The Inverse Hall-Petch Problem
David. J. Fisher
Materials Research Foundations Vol. 55
Publication Date 2019, 152 Pages
Print ISBN 978-1-64490-034-5 (release date August 20th, 2019)
ePDF ISBN 978-1-64490-035-2
DOI: 10.21741/9781644900352
The book reviews the Hall-Petch law, one of the most useful equations of materials science, and the reverse or inverse Hall-Petch relation, which is particular important for controlling the strength of nanocrystalline materials. Theoretical models, experimental data and practical aspects are discussed, making reference to a total of 396 original resources with their direct web link for in-depth reading.
Keywords
Hall-Petch Law, Reverse or Inverse Hall-Petch Relation, Nanocrystalline Materials, Grain Size and Strength of Materials, Dislocation-based Models, Diffusion-Based Models for the Hall-Petch Relation, Grain-Boundary-Shearing Models, Two-Phase Models for the Hall-Petch Effect, Grain Boundary Structure, Dislocations and Grain Boundaries, Non-Equilibrium Grain-Boundary Structure
Table of Content
Introduction 5
The Normal Hall-Petch Effect 5
Iron 6
Chromium 12
Tantalum 13
Vanadium 13
Niobium 13
Cobalt 14
Titanium 14
Zirconium 16
Zinc 17
Gold 18
Silver 20
Platinum 22
Aluminium 23
Copper 28
Nickel 34
Inverse Hall-Petch Effect 42
Theoretical Models 43
The Ubiquity of the Inverse Hall-Petch Law 65
Gold 65
Silver 66
Palladium 66
Aluminium 67
Copper 75
Nickel 87
Zinc 107
Magnesium 107
Titanium 108
Zirconium 110
Cobalt 111
Manganese 111
Niobium 112
Tantalum 112
Tungsten 114
Iron 114
A Possible Solution 120
References 126