O. Ronneberger, P. Fischer, T. Brox, U-Net: Convolutional Networks for Biomedical Image 
Segmentation, ArXiv E-Prints. (2015) earXiv:1505.04597. https://doi.org/10.1007/978-3-319-
24574-4_28 
[13] Y. Huang, C. Qiu, Y. Guo, X. Wang, K. Yuan, Surface Defect Saliency of Magnetic Tile, in: 
2018 IEEE 14th International Conference on Automation Science and Engineering (CASE), 2018: 
pp. 612–617. https://doi.org/10.1109/COASE.2018.8560423 
[14] J. Yosinski, J. Clune, Y. Bengio, H. Lipson, How transferable are features in deep neural 
networks?, ArXiv E-Prints. (2014) earXiv:1411.1792. 
[15] T.-Y. Lin, P. Goyal, R. Girshick, K. He, P. Dollár, Focal Loss for Dense Object Detection, 
ArXiv E-Prints. (2017) earXiv:1708.02002. https://doi.org/10.1109/ICCV.2017.324 
[16] A. Shrivastava, A. Gupta, R. Girshick, Training Region-based Object Detectors with Online 
Hard Example Mining, ArXiv E-Prints. (2016) earXiv:1604.03540. 
https://doi.org/10.1109/CVPR.2016.89 
[17] T.T. Tanimoto, An Elementary Mathematical Theory of Classification and Prediction, 
International Business Machines Corporation, 1958.  
[18] T. Schlagenhauf, M. Landwehr, J. Fleischer, Industrial Machine Tool Element Surface Defect 
Dataset, 2021. https://doi.org/10.1016/j.dib.2021.107643 
[19] A. Haberkern, Leistungsfähige Kugelgewindetriebe durch Beschichtung, Universität 
Karlsruhe, Institut für Werkzeugmaschinen und Betriebstechnik, 1998 
[20] T. Schlagenhauf, M. Landwehr, Industrial machine tool component surface defect dataset, 
Data in Brief. 39 (2021) 107643. https://doi.org/10.1016/j.dib.2021.107643 
[21] S.D. Nguyen, T. Son, T. Van Phuc, H. Lee, M. Piran, V.P. Le, Deep Learning-Based Crack 
Detection: A Survey, International Journal of Pavement Research and Technology. (2022). 
https://doi.org/10.1007/s42947-022-00172-z 
 


	Benchmarking computer vision systems
	Related work
	Approach
	Example use case: ball screw drives
	Application to sheet metal components
	Summary
	Acknowledgement
	References

