Graphene Oxide Composites and their Potential Applications

$20.00

Graphene Oxide Composites and their Potential Applications

Deepika Jamwal, Surinder Kumar Mehta, Dolly Rana, Akash Katoch

Graphene oxide (GO) is the oxidized form of graphene which makes it hydrophilic in nature i.e., water soluble and significantly altered their various properties such as high surface area, mechanical stability, tunable electrical and optical properties. GO is easily manufactured via chemical treatment through oxidation and exfoliation by ultra-sonication of graphite with low-cost production than the other carbon related materials. GO is capable to form mono-layer sheet through different functional groups (hydroxyl, epoxy and carboxyl) which is present on the surface of GO on many substrates, making it an admirable candidate to coordinate with other materials such as biopolymer or polymers, metal or metal oxide, metal sulfide, magnetic materials, etc. which are significantly used in various potential applications including super capacitor, photocatalysis, removal of heavy metal ion, water purification, sensors, batteries, biomedical applications (antibacterial activity, cancer cell detection, etc.).

Keywords
Graphene, Graphene Oxide, Photocatalysis, Water Purification, Biomedical Applications

Published online 11/20/2018, 32 pages

DOI: https://dx.doi.org/10.21741/9781945291975-5

Part of the book on Carbonaceous Composite Materials

References
[1] L.F. Chen, Z.Y. Yu, J.J. Wang, Q.X. Li, Z.Q. Tan, Y.W. Zhu, S.H. Yu, Metal-like fluorine-doped β-FeOOH nanorods grown on carbon cloth for scalable high-performance supercapacitors, Nano Energy 11 (2015) 119-128. https://doi.org/10.1016/j.nanoen.2014.10.005
[2] P. Yang, W. Mai, Flexible solid-state electrochemical supercapacitors, Nano Energy 8 (2014) 274-290. https://doi.org/10.1016/j.nanoen.2014.05.022
[3] R. Raccichini, A. Varzi, S. Passerini, B Scrosati, The role of graphene for electrochemical energy storage, Nat. Mater. 14 (2015) 271-279. https://doi.org/10.1038/nmat4170
[4] Z.S. Wu, W. Ren, D.W. Wang, F. Li, B. Liu, H.M. Cheng, High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors, ACS Nano 4 (2010) 5835-5842. https://doi.org/10.1021/nn101754k
[5] J. Zhang, J. Ma, L.L. Zhang, P. Guo, J. Jiang, X. S. Zhao, Template synthesis of tubular ruthenium oxides for super capacitor applications, J. Phys. Chem. C. 114 (2010) 13608–13613. https://doi.org/10.1021/jp105146c
[6] D.W. Wang, F. Li, H.M. Cheng, Hierarchical porous nickel oxide and carbon as electrode materials for asymmetric super capacitor, J. Power Sources. 185 (2008) 1563–1568. https://doi.org/10.1016/j.jpowsour.2008.08.032
[7] X. Dong, W.Shen, J. Gu, L. Xiong, Y. Zhu, H. Li, J. Shi, MnO2-embedded-in-mesoporous-carbon-wall structure for use as electrochemical capacitors, J. Phys. Chem. B. 110 (2006) 6015-6019. https://doi.org/10.1021/jp056754n
[8] S. Ma, K. Ahn, E. Lee, K. Oh, K. Kim, Synthesis and characterization of manganese dioxide spontaneously coated on carbon nanotubes, Carbon. 45 (2007) 375–382. https://doi.org/10.1016/j.carbon.2006.09.006
[9] O.C. Compton, S.T. Nguyen, Graphene oxide, highly reduced graphene oxide, and graphene: Versatile building blocks for carbon-based materials, Small. 6 (2010) 711–723. https://doi.org/10.1002/smll.200901934
[10] Z.S. Wua, G. Zhoua, L.C. Yina, W. Rena, F. Lia, H.M. Cheng, Graphene/metal oxide composite electrode materials for energy storage, Nano Energy. 1 (2012) 107–131. https://doi.org/10.1016/j.nanoen.2011.11.001
[11] L. Adamczyk, P.J. Kulesza, K. Miecznikowski, B. Palys, M. Chojak, D. Krawczyk, Nanostructured and advanced materials for fuel cells, J. Electrochem. Soc. 152 (2005) E98. https://doi.org/10.1149/1.1859710
[12] K. Qingqing, J. Wang, Graphene based materials for super capacitor electrodes: A review, J Materiomics. 2 (2016) 37-54. https://doi.org/10.1016/j.jmat.2016.01.001
[13] C. Lee, X. Wei, J. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer grapheme, Science. 321 (2008) 385–388. https://doi.org/10.1126/science.1157996
[14] O. Compton, S. Nguyen, Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials, Small. 6 (2010) 711–723. https://doi.org/10.1002/smll.200901934
[15] S. Chen, J. Duan, Y. Tang, S. Z. Qiao, Hybrid hydrogels of porous grapheme and nickel hydroxide as advanced super capacitor materials, J. Chem. Eur. 19 (2013) 7118. https://doi.org/10.1002/chem.201300157
[16] V. Singh, D. Joung, L. Zhai, S. Das, S. Khondaker, S. Seal, Graphene based materials: Past, present and future, Prog, Mater. Sci. 56 (2011) 1178–1271. https://doi.org/10.1016/j.pmatsci.2011.03.003
[17] J. Ji, L.L. Zhang, H. Ji, Y. Li, X. Zhao, X. Bai, X. Fan, F. Zhang, R.S. Ruoff, Nanoporous Ni(OH)2 thin film on 3D ultrathin-graphite foam for asymmetric super capacitor, ACS Nano. 7 (2013) 6237–6243. https://doi.org/10.1021/nn4021955
[18] C. Yang, L. Dong, Z. Chen, H. Lu, High-performance all-solid-state super capacitor based on the assembly of graphene and manganese (ii) phosphate nano sheets, J. Phys. Chem. C. 118 (2014) 18884−18891. https://doi.org/10.1021/jp504741u
[19] X. Cao, B. Zheng, W. Shi, J. Yang, Z. Fan, Z. Luo, X. Rui, B. Chen, Q. Ya, H. Zhang, Reduced Graphene Oxide-Wrapped MoO3 Composites prepared by using metal–organic frameworks as precursor for all-solid-state flexible super capacitors Adv. Mater. 27 (2017) 4695-4701. https://doi.org/10.1002/adma.201501310
[20] E.G.D.S. Firmiano, A.C. Rabelo , C.J. Dalmaschio, A.N. Pinheiro, E.C. Pereira, W.H. Schreiner, E.R. Leite, Super capacitor electrodes obtained by directly bonding 2d MoS2 on reduced graphene oxide, Adv. Energy Mater. 4 (2014) 1301380 (1-8).
[21] H. Wanga, Z. Xua, H. Yia, H.Weib, Z. Guob, X. Wanga, One-step preparation of single-crystalline Fe2O3 particles/graphene composite hydrogels as high performance anode materials for super capacitors, Nano Energy. 7 (2014) 86-96. https://doi.org/10.1016/j.nanoen.2014.04.009
[22] G. Han, Y. Liu, L. Zhang, E. Kan, S. Zhang, J. Tang, W. Tang, MnO2 Nanorods intercalating graphene oxide/polyaniline ternary composites for robust high-performance super capacitors, Sci. Rep. 4 (2014) 4824 (1-7).
[23] R. Raccichini, A. Varzi, S. Passerini, B. Scrosati, The role of graphene for electro chemical energy storage, Nat. Mater. 14 (2015) 271-279. https://doi.org/10.1038/nmat4170
[24] B. Scrosati, J. Garche, Lithium batteries: status, prospects and future, J. Power Sources. 195 (2010) 2419–2430. https://doi.org/10.1016/j.jpowsour.2009.11.048
[25] J.R. Dahn, T. Zheng, Y. Liu, J.S. Xue, Mechanisms for lithium insertion in carbonaceous materials, Science. 270 (1995) 590–593. https://doi.org/10.1126/science.270.5236.590
[26] B. Luo, L. Zhi, Design and construction of three dimensional graphene-based composites for lithium ion battery applications, Energy Environ. Sci. 8 (2015) 456-477. https://doi.org/10.1039/C4EE02578D
[27] Y. Mai, J.Y. Xian, D. Zhang, J. Tu, X. Wang, Y.Q. Qiao, C. Gu, CuO/graphene composite as anode materials for lithium-ion batteries, Electrochem. Acta. 56 (2011) 2306–2311. https://doi.org/10.1016/j.electacta.2010.11.036
[28] I.R.M. Kottegoda, N.H. Idris, L. Lu, J. Wang, H. Liu, Synthesis and characterization of graphene-nickel oxide nanostructures for fast charge discharge application, Electrochim. Acta. 56 (2011) 5815–5822. https://doi.org/10.1016/j.electacta.2011.03.143
[29] P. Lian, X. Zhou, S. Liang, Z. Li, W. Yang, H. Wang, High reversible capacity of SnO2/grapheme nano composite as an anode material for lithium-ion batteries, Electrochim Acta. 56 (2011) 4532–4539. https://doi.org/10.1016/j.electacta.2011.01.126
[30] T. Hu, X. Sun, H. Sun, M. Yu, F. Lu, C. Liu, J. Lian, Flexible free-standing graphene-TiO2 hybrid paper for use as lithium ion battery anode materials, Carbon. 51 (2013) 322–326. https://doi.org/10.1016/j.carbon.2012.08.059
[31] C. Nethravathia, B. Viswanathb, J. Michaela, M. Rajamatha, Hydrothermal synthesis of a monoclinic VO2 nanotube-graphene hybrid for use as cathode material in lithium ion batteries, Carbon. 50 (2013) 4839–4846. https://doi.org/10.1016/j.carbon.2012.06.010
[32] C.O.A. Vargas, A. Caballero, J. Morales, Can the performance of grapheme nano sheets for lithium storage in Li-ion batteries be predicted? Nanoscale 4 (2012) 2083–2092. https://doi.org/10.1039/c2nr11936f
[33] D. Jamwal, D. Rana, P. Singh, D. Pathak, S. Kalia, P. Thakur, E. Torino, Well-defined quantum dots and broadening of optical phonon line from hydrothermal method, RSC Adv. 6 (2016) 102010-102014. https://doi.org/10.1039/C6RA19818J
[34] L. Liu, M. An, P. Yang, J. Zhang, Superior cycle performance and high reversible capacity of SnO2/grapheme composite as an anode material for lithium-ion batteries, Sci. Rep. 5 (2015) 9055 (1-10).
[35] Y. Yu, L. Gu, C. Zhu, S. T. sukimoto, P.A.V. Aken, J. Maier, Reversible storage of lithium in silver-coated three dimensional macroporous silicon Adv. Mater. 22 (2010) 2247-2250. https://doi.org/10.1002/adma.200903755
[36] B. Hertzberg, A. Alexeev, G. Yushin, Deformation in Si-Li anode upon electro chemical alloying in nano confined space, J. Am. Chem. Soc., 132 (2010) 8548-8549. https://doi.org/10.1021/ja1031997
[37] Y. Yao, M. T. McDowell, I. Ryu, H. Wu, N. Liu, L. Hu,W. D. Nix, Y. Cui, Interconnected silicon hollow nano spheres for lithium-ion battery anodes with long cycle life, Nano Lett. 11 (2011) 2949-2945. https://doi.org/10.1021/nl201470j
[38] X. Zhou, Y.X. Yin, L.J. Wan, Y.G. Guo, Facile synthesis of silicon nanoparticles inserted into graphene sheets as improved anode materials for lithium-ion batteries, W. Chem. Commun. 48 (2012) 2198–2200. https://doi.org/10.1039/c2cc17061b
[39] X. Huang, X. Qi, F. Boey, H. Zhang, Graphene-based composites, Chem. Soc. Rev, 41 (2012) 666-686. https://doi.org/10.1039/C1CS15078B
[40] H. Xue, Y.W.Y. Denis, J. Qing, Xia Yang, J. Xu, Z. Li, M. Sun, W. Kang, Y. Tang, S. Lee, Pyrite FeS2 microspheres wrapped by reduced graphene oxide as high-performance lithium-ion battery anodes, J. Mater. Chem. A, 3 (2015) 7945–7949. https://doi.org/10.1039/C5TA00988J
[41] J.Q. Huang, T.Z, Zhuang, Q. Zhang, H.J. Peng, C.M. Chen, F. Wei, Perm selective graphene oxide membrane for highly stable and anti-self-discharge lithium sulfur batteries, 9 (2015) 3002–3011.
[42] D. Kundu, E. Talaie, V. Duffort, L.F. Nazar, The emerging chemistry of sodium ion batteries for electrochemical energy storage, Angew. Chem. 54 (2015) 3431−3448. https://doi.org/10.1002/anie.201410376
[43] M.D. Slater, D. Kim, E. Lee, C.S. Johnson, Sodium-ion batteries, Adv. Funct. Mater. 23 (2013) 947–958. https://doi.org/10.1002/adfm.201200691
[44] B.L. Ellis, L.F. Nazar, Sodium and sodium-ion energy storage batteries, Curr. Opin. Solid State Mater. Sci. 16 (2012) 168–177. https://doi.org/10.1016/j.cossms.2012.04.002
[45] W. Li, M. Li, K.R. Adair, X. Sun, Y. Yu, Carbon nanofiber-based nanostructures for lithium-ion and sodium-ion batteries, J. Mater. Chem. A. 5 (2017) 13882-13906. https://doi.org/10.1039/C7TA02153D
[46] W. Qin, T. Chen, L. Pan, L.Y. Niu, B.W. Hua, D.S. Li, J. Li, Z. Sun, MoS2-reduced graphene oxide composites via microwave assisted synthesis for sodium ion battery anode with improved capacity and cycling performance, Electro Chimica Acta. 153 (2015) 55–61. https://doi.org/10.1016/j.electacta.2014.11.034
[47] D. Xie, W. Tang, Y. Wang, X. Xia, Y. Zhong, D. Zhou, D. Wang, X. Wang, J. Tu, Facile fabrication of integrated three-dimensional C-MoSe2/ reduced graphene oxide composite with enhanced performance for sodium storage, Nano Research. 9 (2016) 1618-1629. https://doi.org/10.1007/s12274-016-1056-3
[48] T.S. Sahu, S. Mitra, Exfoliated MoS2 sheets and reduced graphene oxide-an excellent and fast anode for sodium-ion battery, Sci. Rep. 5 (2015) 12571 (1-8).
[49] X.H. Xiong, G. Wang, Y. Lin, Y. Wang, X. Ou, F.H. Zheng, C.G. Yang, J.H. Wang, M. Liu, Enhancing sodium ion battery performance by strongly binding nanostructured Sb2S3 on sulfur-doped graphene sheets, ACS Nano. 10 (2016) 10953-10959. https://doi.org/10.1021/acsnano.6b05653
[50] H.D. Jang, S.K. Kim, H. Chang, J.W. Choi, J.X. Huang, Synthesis of grapheme based noble metal composites for glucose biosensor, Mater. Lett. 106 (2013) 277–280. https://doi.org/10.1016/j.matlet.2013.05.033
[51] T. Kuila, S. Bose, P. Khanra, A.K. Mishra, N.H. Kim, J.H. Lee, Recent advances in graphene-based biosensors, Biosens. Bioelectron. 26 (2011) 4637–4648. https://doi.org/10.1016/j.bios.2011.05.039
[52] R. Wilson, A.P.F. Turner, Glucose oxidase-an ideal enzyme, Biosens. Bioelectron. 7 (1992) 165−185. https://doi.org/10.1016/0956-5663(92)87013-F
[53] G. Bharath, R. Madhu, S.M. Chen, V. Vediyappan, A. Balamurugan, D. Mangalaraj, C. Viswanathan, N. Ponpandian, Enzymatic electrochemical glucose biosensors by mesoporous 1D hydroxyapatite-on-2D reduced graphene oxide, J. Mater. Chem. B. 3 (2014) 1360-1370. https://doi.org/10.1039/C4TB01651C
[54] C.L. Sun, W.L. Cheng, T.K. Hsu, C.W. Chang, J.L. Chang, J.M. Zen, Ultrasensitive and highly stable nonenzymatic glucose sensor by a CuO/graphene-modified screen-printed carbon electrode integrated with flow-injection analysis, Electrochem. Commun. 30 (2013) 91-94. https://doi.org/10.1016/j.elecom.2013.02.015
[55] Y. Mu, D. Jia, Y. He, Y. Miao, H.-L. Wu, Nano nickel oxide modified non-enzymati cglucose sensors with enhanced sensitivity through an electrochemical process strategy at high potential, Biosens. Bioelectron. 26 (2011) 2948–2952. https://doi.org/10.1016/j.bios.2010.11.042
[56] Y. Ding, Y. Wang, L. Su, M. Bellagamba, H. Zhang, Y. Lei, Electrospun Co3O4 nanofibers for sensitive and selective glucose detection, Biosens. Bioelectron.26 (2010) 542–548. https://doi.org/10.1016/j.bios.2010.07.050
[57] G. Chang, H. Shu, K. Ji, M. Oyama, X. Liu, Y. He, Gold nanoparticles directly modified glassy carbon electrode for non-enzymatic detection of glucose, Applied Surface Science. 288 (2014) 524–529. https://doi.org/10.1016/j.apsusc.2013.10.064
[58] K.M. Samant, V.R. Chaudhari, S. Kapoor, S.K. Haram, Filling and coating of multiwalled carbon nanotubes with silver by DC electrophoresis, Carbon. 45 (2007) 2126-2129. https://doi.org/10.1016/j.carbon.2007.06.020
[59] X. Niu, M. Lan, H. Zhao, C. Chen, Highly Sensitive and Selective Non enzymatic detection of glucose using three-dimensional porous nickel nanostructures, Anal. Chem. 85 (2013) 3561–3569. https://doi.org/10.1021/ac3030976
[60] Chen, P. Holt-Hindle, Platinum-based nanostructured materials: synthesis, properties, and applications, Chemical Reviews. 110 (2010) 3767–3804. https://doi.org/10.1021/cr9003902
[61] X.M. Chen, Z.J. Lin, D.J. Chen, T.T. Jia, Z.M. Cai, X.R. Wang, X. Chen, G.N. Chen, M. Oyama, Nonenzymatic ampere metric sensing of glucose by using palladium nanoparticles supported on functional carbon nanotubes, Biosens. Bioelectron. 25 (2010) 1803–1808. https://doi.org/10.1016/j.bios.2009.12.035
[62] R. Madhu, V. Veeramani, S.M. Chen, A. Manikandan, A. Ya Lo, Y.L. Chueh, Honeycomb-like porous carbon−cobalt oxide nanocomposite for high-performance enzyme less glucose sensor and super capacitor applications, ACS Appl. Mater. Interfaces. 7 (2015) 15812−15820. https://doi.org/10.1021/acsami.5b04132
[63] H.W. Chang,Y.C. Tsai, C.W. Cheng, C.Y. Lin, P.H. Wu, Preparation of platinum/carbon nanotubes in aqueous solution by femto second laser for non-enzymatic glucose determination, Sens. Actuators B 183 (2013) 34-39. https://doi.org/10.1016/j.snb.2013.03.115
[64] F. Liu, Y. Piao, K.S. Choi, T.S. Seo, Fabrication of free-standing graphene composite films as electrochemical biosensors, Carbon. 50 (2012) 123–133. https://doi.org/10.1016/j.carbon.2011.07.061
[65] T. Kuila, S. Bose, P. Khanra, A. K. Mishra, N. H. Kim, J. H. Lee, Recent advances in graphene-based biosensors, Biosens. Bioelectron. 26 (2011) 4637-4648. https://doi.org/10.1016/j.bios.2011.05.039
[66] Q. Wang, Q. Wang, M. Li, S. Szuneritsand, R.Boukherrou, Preparation of reduced graphene oxide/Cunanoparticle composites through electrophoretic deposition: application for non-enzymatic glucose sensing, RSC Adv. 5 (2015) 15861-15869. https://doi.org/10.1039/C4RA14132F
[67] A.C. Joshi, G.B. Markad, S.k. Haram Rudimentary, simple method for the decoration of graphene oxide with silver nanoparticles: Their application for the ampere metric detection of glucose in the human blood samples, Electrochimica. Acta. 161 (2015) 108–114. https://doi.org/10.1016/j.electacta.2015.02.077
[68] G. Chang, H. Shu, Q. Huang, M. Oyama, K. Ji, X. Liu, Y. He, Synthesis of highly dispersed Pt nanoclusters anchored grapheme composites and their application for non-enzymatic glucose sensing, Electrochim. Acta. 157 (2015) 149–157. https://doi.org/10.1016/j.electacta.2015.01.085
[69] P.M. Nia, W.P. Meng, F. Lorestani, M.R. Mahmoudian, Y. Alias, Electrodeposition of copper oxide/polypyrrole/reduced grapheme oxide as a non-enzymatic glucose biosensor, Sens. Actuators B: Chem. 209 (2015) 100–108. https://doi.org/10.1016/j.snb.2014.11.072
[70] P. Lu, J. Yua,Y. Lei, S. Lu,C. Wang,D. Liu, Q. Guo, Synthesis and characterization of nickel oxide hollow spheres–reduced graphene oxide–nafioncomposite and its biosensing for glucose, Sens. Actuators B: Chem. 208 (2015) 90–98. https://doi.org/10.1016/j.snb.2014.10.140
[71] P.M. Nia, F. Lorestani, W.P. Meng, Y. Alias, A novel non-enzymatic H2O2 sensor based on poly pyrrole nanofibers–silver nanoparticles decorated reduced grapheme oxide nanocomposites, Appl. Surf. Sci. 332 (2015) 648–656. https://doi.org/10.1016/j.apsusc.2015.01.189
[72] B. Zhan, C. Liu, H. Shi, C. Li, L. Wang, W. Huang, X. Dong. A hydrogen peroxide electrochemical sensor based on silver nanoparticles decorated three-dimensional graphene, Appl. Phys. Lett. 104 (2014) 243704 (1-5).
[73] S. Woo, Y.R. Kim, T.D. Chung, Y. Piao, H. Kim, Synthesis of a graphene–carbon nanotube composite and its electrochemical sensing of hydrogen peroxide, Electrochim. Acta. 59 (2012) 509– 514. https://doi.org/10.1016/j.electacta.2011.11.012
[74] C. Cheng, C. Zhang, X. Gao, Z. Zhuang, C. Du, W. Chen, 3D network and 2D paper of reduced graphene oxide/Cu2O composite for electrochemical sensing of hydrogen peroxide Anal. Chem. 90 (2018) 1983−1991. https://doi.org/10.1021/acs.analchem.7b04070
[75] Y.Q. Yang, H.L. Xie, J.T.S. Tang, J. Yi, H.L. Zhang, Design and preparation of a non-enzymatic hydrogen peroxide sensor based on a novel rigid chain liquid crystalline polymer/reduced grapheme oxide composite, RSC Adv. 5 (2015) 63662-63668. https://doi.org/10.1039/C5RA10540D
[76] F. Lorestani, Z. Shahnavaz, P. Mn, Y. Alias, N.S.A. Manan, One-step hydrothermal green synthesis of silver nanoparticle-carbon nanotube reduced-graphene oxide composite and its application as hydrogen peroxide sensor, Sens. Actuators, B: Chem. 208 (2015) 389–398. https://doi.org/10.1016/j.snb.2014.11.074
[77] S. Palanisamy, S.M. Chen, R. Sarawathi, A novel non enzymatic hydrogen peroxide sensor based on reduced grapheme oxide/ZnO composite modified electrode, Sens. Actuators, B: Chem. 166– 167 (2012) 372-377.
[78] C.J. Venegasa, E. Yedinaka, J.F. Marcod, S. Bollob, D.R. Leóna, Co−doped stannates /reduced graphene composites: Effect of cobalt substitution on the electrochemical sensing of hydrogen peroxide, Sens. Actuators, B: Chem. 250 (2017) 412-419. https://doi.org/10.1016/j.snb.2017.04.154
[79] F. Xu, M. Deng, G. Li, S. Chen, L. Wang, Electrochemical behavior of cuprous oxide–reduced graphene oxide nanocomposites and their application in non-enzymatic hydrogen peroxide sensing, Electrochim. Acta. 88 (2013) 59-65. https://doi.org/10.1016/j.electacta.2012.10.070
[80] M. Azarang, A. Shuhaimi, R. Yousefic, S.P. Jahromia, One-pot sol–gel synthesis of reduced graphene oxide uniformly decorated zinc oxide nanoparticles in starch environment for highly efficient photo degradation of methylene blue, RSC Adv. 5 (2015) 21888-21896. https://doi.org/10.1039/C4RA16767H
[81] M. Azaranga, A. Shuhaimia, R. Yousefic, A.M. Golsheikha, M. Sookhakiana, Synthesis and characterization of ZnO NPs/reduced graphene oxide nanocomposite prepared in gelatin medium as highly efficient photo-degradation of MB, Ceram. Int. 40 (2014) 10217–10221. https://doi.org/10.1016/j.ceramint.2014.02.109
[82] W. Zou, L. Zhang, L. Liu, X. Wang, Jingfang Sun, S. Wu, Y. Deng, C. Tang, F. Gao, L. Dong, Engineering the Cu2O–reduced graphene oxide interface to enhance photo catalytic degradation of organic pollutants under visible light, Appl. Cat. B: Env. 181 (2016) 495–503. https://doi.org/10.1016/j.apcatb.2015.08.017
[83] Y. Gao, M. Hu, B. Mi, Membrane surface modification with TiO2–grapheme oxide for enhanced photo catalytic performance, J. Membr. Sci. 455 (2014) 349–356. https://doi.org/10.1016/j.memsci.2014.01.011
[84] S. Xu, L. Fu, T.S.H. Pham, A. Yub, F. Han, L. Chena Preparation of ZnO flower/reduced grapheme oxide composite with enhanced photo catalytic performance under sunlight, Ceram. Int. 41 (2015) 4007–4013. https://doi.org/10.1016/j.ceramint.2014.11.086
[85] H. Wu, J. Fan, E. Liu, X. Hu, Y. Ma, X. Fan, Y. Li, C. Tang, Facile hydrothermal synthesis of TiO2 nano spindles-reduced graphene oxide composite with a enhanced photo catalytic activity, J. Alloys Compd. 623 (2015) 298–303. https://doi.org/10.1016/j.jallcom.2014.10.153
[86] D.A. Reddy, R. Ma, M.Y. Choi, T.K. Kim, Reduced graphene oxide wrapped ZnS-Ag2S ternary composites synthesized via hydrothermal method: Applications in photo catalyst degradation of organic pollutants, Appl. Surf. Sci.324 (2015) 725-735. https://doi.org/10.1016/j.apsusc.2014.11.026
[87] T. Jiao, H.Guo, Q. Zhang, Q. Peng, Y. Tang, X. Yan, B. Li, Reduced graphene oxide-based silver nanoparticle-containing composite hydrogel as highly efficient dye catalysts for wastewater treatment. Sci. Rep. 5 (2015) 11873. https://doi.org/10.1038/srep11873
[88] S.K. Bhunia, N.R. Jana, Reduced graphene oxide-silver nanoparticle composite as visible light photocatalyst for degradation of colorless endocrine disruptors, ACS Appl. Mater. Interfaces. 6 (2014) 20085−20092. https://doi.org/10.1021/am505677x
[89] Y.L. Min, G.Q. He, Q.J. Xu, Y.C. Chen, Self-assembled encapsulation of graphene oxide/Ag@AgCl as a Z-scheme photo catalytic system for pollutant removal, J. Mater. Chem. A. 2 (2014) 1294-1301. https://doi.org/10.1039/C3TA13687F
[90] Y. Yao, C. Xu, S. Yu, D. Zhang, S.Wang, Facile synthesis of Mn3O4–reduced graphene oxide hybrids for catalytic decomposition of aqueous organics, Ind. Eng. Chem. Res. 52 (2013) 3637–3645. https://doi.org/10.1021/ie303220x
[91] Y. Yao, J. Qin, Y. Cai, F. Wei, F. Lu, S. Wang, Facile synthesis of magnetic ZnFe2O4–reduced graphene oxide hybrid and its photo-Fenton-like behavior under visible irradiation, Environ. Sci. Pollut. Res. 21 (2014) 7296-7306. https://doi.org/10.1007/s11356-014-2645-x
[92] G.D. Chen, M. Sun, Q. Wei, Y.F. Zhang, B.C. Zhu, B. Du, Ag3PO4/Graphene-oxide composite with remarkably enhanced visible-light-driven photocatalytic activity toward dyes in water, J. Hazard. Mater. 244 (2013) 86-93. https://doi.org/10.1016/j.jhazmat.2012.11.032
[93] Q.H. Liang, Y. Shi, W.J. Ma, Z. Li, X.M. Yang, Enhanced photocatalytic activity and structural stability by hybridizing Ag3PO4 nanospheres with graphene oxide sheets, Phys. Chem. Chem. Phys. 14 (2012) 15657-15665. https://doi.org/10.1039/c2cp42465g
[94] C. Wang, J. Zhu, X. Wu, H. Xu, Y. Song, J. Yan, Y. Song, H. Ji, K. Wang, H. Li, Photocatalytic degradation of bisphenol A and dye by graphene-oxide/ Ag3PO4 composite under visible light irradiation, Ceram. Int. 40 (2014) 8061-8070. https://doi.org/10.1016/j.ceramint.2013.12.159
[95] B. Chai, J. Li, Q. Xu, Reduced graphene oxide grafted Ag3PO4 composites with efficient photocatalytic activity under visible-light irradiation, Ind. Eng. Chem. Res. 53 (2014) 8744-8752. https://doi.org/10.1021/ie4041065
[96] C. Dong, K.-L. Wu, X.-W. Wei, X.-Z. Li, L. Liu, T.-H. Ding, J. Wanga, Y. Yea, Synthesis of graphene oxide-Ag2CO3 composites with improved photoactivity and anti-photocorrosion, Cryst. Eng. Comm. 16 (2014) 730-736. https://doi.org/10.1039/C3CE41755G
[97] D. Xu, B. Cheng, S. Cao, J. Yu, Enhanced photocatalytic activity and stability of Z-scheme Ag2CrO4-GO composite photocatalysts for organic pollutant degradation, Appl. Catal. B: Environ. 164 (2015) 380-388. https://doi.org/10.1016/j.apcatb.2014.09.051
[98] H.Q. Jiang, H. Endo, H. Natori, M. Nagai, K. Kobayashi, Fabrication and efficient photocatalytic degradation of methylene blue over CuO/BiVO4 composite under visible-light irradiation, Mater. Res. Bull. 44 (2009) 700-706. https://doi.org/10.1016/j.materresbull.2008.06.007
[99] Y. Yan, S. Sun, Y. Song, X. Yan, W. Guan, X. Liu, W. Shi, Microwave-assisted in situ synthesis of reduced graphene oxide-BiVO4 composite photocatalysts and their enhanced photocatalytic performance for the degradation of ciprofloxacin, J. Hazard. Mater. 250 (2013) 106-114. https://doi.org/10.1016/j.jhazmat.2013.01.051
[100] S. Dong, Y. Cui, Y. Wang, Y. Li, L. Hu, J. Sun, J. Sun, Designing three-dimensional acicular sheaf shaped BiVO4/reduced graphene oxide composites for efficient sunlight-driven photocatalytic degradation of dye wastewater, Chem. Eng. J. 249 (2014) 102-110 https://doi.org/10.1016/j.cej.2014.03.071
[101] M. Orecchioni, R. Cabizza, A. Bianco, L.G. Delogu, Graphene as cancer theranostic tool: progress and future challenges, Theranostics. 5 (2015) 710-723. https://doi.org/10.7150/thno.11387
[102] M. Nejabat, F. Charbgoo, M. Ramezani, Graphene as multifunctional delivery platform in cancer therapy, J. Biomed. Mater. Res. A. 105 (2017) 2355-2367. https://doi.org/10.1002/jbm.a.36080
[103] D. Li, M.B. Muller, S. Gilge, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechol. 3 (2008) 101-105. https://doi.org/10.1038/nnano.2007.451
[104] X. Sun, Z. Liu, Nano-graphene oxide for cellular imaging and drug delivery, Nano Res. 1 (2008) 203-212. https://doi.org/10.1007/s12274-008-8021-8
[105] K. Yang, S. Zhang, G. Zhang, X. Sun, S.-T. Lee, Z. Liu, Graphene in mice: ultrahigh in nivo tumor uptake and efficient photothermal therapy, Nano Lett. 10 (2010) 3318-3323. https://doi.org/10.1021/nl100996u
[106] L. Zhang, J. Xia, Q. Zhao, L. Liu, Z. Zhang, Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs, Small 6 (2010), 537-544. https://doi.org/10.1002/smll.200901680
[107] L. Feng, X. Yang, X. Shi, X, Tan, R. Peng , J. Wang, Z. Liu, Polyethylene glycol and polyethylenimine dual- functionalized nano-graphene oxide for photothermally enhanced gene delivery, Small 9 (2013) 1989-1997. https://doi.org/10.1002/smll.201202538
[108] J. Shi, L. Wang, J. Zhang, R. Ma, J. Gao, Y. Liu, C. Zhang, Z. Zhang, A tumor-targeting near-infrared laser-triggered drug delivery system based on GO@Ag nanoparticles for chemo-photothermal therapy and X-ray imaging, Biomaterials 35 (2014) 5847-5861. https://doi.org/10.1016/j.biomaterials.2014.03.042
[109] S. Some1, A.R. Gwon, E. Hwang, G.H. Bahn, Y. Yoon, Y. Kim, S.H. Kim, S. Bak, J. Yang, D.G. Jo, H. Lee, Cancer therapy using ultrahigh hydrophobic drug-loaded graphene derivatives, Sci. Rep. 4 (2014) 6314 (1-9).