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Abstract. To describe dynamic processes in an acoustic (mechanical) metamaterial, there are 
proposed models that are a one-dimensional chain containing the same masses connected by 
linearly elastic (or nonlinearly elastic) elements (springs) with the same stiffness. In this case, it is 
assumed that each mass contains inside itself a series connection of another mass and an elastic 
element or viscous element (damper). 
Introduction 
An adequate description of the physical and mechanical properties of metamaterials within the 
framework of the classical theory of elasticity is impossible. Recently, generalized micropolar 
theories of the Cosserat continuum type have become widespread for modeling structurally 
inhomogeneous materials [1]. However, these theories include a large number of material 
constants that require experimental determination and the connection of which with the structure 
of the material is not clear. An alternative direction, structural modeling, is devoid of such a 
drawback [2]. 
Nonlinear elastic “mass-in-mass” chain 
In [3], to describe the dynamic properties of a metamaterial, a one-dimensional chain was 
considered containing the same masses 𝑚𝑚1 connected by elastic elements (springs) with the same 
stiffness 𝑘𝑘1, while each mass inside itself contained another mass 𝑚𝑚2 and one more elastic element 
- a spring with stiffness 𝑘𝑘2 (Fig. 1). This model is called a “mass-in-mass chain”. 

 
Fig. 1. The mechanical model of elastic metamaterial 
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Let us generalize the model [3] by taking into account the quadratic nonlinearity of the external 
and internal elastic elements. 

The potential energy of the unit cell of the "mass-in-mass" chain will be written as: 
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1
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and its kinetic energy in the form: 
 

    𝑇𝑇(𝑗𝑗) =
1
2
�𝑚𝑚1��̇�𝑢1

(𝑗𝑗)�
2

+ 𝑚𝑚2��̇�𝑢2
(𝑗𝑗)�

2
�. (2) 

Let us suppose that 𝑢𝑢1(𝑥𝑥) and 𝑢𝑢2(𝑥𝑥) are continuous functions that give offsets of all 𝑚𝑚1 and 
𝑚𝑚2, respectively. Using the Taylor series expansion of displacements, and restricting ourselves to 
two terms, we obtain 

 

    𝑢𝑢1
(𝑗𝑗+1) = 𝑢𝑢1(𝑥𝑥 + 𝐿𝐿) = 𝑢𝑢1(𝑥𝑥) +

𝜕𝜕𝑢𝑢1
𝜕𝜕𝑥𝑥

𝐿𝐿 = 𝑢𝑢1
(𝑗𝑗) +

𝜕𝜕𝑢𝑢1
𝜕𝜕𝑥𝑥

𝐿𝐿. (3) 

The displacement decomposition technique in (3) was effectively used by I.A. Kunin [4] in the 
transformation of multi-mass discrete systems into a quasi-continuum. 

The potential and kinetic energy densities for the equivalent continuum obtained from (5) and 
(6) are written as: 
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    𝑇𝑇 =
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Let us compose from (4) and (5) the Lagrangian ℒ = 𝑇𝑇 −𝑊𝑊 = ℒ(�̇�𝑢1, �̇�𝑢2,𝑢𝑢1𝑥𝑥, 𝑢𝑢1,𝑢𝑢2) and use 
the equations of analytical mechanics 
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to obtain a system of equations in the displacements of equations (4), (5), we get: 
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 (6) 

Further we will consider a particular case of system (6), where ℎ1 ≠ 0, ℎ2 = 0, i.e.: 
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System (7) can be rewritten as a single equation: 
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Let's move on to dimensionless time, coordinate and displacement: 
 

    𝜏𝜏 =
𝜕𝜕
𝑇𝑇
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𝑥𝑥
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The transformed equation (8) with the substitutions (9) takes the following form: 
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(10) 

We require that all coefficients (10) be finite or small values. Let us choose them so that among 
the nonlinear terms it is possible to single out only one, the main term. 

All further discussions are valid under two conditions: 
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1
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where 𝜀𝜀 << 1. 
When these conditions are met in equation (10), some of the terms can be neglected, since they 

have a higher order of smallness and do not have a significant effect on dynamic processes. Thus, 
equation (10) takes the form: 
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1
𝑇𝑇2

= 𝜀𝜀 << 1, 3ℎ1𝐿𝐿𝑢𝑢0√𝜀𝜀𝛼𝛼
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𝑘𝑘1
𝑘𝑘2

𝑚𝑚2
𝑚𝑚1
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> 1. 

Returning to the original dimensional variables in equation (11), we obtain a simplified equation 
(8) in the form: 
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𝜕𝜕2𝑢𝑢2
𝜕𝜕𝜕𝜕2
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𝑘𝑘1𝐿𝐿2
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𝜕𝜕𝑥𝑥2

+
𝑚𝑚1𝑚𝑚2
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𝜕𝜕𝜕𝜕4
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𝑘𝑘1𝐿𝐿2𝑚𝑚2

𝑘𝑘2(𝑚𝑚1 + 𝑚𝑚2)
𝜕𝜕4𝑢𝑢2
𝜕𝜕𝑥𝑥2𝜕𝜕𝜕𝜕2

−
3ℎ1𝐿𝐿4
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𝜕𝜕𝑢𝑢2
𝜕𝜕𝑥𝑥

𝜕𝜕2𝑢𝑢2
𝜕𝜕𝑥𝑥2

= 0. 
(12) 

Visco-elastic “damper-in-mass” chain 
It is not possible to study the dissipative properties of a metamaterial within the framework of a 
purely elastic formulation of problem (12). To solve this problem, we replace the elastic element 
with stiffness 𝑘𝑘2 by a viscous element (Fig. 2). 

 
Fig. 2. The mechanical model of a viscoelastic metamaterial 

The dynamics equations of the modified "mass-in-mass" chain in the long-wavelength range 
will have the form: 

 

    
𝑚𝑚1

𝐿𝐿
𝜕𝜕2𝑢𝑢1
𝜕𝜕𝜕𝜕2

− 𝑘𝑘1𝐿𝐿
𝜕𝜕2𝑢𝑢1
𝜕𝜕𝑥𝑥2

−
𝛼𝛼
𝐿𝐿
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝑢𝑢2 − 𝑢𝑢1) = 0, (13) 

    
𝑚𝑚2

𝐿𝐿
𝜕𝜕2𝑢𝑢2
𝜕𝜕𝜕𝜕2

+
𝛼𝛼
𝐿𝐿
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝑢𝑢2 − 𝑢𝑢1) = 0. (14) 

Note that system (13), (14) can be reduced to one equation for displacement: 
 

    
𝜕𝜕2𝑢𝑢1
𝜕𝜕𝜕𝜕2

− 𝐶𝐶02
𝜕𝜕2𝑢𝑢1
𝜕𝜕𝑥𝑥2

+
𝑚𝑚1𝑚𝑚2

𝐿𝐿𝛼𝛼(𝑚𝑚1 + 𝑚𝑚2)
𝜕𝜕3𝑢𝑢1
𝜕𝜕𝜕𝜕3

−
𝐶𝐶02𝑚𝑚2

𝐿𝐿𝛼𝛼
𝜕𝜕3𝑢𝑢1
𝜕𝜕𝑥𝑥2𝜕𝜕𝜕𝜕

= 0. (15) 

If we introduce in (15) the dimensionless displacement 𝑈𝑈 = 𝑢𝑢1
𝑢𝑢0

, coordinate 𝑋𝑋 = 𝑥𝑥
𝑎𝑎
 and time 𝑇𝑇 =

𝑡𝑡
𝑏𝑏
, where  𝑏𝑏 = 𝑚𝑚2

𝐿𝐿𝛼𝛼
, 𝑎𝑎 = 𝐶𝐶0𝑏𝑏 , then this equation can be rewritten as: 

 

    
𝜕𝜕2𝑈𝑈
𝜕𝜕𝑇𝑇2

−
𝜕𝜕2𝑈𝑈
𝜕𝜕𝑋𝑋2

+ 𝛿𝛿
𝜕𝜕3𝑈𝑈
𝜕𝜕𝑇𝑇3

−
𝜕𝜕3𝑈𝑈
𝜕𝜕𝑋𝑋2𝜕𝜕𝑇𝑇

= 0. (16) 

Here 𝛿𝛿 = 𝑚𝑚1
𝑚𝑚1+𝑚𝑚2

. This parameter belongs to the interval δ = [0,1], which includes two limiting 
cases: 𝛿𝛿 → 1, if 𝑚𝑚1 ≫ 𝑚𝑚2 and 𝛿𝛿 → 0, if 𝑚𝑚2 ≫ 𝑚𝑚1. 

We consider equation (16) with the following initial conditions: 
 

    𝑈𝑈(𝑋𝑋, 0) = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ(𝛾𝛾𝑋𝑋) =
2𝐴𝐴

𝐴𝐴𝛾𝛾𝛾𝛾 + 𝐴𝐴−𝛾𝛾𝛾𝛾
, (17) 
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where 𝐴𝐴 – is an amplitude, 𝛾𝛾 –  is a spatial parameter.  

The development of the initial (𝑇𝑇0 = 0) disturbance (17), (18) can be traced over the next three 
time instants (Fig. 3). 

The solution to the problem is symmetric with respect to 𝑋𝑋 = 0, because the initial value (17) 
is an even function. Solutions obtained at 𝛿𝛿 = 0.05, are plotted to the left of the axis of symmetry 
(dashed line), and the solutions obtained at 𝛿𝛿 = 0.5, are plotted to the right of the axis.  

Comparison of these cases shows the difference in dispersion. The character of the attenuation 
of disturbances can vary and depends on the value of 𝛿𝛿. In the case of a small value of parameter 
𝛿𝛿 the attenuation is much faster than when 𝛿𝛿 is greater. The initial sections (at 𝑇𝑇 = 𝑇𝑇0) in both 
cases are qualitatively similar. This is explained by the fact that in both cases anomalous dispersion 
takes place at large values of the wavenumber 𝑘𝑘. The main difference between the presented cases 
arises when considering the tail of the curves. At small values of parameter 𝛿𝛿 the solution behaves 
more like a solution of the diffusion equation, but for large values of parameter  𝛿𝛿 the solution 
behaves similarly to the solution of the wave equation. The presence of a more bulky terms at low 
values of parameter 𝛿𝛿 due to the superposition of the effects of normal dispersion and negative 
group velocity.  

 
Fig. 3. Instant wave profiles at 𝐴𝐴 = 1 and 𝛾𝛾 = 3, at the moments 𝑇𝑇0 = 0,𝑇𝑇1 = 7 3⁄ ,𝑇𝑇2 =

14 3⁄ ,𝑇𝑇3 = 21 3⁄ , which calculated for two values of parameter 𝛿𝛿. 

In the Fig. 4 it is shown that the wave profiles for asymmetric development for four consecutive 
time instants. The initial value consists of the sum of two perturbations that have different 
fundamental frequencies. The initial perturbation has the form: 

 

 

𝜕𝜕𝜕𝜕(𝛾𝛾,0)
𝜕𝜕𝑡𝑡

= 0, (18) 

    𝑈𝑈(𝑋𝑋, 0) = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ(𝛾𝛾𝑋𝑋) + 𝐵𝐵𝐴𝐴𝐴𝐴𝐴𝐴ℎ[𝑔𝑔(𝑋𝑋 + 1)], (19) 

    
𝜕𝜕𝑈𝑈(𝑋𝑋, 0)

𝜕𝜕𝜕𝜕
= 0. (20) 
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Here, the main perturbation, marked in Fig. 4 as 𝑎𝑎, has an amplitude A = 1 and the spatial 
parameter 𝛾𝛾 = 1.6  (corresponds to a disturbance with a low fundamental frequency). The 
secondary disturbance, which is marked in Fig. 4 as 𝑏𝑏, shifts to the left with a certain step with 
respect to the main disturbance. The secondary disturbance has an amplitude of 𝐵𝐵 = 0.55 and a 
spatial parameter of 𝑔𝑔 = 10, which corresponds to a high fundamental frequency.  

In the Fig. 4 it is shown that the high-frequency perturbation 𝑏𝑏 propagates faster than the main 
perturbation, which has a lower frequency. For example, in position 𝑏𝑏2 and at the corresponding 
moment in time 𝑇𝑇2 , the maximum of perturbation 𝑏𝑏0  reaches the maximum of the main 
perturbation, and in position 𝑏𝑏3 the maximum of perturbation 𝑏𝑏0 is ahead of the maximum of the 
main perturbation. This phenomenon is explained by anomalous dispersion, which is expressed in 
the fact that the group velocity exceeds the phase velocity. 

From the results of dispersion analysis, it follows that the high-frequency wave components 
must also decay faster than the low-frequency components. Indeed, this statement is confirmed in 
Fig. 4. The peak value of the main perturbation decreased from the initial amplitude 𝐴𝐴 = 1 at time 
𝑇𝑇0  to 𝐴𝐴 ≈ 0.2  at time 𝑇𝑇3 . On the other hand, the perturbation amplitude 𝑏𝑏0  decreases more 
significantly, from 𝐵𝐵 = 0.55 at time 𝑇𝑇0 to 𝐵𝐵 ≈ 0 at time 𝑇𝑇3. 

 
Fig. 4. Instant wave profiles at 𝛿𝛿 = 0.5, 𝛾𝛾 = 1.6,𝑔𝑔 = 10,𝐴𝐴 = 1,𝐵𝐵 = 0.55, at the moments 𝑇𝑇0 =

0,𝑇𝑇1 = 15 4⁄ ,𝑇𝑇2 = 30 4⁄ ,𝑇𝑇3 = 45 4⁄ . Markers Маркеры 𝑏𝑏𝑖𝑖 depict the place of the peak 𝑏𝑏0 
when the disturbance propagates the to right, 𝑏𝑏𝑖𝑖  – when the disturbance propagates the to left. 

As a result of the studies, it was shown that the longitudinal wave in the viscoelastic 
metamaterial, defined as the mass-in-mass chain, has dispersion and frequency-dependent 
attenuation. The evolution of the wave profile is analyzed, both in the low-frequency and in the 
high-frequency ranges. 
Summary 
The models "mass-in-mass" and "damper-in-mass" constructed in this work are free from the 
drawbacks inherent in a number of other mechanical models of metamaterials: they free from the 
need to endow deformable bodies with negative mass, density and (or) negative modulus of 
elasticity. 
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