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Abstract. In order to study the effect of the layup structure on the static strength and low-velocity 
impact strength of carbon fiber/epoxy composite (CFRP) laminates, theoretical simulation 
analysis under different laying angles have been carried out. In this study, Finite Element Analysis 
(FEA) models for different CFRP laminate specimens are created using ANSYS Workbench by 
changing the relative volume fraction of 0°, 45° and 90° plies in each specimen and their relative 
location. The FEA results revealed that the increase of relative volume of 90° ply will improve the 
impact the impact resistance performance, while the increase of relative volume of 45° ply will 
take the opposite effect. Moreover, when the relative volume fraction of 0°, 45° and 90° plies are 
the same, the strength performance of the laminate cannot be improved by changing the thickness 
of the outermost layer. The study illustrated the significant effects of different stacking sequences 
and laying angles on the tensile and flexural failure mechanisms in composite laminates, leading to 
some suggestions to improve the design of composite laminates. 
Introduction 
Carbon fiber reinforced composite laminate is made of a series of unidirectional carbon fiber 
reinforced resin-based materials. It has the characteristics of heterogeneity, anisotropy, high 
intra-layer strength and high comprehensive strength, and has been widely used in military, 
aerospace and other fields[1,2]. However, this type of laminate has the disadvantages of low 
interlayer and vertical layer strength, so that the impact of runway gravel, hail and other objects on 
the composite laminate can easily cause its failure in the service environment[3]. Nowadays, 
laying angles between layers are mostly standard angles of 0°, ±45° and 90°. The performance of 
the laminate varies depending on the position of the laying angles. Therefore, the effect of the 
stacking angles and the stacking sequences on the performance of the laminate is studied[4].  

Meng et al.[5] studied the effect of fiber layup on the bending failure of composite laminates by 
means of 3D finite element analysis. Kannan et al.[6] evaluated the tensile strength of 2D 
Carbon/Carbon laminates with a center-hole based on the FEA. However, Guo et al.[7] found that 
the distribution of interlayer stress around the void is related to the layer structure. In addition, the 
choice of failure criterion has an impact on the FEA of laminates, Naik et al.[8] proposed the 
minimum weight design of composite laminates using the failure mechanism based, maximum 
stress and Tsai-Wu failure criteria. And Akbulut et al.[9] proposed an optimization procedure to 
minimize thickness of laminated composite plates subject to in-plane loading, fiber orientation 
angles and layer thickness are chosen as design variables. On the other hands, Liu et al.[10] 
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explore the effects of different failure criterion including Puck, Hashin and Chang-Chang criterion 
on the dynamic progressive failure properties of carbon fiber composite laminates.  

In this paper, the 3D model of CFRP laminates is established through ANSYS Workbench, 
static structure analysis and explicit dynamics analysis are performed on laminates of different 
layup structures to study the effect of lay angle and lay sequence on static strength and impact 
resistance of laminates influences. Then determine the failure criteria of the laminate and analyze 
its critical failure layer, which provides a theoretical basis for improving the performance of the 
composite laminate by optimizing the layer structure. 
 
Experiments 
Theoretical Model of Laminates. Establishing 3D FEA models of composite laminates with 
different stacking sequences in ANSYS Workbench, as shown in Table 1. The size of the specimen 
is 250mm*36mm*2mm, a total of 16 layers and a single layer thickness of 0.125mm. The 
composite laminates considered in this paper are made of carbon/epoxy prepreg and has a 
symmetrical structure. The mechanical properties of each lamina are shown in Table 2. 
 

Table 1 Different lay-ups of the composite laminates 
Specimen Number Stacking Sequences Specimen Number Stacking Sequences 

Laminate1 [08]s Laminate5 [90/0/90/0/904]s 
Laminate2 [0/90/0/90/04]s Laminate6 [+45/0/-45/0/±452]s 
Laminate3 [0/+45/0/-45/04]s Laminate7 [90/90/0/0/904]s 
Laminate4 [0/+45/90/-45]2s Laminate8 [+45/-45/0/0/±452]s 

Notes: The numeric subscripts indicate the number of layers stacked in each direction and the subscript [· · 
· ]s indicates that plies are symmetric about the midplane of the laminate. 

 

Table 2 The mechanical properties of each laminate 
     

1490 121 8.6 8.6 4.7 
     

4.7 3.1 0.27 0.27 0.4 
 

In the low-velocity impact simulation, a cone bullet with a length to diameter ratio of 3:1 is used 
to impact the laminate. The bullet is made of structural steel. Its mass, density, elastic modulus and 
Poisson’s ratio are 6.2g, 7850kg·m-3, 200GPa and 0.3 respectively. 

Meshing and Constrained Boundary Conditions. Since the meshing structure and the degree of 
density will directly affect the accuracy of the results and the calculation time in ANSYS 
Workbench, the direct meshing method is selected according to the geometric characteristic of the 
3D model of the composite laminate and the force characteristic. After the mesh is divided, 
referring to its skewness and orthogonal quality parameter, it is found that the optimal mesh sizes 
for laminates and bullets are 3mm and 2mm, respectively.  

In the FEA, the static structural analysis and the explicit dynamic analysis are used. When the 
static structural module is used for analysis, the two short sides of the composite laminate are 
constrained and fixed, as shown in Fig. 1, the force is 2500N. While the four sides of the composite 
laminate are fully constrained when the explicit dynamics module is used for analysis, and the 
displacement and rotation angle in the three directions are all zero, that is, completely fixed. In 
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addition, the angular velocity and velocity of the bullet in other directions are constrained to zero 
in order to better extract the experimental results. Define the initial velocity of the bullet along the 
coordinate axis Z in the predefined field, and then define the output stress, strain, displacement and 
velocity in the field. The assembly diagram for the bullet impacting composite laminates is shown 
in Fig. 2. After the model is built, define the Tsai-Wu failure criterion and the maximum stress 
failure criterion in the ACP (Post) module to identify the main failure layers of the composite 
laminate, and view the stress and strain of each layer. The distance between the bullet and the 
laminate is 5mm, and the total movement time is 0.1ms. 

 
Fig. 1 Schematic graph of the static structural model 

 
Fig. 2 Assembly diagram for the bullet impacting composite laminated plates 

 
Analysis 
When the 3D model of the laminate is established, the total deformation value of each laminate can 
be obtained as shown in Table 3. We use laminate1 as a reference to study the performance of 
laminates with different layer structure through static structural analysis and explicit dynamic 
analysis. 

Table 3 The total deformation value of each laminate 
Specimen Number Total deformation value (mm) Specimen Number Total deformation value (mm) 

Laminate1 74.754 Laminate5 84.975 
Laminate2 53.225 Laminate6 71.809 
Laminate3 50.055 Laminate7 100.94 
Laminate4 68.303 Laminate8 80.829 

 
Effect of Stacking Angle on Laminate Performance. Laminate1 only contains 0° plies and its 

total deformation is 74.754mm. Laminate2 is a part of 0° plies in laminate1 replaced with 90° 
plies, and its total deformation is reduced to 53.225mm. For laminate3, the 90° plies in laminate2 
is replaced with 45° plies, and its total deformation is reduced to 50.055mm. If the laminate 
contains three ply angles at the same time such as laminate4, its total deformation is better than 
laminate1, but inferior to laminate2 and laminate3. From this we see that adding 45° plies to the 
laminate1 with only 0° plies show better bending resistance.  

In the explicit dynamic analysis module, set the bullet velocity to 80m/s and the maximum 
equivalent stresses of laminate1 to lanimate4 are 190.71MPa, 391.55MPa, 82.849MPa and 
94.776MPa respectively, as shown in Fig. 3. From the laminate3 and laminate4, which can be seen 
that the equivalent stress of the 45° laminate between adjacent layers is smaller and the impact 
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resistance is stronger. Moreover, the curve of these two types of laminates are smoother under the 
continuous impact. 

Fig. 3 Equivalent stress curve of laminate1 to laminate4 
 

Effect of Stacking Sequence on Laminate Performance. Laminate2, laminate5 and laminate7 
contain the same layer angle, but the stacking sequence has changed. Compared with laminate2, 
the relative volume fraction of 0° and 90° plies of the laminate5 is changed, and the fiber direction 
of the outermost layer is also changed. The total deformation of laminate2 is less than the total 
deformation of laminate5, which has better bending resistance. When changing the thickness of 
the outermost layer, but the relative volume fraction of 0° and 90° plies remains unchanged, such 
as laminate5 and laminate7. The total deformation of laminate7 is 100.94mm, which is more than 
laminate5. However, analyze laminate3, laminate6 and laminate8 in the same way, and they have 
the same layer angle. Laminate3 has the strongest bending resistance, followed by laminate6, 
while laminate8 is the worst. The larger the relative volume of 0°, the stronger the performance of 
the bending strength. And the bending resistance of the laminate cannot be improved by changing 
the thickness of the outermost layer.  

In the explicit dynamic analysis module, set the bullet velocity to 80m/s and the equivalent 
stresses curve is shown in the Fig. 4 and Fig. 5. The relative volume fraction of 0° and 90° plies are 
different, such as laminate2 and laminate5. And the relative volume fraction of 0° and 45° plies are 
different, such as laminate3 and laminate6. Comparing the two types of laminates, it can be found 
that an increase in the relative volume of 90° ply will improve the impact the impact resistance 
performance, while an increase in the relative volume of 45° ply will be the opposite. However, 
when the thickness of the outermost layer of the laminate is increased, the equivalent stress of the 
laminate is basically not affected. 

When the failure mode is set to the Tsai-Wu and the maximum stress failure criterion to observe 
the main failure modes and layer of each laminate, which can be found that the main failure mode 
of the laminate1 is the maximum stress failure. While the others are the Tsai-Wu failure mode. 
Moreover, the 90° ply is more prone to failure, as long as the laminate contains 90° ply, which 
determines the service life of the laminate. And it can be seen from the Fig.6 that the damage range 
of the laminate model with 90° ply will be larger and the stress is more dispersed. On the contrary, 
the stresses of the laminate containing 0° and 45° plies are mainly concentrated in the center of the 
model. 
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Fig. 4 Equivalent stress curve of laminate2, laminate5 and laminate7 

 
Fig. 5 Equivalent stress curve of laminate3, laminate6 and laminate8 

(a)  (b)  

(c)  (d)  

(e)  (f)  

(g)  (h)  
Fig. 6 Equivalent stress diagram of each laminate: (a)laminate1; (b)laminate2; (c)laminate3; 

(d)laminate4; (e)laminate5; (f)laminate6; (g)laminate7; (h)laminate8 
Conclusion 
According to the FEA results, the following conclusion can be drawn. (1) The laminate with only 
0° and 45° plies and has a higher relative volume of 0° ply, which has the stronger bending 
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resistance performance. (2) It is found that when the relative volume fraction of 0°, 45° and 90° 
plies are the same, the strength performance of the laminate cannot be improved by changing the 
thickness of the outermost layer from the static structure analysis and explicit dynamic analysis. 
And in all laminate models, the 90°layer is the key layer that is more prone to failure, while the 
probability of failure at 0° and 45° is basically the same. (3) The laminate with only two types of 
layer angles, either 0° and 90°, or 0° and 45°. The results show that the increase of relative volume 
of 90° ply will improve the impact the impact resistance performance, while the increase of 
relative volume of 45° ply will be the opposite. Layer angle and layer sequence have an impact on 
the bending resistance and impact resistance of the laminate. 
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