A Critical Review on Spectroscopic Characterization of Sustainable Nanocomposites Containing Carbon Nano Fillers
Teklit Gebregiorgis Amabye, Mabrahtu Hagos, Hayelom Dargo Beyene
Nanomaterials are a relatively new class of materials that have at least one dimension in a size range below one hundred nanometers (<100nm) resulting in properties that are significantly different from their bulk-sized analogue materials. These opened new application platforms as reinforcing fillers in plastic composites, functional materials in sensors and energy, and in biomedical applications such as medical diagnosis and prevention, and drug delivery. Nanomaterials have various interesting physicochemical properties such as electrical conductivity, antimicrobial properties, reinforcing capability, photoactivity, optical properties, etc. Thus, characterization of nanomaterials is crucial to fully understand their merits in various material systems. In this review, an overview of various nanomaterial characterizations techniques with an emphasis on spectroscopic techniques is presented. The utilization of scanning tunnelling microscopy (STM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and ultraviolet-visible diffuse reflection spectroscopy (UV–vis) are highlighted. Furthermore, future trends of these spectroscopic characterizations for nanomaterials and nanocomposites applications are discussed.
Keywords
Nanomaterials, Spectroscopy, Carbon Nanotubes, Graphene, Nanocomposites
Published online 11/20/2018, 36 pages
DOI: https://dx.doi.org/10.21741/9781945291975-10
Part of the book on Carbonaceous Composite Materials
References
[1] J.N. Coleman, U. Khan, W.J. Blau, Y.K. Gun’ko, Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites, Carbon 44 (2006) 1624-1652. https://doi.org/10.1016/j.carbon.2006.02.038
[2] L. Hollaway, The evolution of and the way forward for advanced polymer composites in the civil infrastructure, Construction and Building Materials 17 (2003) 365-378. https://doi.org/10.1016/S0950-0618(03)00038-2
[3] S. Chatterjee, F. Nüesch, B.T. Chu, Comparing carbon nanotubes and graphene nanoplatelets as reinforcements in polyamide12 composites, Nanotechnology 22 (2011) 275714. https://doi.org/10.1088/0957-4484/22/27/275714
[4] D. Paul, L.M. Robeson, Polymer nanotechnology: nanocomposites, Polymer 49 (2008) 3187-3204. https://doi.org/10.1016/j.polymer.2008.04.017
[5] S. Chatterjee, F.A. Reifler, B. Chu, R. Hufenus, Investigation of crystalline and tensile properties of carbon nanotube-filled polyamide-12 fibers melt-spun by industry-related processes, Journal of Engineered Fibers and Fabrics 7 (2012).
[6] S. Chatterjee, J. Wang, W. Kuo, N. Tai, C. Salzmann, W. Li, R. Hollertz, F. Nüesch, B. Chu, Mechanical reinforcement and thermal conductivity in expanded graphene nanoplatelets reinforced epoxy composites, Chemical Physics Letters 531 (2012) 6-10. https://doi.org/10.1016/j.cplett.2012.02.006
[7] H. Kroto, JR Health, SC O’Brien, RF Curl, and RE Smalley, Nature 318 (1985) I985. https://doi.org/10.1038/318162a0
[8] L. Radushkevich, V. Lukyanovich, About the structure of carbon formed by thermal decomposition of carbon monoxide on iron substrate, J. Phys. Chem.(Moscow) 26 (1952) 88-95.
[9] S. Iijima, Helical microtubules of graphitic carbon, nature 354 (1991) 56.
[10] A.K. Geim, P. Kim, Carbon wonderland, Scientific American 298 (2008) 90-97. https://doi.org/10.1038/scientificamerican0408-90
[11] P.R. Wallace, The band theory of graphite, Physical Review 71 (1947) 622. https://doi.org/10.1103/PhysRev.71.622
[12] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science 306 (2004) 666-669. https://doi.org/10.1126/science.1102896
[13] A.K. Geim, K.S. Novoselov, The rise of graphene, Nature materials 6 (2007) 183-191. https://doi.org/10.1038/nmat1849
[14] T. Mekonnen, M. Misra, A. Mohanty, Processing, performance, and applications of plant and animal protein-based blends and their biocomposites, Biocomposites, Elsevier2015, pp. 201-235. https://doi.org/10.1016/B978-1-78242-373-7.00017-2
[15] S. Ahmed, F. Jones, A review of particulate reinforcement theories for polymer composites, Journal of Materials Science 25 (1990) 4933-4942. https://doi.org/10.1007/BF00580110
[16] N. Taranu, G. Oprisan, I. Entuc, M. Budescu, V. Munteanu, G. Taranu, COMPOSITE AND HYBRID SOLUTIONS FOR SUSTAINABLE DEVELOPMENT IN CIVIL ENGINEERING, Environmental Engineering & Management Journal (EEMJ) 11 (2012). https://doi.org/10.30638/eemj.2012.101
[17] C. Zhao, G. Hu, R. Justice, D.W. Schaefer, S. Zhang, M. Yang, C.C. Han, Synthesis and characterization of multi-walled carbon nanotubes reinforced polyamide 6 via in situ polymerization, Polymer 46 (2005) 5125-5132. https://doi.org/10.1016/j.polymer.2005.04.065
[18] C.A. Folsom, F.W. Zok, F.F. Lange, D.B. Marshall, Mechanical Behavior of a Laminar Ceramic/Fiber‐Reinforced Epoxy Composite, Journal of the American Ceramic Society 75 (1992) 2969-2975. https://doi.org/10.1111/j.1151-2916.1992.tb04373.x
[19] B. Johnsen, A. Kinloch, R. Mohammed, A. Taylor, S. Sprenger, Toughening mechanisms of nanoparticle-modified epoxy polymers, Polymer 48 (2007) 530-541. https://doi.org/10.1016/j.polymer.2006.11.038
[20] P.M. Ajayan, L.S. Schadler, P.V. Braun, Nanocomposite science and technology, John Wiley & Sons2006.
[21] Q. Chen, G. Chai, B. Li, Exploration study of multifunctional metallic nanocomposite utilizing single-walled carbon nanotubes for micro/nano devices, Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems 219 (2005) 67-72.
[22] J.E. Morris, Nanopackaging: nanotechnologies and electronics packaging, High Density Microsystem Design and Packaging and Component Failure Analysis, 2006. HDP’06. Conference on, IEEE, 2006, pp. 199-205.
[23] N. Hu, Y. Karube, C. Yan, Z. Masuda, H. Fukunaga, Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor, Acta Materialia 56 (2008) 2929-2936. https://doi.org/10.1016/j.actamat.2008.02.030
[24] I. Kang, Y.Y. Heung, J.H. Kim, J.W. Lee, R. Gollapudi, S. Subramaniam, S. Narasimhadevara, D. Hurd, G.R. Kirikera, V. Shanov, Introduction to carbon nanotube and nanofiber smart materials, Composites Part B: Engineering 37 (2006) 382-394. https://doi.org/10.1016/j.compositesb.2006.02.011
[25] P.-C. Lin, S. Lin, P.C. Wang, R. Sridhar, Techniques for physicochemical characterization of nanomaterials, Biotechnology advances 32 (2014) 711-726. https://doi.org/10.1016/j.biotechadv.2013.11.006
[26] K.E. Sapsford, K.M. Tyner, B.J. Dair, J.R. Deschamps, I.L. Medintz, Analyzing nanomaterial bioconjugates: a review of current and emerging purification and characterization techniques, Anal. Chem 83 (2011) 4453-4488. https://doi.org/10.1021/ac200853a
[27] T.L. Jennings, S.G. Becker-Catania, R.C. Triulzi, G. Tao, B. Scott, K.E. Sapsford, S. Spindel, E. Oh, V. Jain, J.B. Delehanty, Reactive semiconductor nanocrystals for chemoselective biolabeling and multiplexed analysis, ACS nano 5 (2011) 5579-5593. https://doi.org/10.1021/nn201050g
[28] E. Oh, J.B. Delehanty, K.E. Sapsford, K. Susumu, R. Goswami, J.B. Blanco-Canosa, P.E. Dawson, J. Granek, M. Shoff, Q. Zhang, Cellular uptake and fate of PEGylated gold nanoparticles is dependent on both cell-penetration peptides and particle size, Acs Nano 5 (2011) 6434-6448. https://doi.org/10.1021/nn201624c
[29] X. Liu, X. Wu, H. Cao, R. Chang, Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition, Journal of Applied Physics 95 (2004) 3141-3147. https://doi.org/10.1063/1.1646440
[30] M.M. Seibert, T. Ekeberg, F.R. Maia, M. Svenda, J. Andreasson, O. Jönsson, D. Odić, B. Iwan, A. Rocker, D. Westphal, Single mimivirus particles intercepted and imaged with an X-ray laser, Nature 470 (2011) 78-81. https://doi.org/10.1038/nature09748
[31] X. Cheng, X. Yu, Z. Xing, L. Yang, Synthesis and characterization of N-doped TiO2 and its enhanced visible-light photocatalytic activity, Arabian Journal of Chemistry 9 (2016) S1706-S1711. https://doi.org/10.1016/j.arabjc.2012.04.052
[32] Z. Popović, Z. Dohčević‐Mitrović, M. Šćepanović, M. Grujić‐Brojčin, S. Aškrabić, Raman scattering on nanomaterials and nanostructures, Annalen der Physik 523 (2011) 62-74. https://doi.org/10.1002/andp.201000094
[33] E. Le Ru, P. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy: and related plasmonic effects, Elsevier2008.
[34] X. Li, C.W. Magnuson, A. Venugopal, R.M. Tromp, J.B. Hannon, E.M. Vogel, L. Colombo, R.S. Ruoff, Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper, Journal of the American Chemical Society 133 (2011) 2816-2819. https://doi.org/10.1021/ja109793s
[35] C.S. Kumar, Raman spectroscopy for nanomaterials characterization, Springer Science & Business Media2012. https://doi.org/10.1007/978-3-642-20620-7
[36] X. Gong, Y. Bao, C. Qiu, C. Jiang, Individual nanostructured materials: fabrication and surface-enhanced Raman scattering, Chemical Communications 48 (2012) 7003-7018. https://doi.org/10.1039/c2cc31603j
[37] Q. Tu, C. Chang, Diagnostic applications of Raman spectroscopy, Nanomedicine: Nanotechnology, Biology and Medicine 8 (2012) 545-558. https://doi.org/10.1016/j.nano.2011.09.013
[38] A. Berkdemir, H.R. Gutiérrez, A.R. Botello-Méndez, N. Perea-López, A.L. Elías, C.-I. Chia, B. Wang, V.H. Crespi, F. López-Urías, J.-C. Charlier, Identification of individual and few layers of WS2 using Raman Spectroscopy, Scientific reports 3 (2013). https://doi.org/10.1038/srep01755
[39] A.J. Wilson, K.A. Willets, Surface‐enhanced Raman scattering imaging using noble metal nanoparticles, Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 5 (2013) 180-189. https://doi.org/10.1002/wnan.1208
[40] A.F. Palonpon, J. Ando, H. Yamakoshi, K. Dodo, M. Sodeoka, S. Kawata, K. Fujita, Raman and SERS microscopy for molecular imaging of live cells, Nature protocols 8 (2013) 677-692. https://doi.org/10.1038/nprot.2013.030
[41] A.C. Ferrari, D.M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene, Nature nanotechnology 8 (2013) 235-246. https://doi.org/10.1038/nnano.2013.46
[42] J.F. Li, Y.F. Huang, Y. Ding, Z.L. Yang, S.B. Li, X.S. Zhou, F.R. Fan, W. Zhang, Z.Y. Zhou, B. Ren, Shell-isolated nanoparticle-enhanced Raman spectroscopy, nature 464 (2010) 392-395. https://doi.org/10.1038/nature08907
[43] J. Kumar, K.G. Thomas, Surface-enhanced Raman spectroscopy: investigations at the nanorod edges and dimer junctions, The Journal of Physical Chemistry Letters 2 (2011) 610-615. https://doi.org/10.1021/jz2000613
[44] Y. Wang, J. Irudayaraj, Surface-enhanced Raman spectroscopy at single-molecule scale and its implications in biology, Phil. Trans. R. Soc. B 368 (2013) 20120026. https://doi.org/10.1098/rstb.2012.0026
[45] V. Loryuenyong, K. Totepvimarn, P. Eimburanapravat, W. Boonchompoo, A. Buasri, Preparation and Characterization of Reduced Graphene Oxide Sheets via Water-Based Exfoliation and Reduction Methods, Advances in Materials Science and Engineering 2013 (2013) 1-5. https://doi.org/10.1155/2013/923403
[46] M.J. Miles, H.J. Carr, T.C. McMaster, K.J. I’Anson, P.S. Belton, V.J. Morris, J.M. Field, P.R. Shewry, A.S. Tatham, Scanning tunneling microscopy of a wheat seed storage protein reveals details of an unusual supersecondary structure, Proceedings of the national academy of sciences 88 (1991) 68-71. https://doi.org/10.1073/pnas.88.1.68
[47] M. Hersam, N. Guisinger, J. Lyding, Silicon-based molecular nanotechnology, Nanotechnology 11 (2000) 70. https://doi.org/10.1088/0957-4484/11/2/306
[48] S.S. Elnashaie, F. Danafar, H.H. Rafsanjani, From Nanotechnology to Nanoengineering, Nanotechnology for Chemical Engineers, Springer2015, pp. 79-178. https://doi.org/10.1007/978-981-287-496-2_2
[49] H.-J. Gèuntherodt, R. Wiesendanger, Scanning tunneling microscopy I: general principles and applications to clean and adsorbate-covered surfaces, Springer-Verlag1994. https://doi.org/10.1007/978-3-642-79255-7
[50] S.V. Kalinin, D.A. Bonnell, Temperature dependence of polarization and charge dynamics on the BaTiO 3 (100) surface by scanning probe microscopy, Applied Physics Letters 78 (2001) 1116-1118. https://doi.org/10.1063/1.1348303
[51] J.C. Koepke, J.D. Wood, D. Estrada, Z.-Y. Ong, K.T. He, E. Pop, J.W. Lyding, Atomic-scale evidence for potential barriers and strong carrier scattering at graphene grain boundaries: a scanning tunneling microscopy study, ACS nano 7 (2013) 75-86. https://doi.org/10.1021/nn302064p
[52] C. Koçum, E.K. Çimen, E. Pişkin, Imaging of poly (NIPA-co-MAH)–HIgG conjugate with scanning tunneling microscopy, Journal of Biomaterials Science, Polymer Edition 15 (2004) 1513-1520. https://doi.org/10.1163/1568562042459706
[53] J.W. Wang, Y. He, F. Fan, X.H. Liu, S. Xia, Y. Liu, C.T. Harris, H. Li, J.Y. Huang, S.X. Mao, Two-phase electrochemical lithiation in amorphous silicon, Nano Letters 13 (2013) 709-715. https://doi.org/10.1021/nl304379k
[54] M. O’keefe, C. Hetherington, Y. Wang, E. Nelson, J. Turner, C. Kisielowski, J.-O. Malm, R. Mueller, J. Ringnalda, M. Pan, Sub-Ångstrom high-resolution transmission electron microscopy at 300keV, Ultramicroscopy 89 (2001) 215-241. https://doi.org/10.1016/S0304-3991(01)00094-8
[55] D.B. Williams, C.B. Carter, High Energy-Loss Spectra and Images, Transmission Electron Microscopy (2009) 715-739. https://doi.org/10.1007/978-0-387-76501-3_39
[56] M. Hassellöv, J.W. Readman, J.F. Ranville, K. Tiede, Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles, Ecotoxicology 17 (2008) 344-361. https://doi.org/10.1007/s10646-008-0225-x
[57] G.R. Chalmers, R.M. Bustin, I.M. Power, Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units, AAPG bulletin 96 (2012) 1099-1119. https://doi.org/10.1306/10171111052
[58] C.E. Carlton, S. Chen, P.J. Ferreira, L.F. Allard, Y. Shao-Horn, Sub-nanometer-resolution elemental mapping of “Pt3Co” nanoparticle catalyst degradation in proton-exchange membrane fuel cells, The Journal of Physical Chemistry Letters 3 (2012) 161-166. https://doi.org/10.1021/jz2016022
[59] X. Chen, K. Noh, J. Wen, S. Dillon, In situ electrochemical wet cell transmission electron microscopy characterization of solid–liquid interactions between Ni and aqueous NiCl 2, Acta Materialia 60 (2012) 192-198. https://doi.org/10.1016/j.actamat.2011.09.047
[60] Y. Tachibana, L. Vayssieres, J.R. Durrant, Artificial photosynthesis for solar water-splitting, Nature Photonics 6 (2012) 511-518. https://doi.org/10.1038/nphoton.2012.175
[61] A. Ponce, S. Mejía-Rosales, M. José-Yacamán, Scanning transmission electron microscopy methods for the analysis of nanoparticles, Nanoparticles in Biology and Medicine: Methods and Protocols (2012) 453-471.
[62] N. De Jonge, F.M. Ross, Electron microscopy of specimens in liquid, Nature nanotechnology 6 (2011) 695-704. https://doi.org/10.1038/nnano.2011.161
[63] D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R.D. Piner, S. Stankovich, I. Jung, D.A. Field, C.A. Ventrice, Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy, Carbon 47 (2009) 145-152. https://doi.org/10.1016/j.carbon.2008.09.045
[64] P. Xiao, M.A. Sk, L. Thia, X. Ge, R.J. Lim, J.-Y. Wang, K.H. Lim, X. Wang, Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction, Energy & Environmental Science 7 (2014) 2624-2629. https://doi.org/10.1039/C4EE00957F
[65] K. Edmonds, G. van der Laan, N. Farley, R. Campion, B. Gallagher, C. Foxon, B. Cowie, S. Warren, T. Johal, Magnetic linear dichroism in the angular dependence of core-level photoemission from (Ga, Mn) As using hard X rays, Physical review letters 107 (2011) 197601. https://doi.org/10.1103/PhysRevLett.107.197601
[66] B. Das, K.E. Prasad, U. Ramamurty, C. Rao, Nano-indentation studies on polymer matrix composites reinforced by few-layer graphene, Nanotechnology 20 (2009) 125705. https://doi.org/10.1088/0957-4484/20/12/125705
[67] D.M. Marquis, E. Guillaume, C. Chivas-Joly, Properties of nanofillers in polymer, Nanocomposites and Polymers with Analytical Methods, Intech2011.
[68] E. Perevedentseva, C.-Y. Cheng, P.-H. Chung, J.-S. Tu, Y.-H. Hsieh, C.-L. Cheng, The interaction of the protein lysozyme with bacteria E. coli observed using nanodiamond labelling, Nanotechnology 18 (2007) 315102. https://doi.org/10.1088/0957-4484/18/31/315102
[69] R. Othman, A.W. Mohammad, M. Ismail, J. Salimon, Application of polymeric solvent resistant nanofiltration membranes for biodiesel production, Journal of Membrane Science 348 (2010) 287-297. https://doi.org/10.1016/j.memsci.2009.11.012
[70] Q. Husain, S.A. Ansari, F. Alam, A. Azam, Immobilization of Aspergillus oryzae β galactosidase on zinc oxide nanoparticles via simple adsorption mechanism, International journal of biological macromolecules 49 (2011) 37-43. https://doi.org/10.1016/j.ijbiomac.2011.03.011
[71] M.S. Johal, Understanding nanomaterials, CRC Press2011.
[72] H. Liu, T.J. Webster, Nanomedicine for implants: a review of studies and necessary experimental tools, Biomaterials 28 (2007) 354-369. https://doi.org/10.1016/j.biomaterials.2006.08.049
[73] M.V. Kharlamova, C. Kramberger, M. Sauer, K. Yanagi, T. Pichler, Comprehensive spectroscopic characterization of high purity metallicity-sorted single-walled carbon nanotubes, physica status solidi (b) 252 (2015) 2512-2518. https://doi.org/10.1002/pssb.201552251
[74] N. Wang, X. Zhang, N. Han, S. Bai, Effect of citric acid and processing on the performance of thermoplastic starch/montmorillonite nanocomposites, Carbohydrate Polymers 76 (2009) 68-73. https://doi.org/10.1016/j.carbpol.2008.09.021
[75] H. Xu, Y. Liu, Mechanisms of Cd 2+, Cu 2+ and Ni 2+ biosorption by aerobic granules, Separation and Purification Technology 58 (2008) 400-411. https://doi.org/10.1016/j.seppur.2007.05.018
[76] J. Ishii, A. Ono, Uncertainty estimation for emissivity measurements near room temperature with a Fourier transform spectrometer, Measurement science and technology 12 (2001) 2103. https://doi.org/10.1088/0957-0233/12/12/311
[77] T.M. Petrova, A. Solodov, A. Solodov, O. Lyulin, Y.G. Borkov, S. Tashkun, V. Perevalov, Measurements of CO2 line parameters in the 9250–9500 cm− 1 and 10,700–10,860 cm− 1 regions, Journal of Quantitative Spectroscopy and Radiative Transfer 164 (2015) 109-116. https://doi.org/10.1016/j.jqsrt.2015.06.001
[78] A. Rohman, Y.C. Man, Fourier transform infrared (FTIR) spectroscopy for analysis of extra virgin olive oil adulterated with palm oil, Food research international 43 (2010) 886-892. https://doi.org/10.1016/j.foodres.2009.12.006
[79] X.-Y. Zhang, H.-P. Li, X.-L. Cui, Y. Lin, Graphene/TiO 2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting, Journal of Materials Chemistry 20 (2010) 2801-2806. https://doi.org/10.1039/b917240h
[80] V.R. Saasa, E. Mukwevho, B.W. Mwakikunga, Structural, optical and light sensing properties of carbon-ZnO films prepared by pulsed laser deposition, International Frequency Sensor Association Publishing (IFSA Publishing2016.
[81] L.W. Zhang, H.B. Fu, Y.F. Zhu, Efficient TiO2 photocatalysts from surface hybridization of TiO2 particles with graphite‐like carbon, Advanced Functional Materials 18 (2008) 2180-2189. https://doi.org/10.1002/adfm.200701478
[82] F. Spadavecchia, G. Cappelletti, S. Ardizzone, C.L. Bianchi, S. Cappelli, C. Oliva, P. Scardi, M. Leoni, P. Fermo, Solar photoactivity of nano-N-TiO 2 from tertiary amine: role of defects and paramagnetic species, Applied Catalysis B: Environmental 96 (2010) 314-322. https://doi.org/10.1016/j.apcatb.2010.02.027
[83] N.M. Bahadur, T. Furusawa, M. Sato, F. Kurayama, N. Suzuki, Rapid synthesis, characterization and optical properties of TiO 2 coated ZnO nanocomposite particles by a novel microwave irradiation method, Materials Research Bulletin 45 (2010) 1383-1388. https://doi.org/10.1016/j.materresbull.2010.06.048
[84] H. Du, G. Xu, W. Chin, L. Huang, W. Ji, Synthesis, characterization, and nonlinear optical properties of hybridized CdS− polystyrene nanocomposites, Chemistry of materials 14 (2002) 4473-4479. https://doi.org/10.1021/cm010622z
[85] A. Nese, S. Sen, M.A. Tasdelen, N. Nugay, Y. Yagci, Clay‐PMMA Nanocomposites by Photoinitiated Radical Polymerization Using Intercalated Phenacyl Pyridinium Salt Initiators, Macromolecular Chemistry and Physics 207 (2006) 820-826. https://doi.org/10.1002/macp.200500511
[86] R. Vaiyapuri, B.W. Greenland, S.J. Rowan, H.M. Colquhoun, J.M. Elliott, W. Hayes, Thermoresponsive supramolecular polymer network comprising pyrene-functionalized gold nanoparticles and a chain-folding polydiimide, Macromolecules 45 (2012) 5567-5574. https://doi.org/10.1021/ma300796w
[87] G.D. Bothun, Hydrophobic silver nanoparticles trapped in lipid bilayers: Size distribution, bilayer phase behavior, and optical properties, Journal of nanobiotechnology 6 (2008) 13. https://doi.org/10.1186/1477-3155-6-13
[88] T. Cedervall, I. Lynch, S. Lindman, T. Berggård, E. Thulin, H. Nilsson, K.A. Dawson, S. Linse, Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles, Proceedings of the National Academy of Sciences 104 (2007) 2050-2055. https://doi.org/10.1073/pnas.0608582104
[89] R.A. Sperling, W. Parak, Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 368 (2010) 1333-1383. https://doi.org/10.1098/rsta.2009.0273
[90] K. Takemoto, T. Matsuda, N. Sakai, D. Fu, M. Noda, S. Uchiyama, I. Kotera, Y. Arai, M. Horiuchi, K. Fukui, SuperNova, a monomeric photosensitizing fluorescent protein for chromophore-assisted light inactivation, Scientific reports 3 (2013) 2629. https://doi.org/10.1038/srep02629
[91] J.K. Kim, S.Y. Yang, Y. Lee, Y. Kim, Functional nanomaterials based on block copolymer self-assembly, Progress in Polymer Science 35 (2010) 1325-1349. https://doi.org/10.1016/j.progpolymsci.2010.06.002
[92] V. Wagner, B. Hüsing, S. Gaisser, A.-K. Bock, Nanomedicine: Drivers for development and possible impacts, JRC-IPTS, EUR 23494 (2008).
[93] I. Olver, S. Shelukar, K.C. Thompson, Nanomedicines in the treatment of emesis during chemotherapy: focus on aprepitant, International journal of nanomedicine 2 (2007) 13. https://doi.org/10.2147/nano.2007.2.1.13
[94] S.V. Vinogradov, T.K. Bronich, A.V. Kabanov, Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells, Advanced drug delivery reviews 54 (2002) 135-147. https://doi.org/10.1016/S0169-409X(01)00245-9
[95] J.A. Champion, S. Mitragotri, Shape induced inhibition of phagocytosis of polymer particles, Pharmaceutical research 26 (2009) 244-249. https://doi.org/10.1007/s11095-008-9626-z
[96] Y. Hathout, Approaches to the study of the cell secretome, Expert review of proteomics 4 (2007) 239-248. https://doi.org/10.1586/14789450.4.2.239
[97] S. Inokuchi, T. Aoyama, K. Miura, C.H. Österreicher, Y. Kodama, K. Miyai, S. Akira, D.A. Brenner, E. Seki, Disruption of TAK1 in hepatocytes causes hepatic injury, inflammation, fibrosis, and carcinogenesis, Proceedings of the National Academy of Sciences 107 (2010) 844-849. https://doi.org/10.1073/pnas.0909781107
[98] D.G. Thomas, S. Gaheen, S.L. Harper, M. Fritts, F. Klaessig, E. Hahn-Dantona, D. Paik, S. Pan, G.A. Stafford, E.T. Freund, ISA-TAB-Nano: a specification for sharing nanomaterial research data in spreadsheet-based format, BMC biotechnology 13 (2013) 2. https://doi.org/10.1186/1472-6750-13-2
[99] Y. Wang, Z. Li, J. Wang, J. Li, Y. Lin, Graphene and graphene oxide: biofunctionalization and applications in biotechnology, Trends in biotechnology 29 (2011) 205-212. https://doi.org/10.1016/j.tibtech.2011.01.008