Graphene and Graphene/TiO2 Nanocomposites for Renewable Dye Sensitized Solar Cells
Foo Wah Low, Chin Wei Lai, Christelle Pau Ping Wong
Renewable solar cell energy is a key target for sustainable energies development, which are inexhaustible and non-polluting for our energy system. To bring more solar related technologies to the point of commercial readiness and viability in terms of performance and cost, substantial research on the development of high efficient renewable dye-sensitized solar cell (DSSCs) device is necessary. Recent studies have indicated that graphene is a relatively novel material with unique properties that could apply in photoanode/counter electrode component as efficient electrode. In fact, the atom-thick 2D structure of graphene (rGO) provides an extraordinarily high conductivity, repeatability, productivity, and prolong lifetime to the related solar cell applications. Continuous efforts have been exerted to further improve the graphene textural and electronic properties by loading an optimum content of titanium dioxide (TiO2) as an efficient photocatalyst in DSSCs. In this chapter, different synthesis strategies and characterization analyses for TiO2-rGO nanocomposites (NC) as well as its prospects in DSSCs will be reviewed in detail.
Keywords
Graphene, TiO2, Graphene/TiO2 Nanocomposites, Photoanode/Counter Electrode, Renewable Energy
Published online 11/20/2018, 32 pages
DOI: https://dx.doi.org/10.21741/9781945291975-1
Part of the book on Carbonaceous Composite Materials
References
[1] D. Liang, C. Cui, H. Hu, Y. Wang, S. Xu, B. Ying, P. Li, B. Lu, H. Shen, One-step hydrothermal synthesis of anatase TiO2/reduced graphene oxide nanocomposites with enhanced photocatalytic activity, Journal of Alloys and Compounds, 582 (2014) 236-240. https://doi.org/10.1016/j.jallcom.2013.08.062
[2] J. Shen, B. Yan, M. Shi, H. Ma, N. Li, M. Ye, One step hydrothermal synthesis of TiO2-reduced graphene oxide sheets, Journal of Materials Chemistry, 21 (2011) 3415-3421. https://doi.org/10.1039/c0jm03542d
[3] B.Y.S. Chang, N.M. Huang, M.N. An’amt, A.R. Marlinda, Y. Norazriena, M.R. Muhamad, I. Harrison, H.N. Lim, C.H. Chia, Facile hydrothermal preparation of titanium dioxide decorated reduced graphene oxide nanocomposite, International Journal of Nanomedicine, 7 (2012) 3379-3387.
[4] J. Chen, G. Zhang, B. Luo, D. Sun, X. Yan, Q. Xue, Surface amorphization and deoxygenation of graphene oxide paper by Ti ion implantation, Carbon, 49 (2011) 3141-3147. https://doi.org/10.1016/j.carbon.2011.03.045
[5] Y. B. Tang, C. S. Lee, J. Xu, Z. T. Liu, Z. H. Chen, Z. He, Y. L. Cao, G. Yuan, H. Song, L. Chen, Incorporation of graphenes in nanostructured TiO2 films via molecular grafting for dye-sensitized solar cell application, ACS Nano, 4 (2010) 3482-3488. https://doi.org/10.1021/nn100449w
[6] S. Sun, L. Gao, Y. Liu, Enhanced dye-sensitized solar cell using graphene-TiO2 photoanode prepared by heterogeneous coagulation, Applied Physics Letters, 96 (2010) 083113. https://doi.org/10.1063/1.3318466
[7] J. Song, Z. Yin, Z. Yang, P. Amaladass, S. Wu, J. Ye, Y. Zhao, W.Q. Deng, H. Zhang, X.W. Liu, Enhancement of photogenerated electron transport in dye‐sensitized solar cells with introduction of a reduced graphene oxide–TiO2 junction, Chemistry-A European Journal, 17 (2011) 10832-10837. https://doi.org/10.1002/chem.201101263
[8] T. H. Tsai, S. C. Chiou, S. M. Chen, Enhancement of dye-sensitized solar cells by using graphene-TiO2 composites as photoelectrochemical working electrode, International Journal Electrochemical Science, 6 (2011) 3333-3343.
[9] Z. He, G. Guai, J. Liu, C. Guo, J.S.C. Loo, C.M. Li, T.T.Y. Tan, Nanostructure control of graphene-composited TiO2 by a one-step solvothermal approach for high performance dye-sensitized solar cells, Nanoscale, 3 (2011) 4613-4616. https://doi.org/10.1039/c1nr11300c
[10] J. Fan, S. Liu, J. Yu, Enhanced photovoltaic performance of dye-sensitized solar cells based on TiO2 nanosheets/graphene composite films, Journal of Materials Chemistry, 22 (2012) 17027-17036. https://doi.org/10.1039/c2jm33104g
[11] B. Tang, G. Hu, Two kinds of graphene-based composites for photoanode applying in dye-sensitized solar cell, Journal of Power Sources, 220 (2012) 95-102. https://doi.org/10.1016/j.jpowsour.2012.07.093
[12] J. Zhao, J. Wu, F. Yu, X. Zhang, Z. Lan, J. Lin, Improving the photovoltaic performance of cadmium sulfide quantum dots-sensitized solar cell by graphene/titania photoanode, Electrochimica Acta, 96 (2013) 110-116. https://doi.org/10.1016/j.electacta.2013.02.067
[13] W. Shu, Y. Liu, Z. Peng, K. Chen, C. Zhang, W. Chen, Synthesis and photovoltaic performance of reduced graphene oxide–TiO2 nanoparticles composites by solvothermal method, Journal of Alloys and Compounds, 563 (2013) 229-233. https://doi.org/10.1016/j.jallcom.2013.02.086
[14] B. Tang, G. Hu, H. Gao, Z. Shi, Three-dimensional graphene network assisted high performance dye sensitized solar cells, Journal of Power Sources, 234 (2013) 60-68. https://doi.org/10.1016/j.jpowsour.2013.01.130
[15]M. Shanmugam, C. Durcan, R.J. Gedrim, T. Bansal, B. Yu, Oxygenated-graphene-enabled recombination barrier layer for high performance dye-sensitized solar cell, Carbon, 60 (2013) 523-530. https://doi.org/10.1016/j.carbon.2013.04.083
[16] H.-N. Kim, H. Yoo, J.H. Moon, Graphene-embedded 3D TiO2 inverse opal electrodes for highly efficient dye-sensitized solar cells: morphological characteristics and photocurrent enhancement, Nanoscale, 5 (2013) 4200-4204. https://doi.org/10.1039/c3nr33672g
[17] M. Zhu, X. Li, W. Liu, Y. Cui, An investigation on the photoelectrochemical properties of dye-sensitized solar cells based on graphene–TiO2 composite photoanodes, Journal of Power Sources, 262 (2014) 349-355. https://doi.org/10.1016/j.jpowsour.2014.04.001
[18] N.T. Ha, P.D. Long, N.T. Trung, L.V. Hong, Graphene Effect on Efficiency of TiO2-based Dye Sensitized Solar Cells (DSSC), Communications in Physics, 26 (2016) 43. https://doi.org/10.15625/0868-3166/26/1/7961
[19] J. C. Chou, C. H. Huang, Y. J. Lin, C. M. Chu, Y. H. Liao, L. H. Tai, Y. H. Nien, The Influence of Different Annealing Temperatures on Graphene-Modified TiO2 for Dye-Sensitized Solar Cell, IEEE Transactions on Nanotechnology, 15 (2016) 164-170. https://doi.org/10.1109/TNANO.2015.2510081
[20] E. Nouri, M.R. Mohammadi, P. Lianos, Impact of preparation method of TiO2-RGO nanocomposite photoanodes on the performance of dye-sensitized solar cells, Electrochimica Acta, 219 (2016) 38-48. https://doi.org/10.1016/j.electacta.2016.09.150
[21] U. A. Kanta, V. Thongpool, W. Sangkhun, N. Wongyao, J. Wootthikanokkhan, Preparations, Characterizations, and a Comparative Study on Photovoltaic Performance of Two Different Types of Graphene/TiO2 Nanocomposites Photoelectrodes, Journal of Nanomaterials, 2017 (2017). https://doi.org/10.1155/2017/2758294
[22] R. Raja, M. Govindaraj, M.D. Antony, K. Krishnan, E. Velusamy, A. Sambandam, M. Subbaiah, V.W. Rayar, Effect of TiO2/reduced graphene oxide composite thin film as a blocking layer on the efficiency of dye-sensitized solar cells, Journal of Solid State Electrochemistry, 21 (2017) 891-903. https://doi.org/10.1007/s10008-016-3437-7
[23] Y. Zhang, C. Wang, Z. Yuan, L. Zhang, L. Yin, Reduced Graphene Oxide Wrapped Mesoporous Hierarchical TiO2‐CdS as a Photoanode for High‐Performance Dye‐Sensitized Solar Cells, European Journal of Inorganic Chemistry, 2017 (2017) 2281-2288. https://doi.org/10.1002/ejic.201601535
[24] H. Gerischer, M. Michel-Beyerle, F. Rebentrost, H. Tributsch, Sensitization of charge injection into semiconductors with large band gap, Electrochimica Acta, 13 (1968) 1509-1515. https://doi.org/10.1016/0013-4686(68)80076-3
[25] H. Tributsch, M. Calvin, Electrochemistry of Excited Molecules: Photo‐Electrochemical Reactions of Chlorophylls, Photochemistry and Photobiology, 14 (1971) 95-112. https://doi.org/10.1111/j.1751-1097.1971.tb06156.x
[26] H. TRIBUTSCH, Reaction of excited chlorophyll molecules at electrodes and in photosynthesis, Photochemistry and Photobiology, 16 (1972) 261-269.
[27] M. Matsumura, S. Matsudaira, H. Tsubomura, M. Takata, H. Yanagida, Dye sensitization and surface structures of semiconductor electrodes, Industrial & Engineering Chemistry Product Research and Development, 19 (1980) 415-421. https://doi.org/10.1021/i360075a025
[28] B. O’regan, M. Grfitzeli, A low-cost, high-efficiency solar cell based on dye-sensitized, nature, 353 (1991) 737-740.
[29] S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B.F. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M.K. Nazeeruddin, M. Grätzel, Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers, Nature Chemistry, 6 (2014) 242-247. https://doi.org/10.1038/nchem.1861
[30] A. Hagfeldt, Brief overview of dye-sensitized solar cells, Ambio, 41 (2012) 151-155. https://doi.org/10.1007/s13280-012-0272-7
[31] C.C. Raj, R. Prasanth, A critical review of recent developments in nanomaterials for photoelectrodes in dye sensitized solar cells, Journal of Power Sources, 317 (2016) 120-132. https://doi.org/10.1016/j.jpowsour.2016.03.016
[32] J. Poortmans, V. Arkhipov, Thin film solar cells: fabrication, characterization and applications, John Wiley & Sons2006. https://doi.org/10.1002/0470091282
[33] L. Y. Lin, C. P. Lee, R. Vittal, K. C. Ho, Improving the durability of dye-sensitized solar cells through back illumination, Journal of Power Sources, 196 (2011) 1671-1676. https://doi.org/10.1016/j.jpowsour.2010.08.032
[34] Z. Wei, Y. Yao, T. Huang, A. Yu, Solvothermal growth of Well-Aligned TiO2 Nanowire Arrays for Dye-Sensitized Solar Cell: Dependence of morphology and vertical orientation upon substrate pretreatment, International Journal Electrochemical Science, 6 (2011) 1871-1879.
[35] M. Giannouli, Nanostructured ZnO, TiO2, and composite ZnO/TiO2 films for application in dye-sensitized solar cells, International Journal of Photoenergy, 2013 (2013).
[36] R.T. Ako, P. Ekanayake, A.L. Tan, D.J. Young, La modified TiO2 photoanode and its effect on DSSC performance: A comparative study of doping and surface treatment on deep and surface charge trapping, Materials Chemistry and Physics, 172 (2016) 105-112. https://doi.org/10.1016/j.matchemphys.2015.12.066
[37] S. Shakir, H.M. Abd-ur-Rehman, Enhancement in Photovoltaic Performance of Dye Sensitized Solar Cells Using Cu and Cu: Ag Co-Doped TiO2 Photoanode, ASME 2016 Power Conference collocated with the ASME 2016 10th International Conference on Energy Sustainability and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology, American Society of Mechanical Engineers, 2016, pp. V001T008A016-V001T008A016.
[38] H. Ding, S. Zhang, J. T. Chen, X. P. Hu, Z. F. Du, Y. X. Qiu, D. L. Zhao, Reduction of graphene oxide at room temperature with vitamin C for RGO–TiO2 photoanodes in dye-sensitized solar cell, Thin Solid Films, 584 (2015) 29-36. https://doi.org/10.1016/j.tsf.2015.02.038
[39] M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chemical Reviews, 95 (1995) 69-96. https://doi.org/10.1021/cr00033a004
[40] Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li, L. Zhang, Progress of electrochemical capacitor electrode materials: A review, International Journal of Hydrogen Energy, 34 (2009) 4889-4899. https://doi.org/10.1016/j.ijhydene.2009.04.005
[41] Y. Fukai, Y. Kondo, S. Mori, E. Suzuki, Highly efficient dye-sensitized SnO2 solar cells having sufficient electron diffusion length, Electrochemistry Communications, 9 (2007) 1439-1443. https://doi.org/10.1016/j.elecom.2007.01.054
[42] C. Bauer, G. Boschloo, E. Mukhtar, A. Hagfeldt, Ultrafast studies of electron injection in Ru dye sensitized SnO2 nanocrystalline thin film, International Journal of Photoenergy, 4 (2002) 17-20. https://doi.org/10.1155/S1110662X0200003X
[43] R. Bhattacharjee, I. M. Hung, A SnO2 and ZnO Nanocomposite Photoanodes in Dye-Sensitized Solar Cells, ECS Solid State Letters, 2 (2013) Q101-Q104. https://doi.org/10.1149/2.013311ssl
[44] H. Seema, K.C. Kemp, V. Chandra, K.S. Kim, Graphene–SnO2 composites for highly efficient photocatalytic degradation of methylene blue under sunlight, Nanotechnology, 23 (2012) 355705. https://doi.org/10.1088/0957-4484/23/35/355705
[45] S. Zhuang, X. Xu, B. Feng, J. Hu, Y. Pang, G. Zhou, L. Tong, Y. Zhou, Photogenerated Carriers Transfer in Dye–Graphene–SnO2 Composites for Highly Efficient Visible-Light Photocatalysis, ACS Applied Materials&Interfaces, 6 (2013) 613-621. https://doi.org/10.1021/am4047014
[46] C. H. Hsu, C. C. Lai, L. C. Chen, P. S. Chan, Enhanced Performance of Dye-Sensitized Solar Cells with Graphene/ZnO Nanoparticles Bilayer Structure, Journal of Nanomaterials, 2014 (2014). https://doi.org/10.1155/2014/748319
[47] H. He, A. Chen, H. Lv, H. Dong, M. Chang, C. Li, Hydrothermal fabrication of Ni3S2/TiO2 nanotube composite films on Ni anode and application in photoassisted water electrolysis, Journal of Alloys and Compounds, 574 (2013) 217-220. https://doi.org/10.1016/j.jallcom.2013.04.208
[48] D.D. Chung, Review graphite, Journal of Materials Science, 37 (2002) 1475-1489. https://doi.org/10.1023/A:1014915307738
[49] S. Yuan, Q. Tang, B. Hu, C. Ma, J. Duan, B. He, Efficient quasi-solid-state dye-sensitized solar cells from graphene incorporated conducting gel electrolytes, Journal of Materials Chemistry A, 2 (2014) 2814-2821. https://doi.org/10.1039/c3ta14385f
[50] Z. Liu, K. Suenaga, P.J. Harris, S. Iijima, Open and closed edges of graphene layers, Physical Review Letters, 102 (2009) 015501. https://doi.org/10.1103/PhysRevLett.102.015501
[51] J.L. Dos Santos, N. Peres, A.C. Neto, Graphene bilayer with a twist: electronic structure, Physical Review Letters, 99 (2007) 256802. https://doi.org/10.1103/PhysRevLett.99.256802
[52] J.H. Warner, F. Schaffel, M. Rummeli, A. Bachmatiuk, Graphene: fundamentals and emergent applications, Newnes2012.
[53] E. McCann, M. Koshino, The electronic properties of bilayer graphene, Reports on Progress in Physics, 76 (2013) 056503. https://doi.org/10.1088/0034-4885/76/5/056503
[54] A.C. Neto, F. Guinea, N.M. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene, Reviews of Modern Physics, 81 (2009) 109. https://doi.org/10.1103/RevModPhys.81.109
[55] A. Rozhkov, A. Sboychakov, A. Rakhmanov, F. Nori, Electronic properties of graphene-based bilayer systems, Physics Reports, 648 (2016) 1-104. https://doi.org/10.1016/j.physrep.2016.07.003
[56] Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications, Advanced Materials, 22 (2010) 3906-3924. https://doi.org/10.1002/adma.201001068
[57] X. Guo, G. Lu, J. Chen, Graphene-based materials for photoanodes in dye-sensitized solar cells, Frontiers in Energy Research, 3 (2015) 50. https://doi.org/10.3389/fenrg.2015.00050
[58] E. Pop, V. Varshney, A.K. Roy, Thermal properties of graphene: Fundamentals and applications, MRS Bulletin, 37 (2012) 1273-1281. https://doi.org/10.1557/mrs.2012.203
[59] G. Fugallo, A. Cepellotti, L. Paulatto, M. Lazzeri, N. Marzari, F. Mauri, Thermal conductivity of graphene and graphite: collective excitations and mean free paths, Nano Letters, 14 (2014) 6109-6114. https://doi.org/10.1021/nl502059f
[60] A. Aghigh, V. Alizadeh, H. Wong, M.S. Islam, N. Amin, M. Zaman, Recent advances in utilization of graphene for filtration and desalination of water: A review, Desalination, 365 (2015) 389-397. https://doi.org/10.1016/j.desal.2015.03.024
[61] J.D. Roy-Mayhew, I.A. Aksay, Graphene materials and their use in dye-sensitized solar cells, Chemical Reviews, 114 (2014) 6323-6348. https://doi.org/10.1021/cr400412a
[62] F. Bonaccorso, Z. Sun, T. Hasan, A. Ferrari, Graphene photonics and optoelectronics, Nature Photonics, 4 (2010) 611-622. https://doi.org/10.1038/nphoton.2010.186
[63] Z. Bo, Z. Wen, H. Kim, G. Lu, K. Yu, J. Chen, One-step fabrication and capacitive behavior of electrochemical double layer capacitor electrodes using vertically-oriented graphene directly grown on metal, Carbon, 50 (2012) 4379-4387. https://doi.org/10.1016/j.carbon.2012.05.014
[64] A. Bianco, H.-M. Cheng, T. Enoki, Y. Gogotsi, R.H. Hurt, N. Koratkar, T. Kyotani, M. Monthioux, C.R. Park, J.M. Tascon, All in the graphene family–a recommended nomenclature for two-dimensional carbon materials, Carbon, 65 (2013) 1-6. https://doi.org/10.1016/j.carbon.2013.08.038
[65] T.F. Emiru, D.W. Ayele, Controlled synthesis, characterization and reduction of graphene oxide: A convenient method for large scale production, Egyptian Journal of Basic and Applied Sciences, 4 (2017) 74-79. https://doi.org/10.1016/j.ejbas.2016.11.002
[66] B. Zhao, P. Liu, Y. Jiang, D. Pan, H. Tao, J. Song, T. Fang, W. Xu, Supercapacitor performances of thermally reduced graphene oxide, Journal of Power Sources, 198 (2012) 423-427. https://doi.org/10.1016/j.jpowsour.2011.09.074
[67] Y. Shao, J. Wang, M. Engelhard, C. Wang, Y. Lin, Facile and controllable electrochemical reduction of graphene oxide and its applications, Journal of Materials Chemistry, 20 (2010) 743-748. https://doi.org/10.1039/B917975E
[68] X. Y. Peng, X. X. Liu, D. Diamond, K.T. Lau, Synthesis of electrochemically-reduced graphene oxide film with controllable size and thickness and its use in supercapacitor, Carbon, 49 (2011) 3488-3496. https://doi.org/10.1016/j.carbon.2011.04.047
[69] S.D. Perera, R.G. Mariano, N. Nijem, Y. Chabal, J.P. Ferraris, K.J. Balkus, Alkaline deoxygenated graphene oxide for supercapacitor applications: An effective green alternative for chemically reduced graphene, Journal of Power Sources, 215 (2012) 1-10. https://doi.org/10.1016/j.jpowsour.2012.04.059
[70] M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Graphene-based ultracapacitors, Nano Letters, 8 (2008) 3498-3502. https://doi.org/10.1021/nl802558y
[71] Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, Y. Chen, Supercapacitor devices based on graphene materials, The Journal of Physical Chemistry. C, Nanomaterials and Interfaces, 113 (2009) 13103. https://doi.org/10.1021/jp902214f
[72] C. Liu, Z. Yu, D. Neff, A. Zhamu, B.Z. Jang, Graphene-based supercapacitor with an ultrahigh energy density, Nano Letters, 10 (2010) 4863-4868. https://doi.org/10.1021/nl102661q
[73] Y. Chen, X. Zhang, D. Zhang, P. Yu, Y. Ma, High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes, Carbon, 49 (2011) 573-580. https://doi.org/10.1016/j.carbon.2010.09.060
[74] A. Yu, I. Roes, A. Davies, Z. Chen, Ultrathin, transparent, and flexible graphene films for supercapacitor application, Applied Physics Letters, 96 (2010) 253105. https://doi.org/10.1063/1.3455879
[75] C.K. Chua, M. Pumera, Chemical reduction of graphene oxide: a synthetic chemistry viewpoint, Chemical Society Reviews, 43 (2014) 291-312. https://doi.org/10.1039/C3CS60303B
[76] H. B. Zhang, J. W. Wang, Q. Yan, W. G. Zheng, C. Chen, Z. Z. Yu, Vacuum-assisted synthesis of graphene from thermal exfoliation and reduction of graphite oxide, Journal of Materials Chemistry, 21 (2011) 5392-5397. https://doi.org/10.1039/c1jm10099h
[77] Y. Zhang, H. Hao, L. Wang, Effect of morphology and defect density on electron transfer of electrochemically reduced graphene oxide, Applied Surface Science, 390 (2016) 385-392. https://doi.org/10.1016/j.apsusc.2016.08.127
[78] S. Ghasemi, S.R. Hosseini, F. Mousavi, Electrophoretic deposition of graphene nanosheets: A suitable method for fabrication of silver-graphene counter electrode for dye-sensitized solar cell, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 520 (2017) 477-487. https://doi.org/10.1016/j.colsurfa.2017.02.004
[79] B. Bhanvase, T. Shende, S. Sonawane, A review on graphene–TiO2 and doped graphene–TiO2 nanocomposite photocatalyst for water and wastewater treatment, Environmental Technology Reviews, 6 (2017) 1-14. https://doi.org/10.1080/21622515.2016.1264489
[80] H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, P25-graphene composite as a high performance photocatalyst, ACS Nano, 4 (2009) 380-386. https://doi.org/10.1021/nn901221k
[81] K. Li, J. Xiong, T. Chen, L. Yan, Y. Dai, D. Song, Y. Lv, Z. Zeng, Preparation of graphene/TiO2 composites by nonionic surfactant strategy and their simulated sunlight and visible light photocatalytic activity towards representative aqueous POPs degradation, Journal of Hazardous Materials, 250 (2013) 19-28. https://doi.org/10.1016/j.jhazmat.2013.01.069
[82] Y. Zhang, C. Pan, TiO2/graphene composite from thermal reaction of graphene oxide and its photocatalytic activity in visible light, Journal of Materials Science, 46 (2011) 2622-2626. https://doi.org/10.1007/s10853-010-5116-x
[83] N. Khalid, E. Ahmed, Z. Hong, L. Sana, M. Ahmed, Enhanced photocatalytic activity of graphene–TiO2 composite under visible light irradiation, Current Applied Physics, 13 (2013) 659-663. https://doi.org/10.1016/j.cap.2012.11.003
[84] Y. Wang, Z. Li, Y. He, F. Li, X. Liu, J. Yang, Low-temperature solvothermal synthesis of graphene–TiO2 nanocomposite and its photocatalytic activity for dye degradation, Materials Letters, 134 (2014) 115-118. https://doi.org/10.1016/j.matlet.2014.07.076
[85] R. Kumar, R.K. Singh, P.K. Dubey, D.P. Singh, R.M. Yadav, R.S. Tiwari, Hydrothermal synthesis of a uniformly dispersed hybrid graphene–TiO2 nanostructure for optical and enhanced electrochemical applications, RSC Advances, 5 (2015) 7112-7120. https://doi.org/10.1039/C4RA06852A
[86] Y. Zhang, Z. R. Tang, X. Fu, Y. J. Xu, Engineering the unique 2D mat of graphene to achieve graphene-TiO2 nanocomposite for photocatalytic selective transformation: what advantage does graphene have over its forebear carbon nanotube?, ACS Nano, 5 (2011) 7426-7435. https://doi.org/10.1021/nn202519j
[87] Q. Xiang, J. Yu, M. Jaroniec, Graphene-based semiconductor photocatalysts, Chemical Society Reviews, 41 (2012) 782-796. https://doi.org/10.1039/C1CS15172J
[88] B. Jiang, C. Tian, Q. Pan, Z. Jiang, J. Q. Wang, W. Yan, H. Fu, Enhanced photocatalytic activity and electron transfer mechanisms of graphene/TiO2 with exposed {001} facets, The Journal of Physical Chemistry C, 115 (2011) 23718-23725. https://doi.org/10.1021/jp207624x
[89] Y. Zhang, N. Zhang, Z. R. Tang, Y. J. Xu, Improving the photocatalytic performance of graphene–TiO2 nanocomposites via a combined strategy of decreasing defects of graphene and increasing interfacial contact, Physical Chemistry Chemical Physics, 14 (2012) 9167-9175. https://doi.org/10.1039/c2cp41318c
[90] D. Geng, H. Wang, G. Yu, Graphene Single Crystals: Size and Morphology Engineering, Advanced Materials, 27 (2015) 2821-2837. https://doi.org/10.1002/adma.201405887
[91] H. Zhang, P. Xu, G. Du, Z. Chen, K. Oh, D. Pan, Z. Jiao, A facile one-step synthesis of TiO2/graphene composites for photodegradation of methyl orange, Nano Research, 4 (2011) 274-283. https://doi.org/10.1007/s12274-010-0079-4
[92] S.R. Kim, M.K. Parvez, M. Chhowalla, UV-reduction of graphene oxide and its application as an interfacial layer to reduce the back-transport reactions in dye-sensitized solar cells, Chemical Physics Letters, 483 (2009) 124-127. https://doi.org/10.1016/j.cplett.2009.10.066
[93] G.S. Thien, F.S. Omar, N.I.S.A. Blya, W.S. Chiu, H.N. Lim, R. Yousefi, F. J. Sheini, N.M. Huang, Improved Synthesis of Reduced Graphene Oxide-Titanium Dioxide Composite with Highly Exposed 001 Facets and Its Photoelectrochemical Response, International Journal of Photoenergy, 2014 (2014).
[94] K. Woan, G. Pyrgiotakis, W. Sigmund, Photocatalytic Carbon‐Nanotube–TiO2 Composites, Advanced Materials, 21 (2009) 2233-2239. https://doi.org/10.1002/adma.200802738
[95] S. Anandan, Recent improvements and arising challenges in dye-sensitized solar cells, Solar Energy Materials and Solar Cells, 91 (2007) 843-846. https://doi.org/10.1016/j.solmat.2006.11.017
[96] S.U. Khan, M. Al-Shahry, W.B. Ingler, Efficient photochemical water splitting by a chemically modified n-TiO2, Science, 297 (2002) 2243-2245. https://doi.org/10.1126/science.1075035
[97] J.H. Park, S. Kim, A.J. Bard, Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting, Nano Letters, 6 (2006) 24-28. https://doi.org/10.1021/nl051807y
[98] R. Sellappan, J. Sun, A. Galeckas, N. Lindvall, A. Yurgens, A.Y. Kuznetsov, D. Chakarov, Influence of graphene synthesizing techniques on the photocatalytic performance of graphene–TiO2 nanocomposites, Physical Chemistry Chemical Physics, 15 (2013) 15528-15537. https://doi.org/10.1039/C3CP52457D
[99] B. Tryba, A. Morawski, M. Inagaki, Application of TiO2-mounted activated carbon to the removal of phenol from water, Applied Catalysis B: Environmental, 41 (2003) 427-433. https://doi.org/10.1016/S0926-3373(02)00173-X
[100] H. Wang, X. Zhang, Y. Su, H. Yu, S. Chen, X. Quan, F. Yang, Photoelectrocatalytic oxidation of aqueous ammonia using TiO2 nanotube arrays, Applied Surface Science, 311 (2014) 851-857. https://doi.org/10.1016/j.apsusc.2014.05.195
[101] P. Wang, Y. Ao, C. Wang, J. Hou, J. Qian, Enhanced photoelectrocatalytic activity for dye degradation by graphene–titania composite film electrodes, Journal of Hazardous Materials, 223 (2012) 79-83. https://doi.org/10.1016/j.jhazmat.2012.04.050
[102] Y. Min, K. Zhang, W. Zhao, F. Zheng, Y. Chen, Y. Zhang, Enhanced chemical interaction between TiO2 and graphene oxide for photocatalytic decolorization of methylene blue, Chemical Engineering Journal, 193 (2012) 203-210. https://doi.org/10.1016/j.cej.2012.04.047
[103] J.S. Lee, K.H. You, C.B. Park, Highly photoactive, low bandgap TiO2 nanoparticles wrapped by graphene, Advanced Materials, 24 (2012) 1084-1088. https://doi.org/10.1002/adma.201104110
[104] N.J. Bell, Y.H. Ng, A. Du, H. Coster, S.C. Smith, R. Amal, Understanding the enhancement in photoelectrochemical properties of photocatalytically prepared TiO2-reduced graphene oxide composite, The Journal of Physical Chemistry C, 115 (2011) 6004-6009. https://doi.org/10.1021/jp1113575
[105] Y.H. Ng, A. Iwase, A. Kudo, R. Amal, Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water splitting, The Journal of Physical Chemistry Letters, 1 (2010) 2607-2612. https://doi.org/10.1021/jz100978u
[106] Y.T. Liang, B.K. Vijayan, O. Lyandres, K.A. Gray, M.C. Hersam, Effect of dimensionality on the photocatalytic behavior of carbon–titania nanosheet composites: charge transfer at nanomaterial interfaces, The Journal of Physical Chemistry Letters, 3 (2012) 1760-1765. https://doi.org/10.1021/jz300491s
[107] W. Fan, Q. Lai, Q. Zhang, Y. Wang, Nanocomposites of TiO2 and reduced graphene oxide as efficient photocatalysts for hydrogen evolution, The Journal of Physical Chemistry C, 115 (2011) 10694-10701. https://doi.org/10.1021/jp2008804
[108] D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide, ACS Nano, 4 (2010) 4806-4814. https://doi.org/10.1021/nn1006368
[109] Y. Liang, H. Wang, H.S. Casalongue, Z. Chen, H. Dai, TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials, Nano Research, 3 (2010) 701-705. https://doi.org/10.1007/s12274-010-0033-5
[110] P.K. Dubey, P. Tripathi, R. Tiwari, A. Sinha, O. Srivastava, Synthesis of reduced graphene oxide–TiO2 nanoparticle composite systems and its application in hydrogen production, International Journal of Hydrogen Energy, 39 (2014) 16282-16292. https://doi.org/10.1016/j.ijhydene.2014.03.104
[111] Z. Xu, M. Yin, J. Sun, G. Ding, L. Lu, P. Chang, X. Chen, D. Li, 3D periodic multiscale TiO2 architecture: a platform decorated with graphene quantum dots for enhanced photoelectrochemical water splitting, Nanotechnology, 27 (2016) 115401. https://doi.org/10.1088/0957-4484/27/11/115401
[112] D. Wang, D. Choi, J. Li, Z. Yang, Z. Nie, R. Kou, D. Hu, C. Wang, L.V. Saraf, J. Zhang, Self-assembled TiO2–graphene hybrid nanostructures for enhanced Li-ion insertion, ACS Nano, 3 (2009) 907-914. https://doi.org/10.1021/nn900150y
[113] X. W. Liu, L. Y. Shen, Y. H. Hu, Preparation of TiO2-Graphene Composite by a Two-Step Solvothermal Method and its Adsorption-Photocatalysis Property, Water, Air, & Soil Pollution, 227 (2016) 1-12. https://doi.org/10.1007/s11270-016-2841-z
[114] X. Zhang, X. Cui, Graphene/Semiconductor Nanocomposites: Preparation and Application for Photocatalytic Hydrogen Evolution, (2012).
[115] X. Y. Zhang, H. P. Li, X. L. Cui, Y. Lin, Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting, Journal of Materials Chemistry, 20 (2010) 2801-2806. https://doi.org/10.1039/b917240h
[116] M. Wojtoniszak, B. Zielinska, X. Chen, R.J. Kalenczuk, E. Borowiak-Palen, Synthesis and photocatalytic performance of TiO2 nanospheres–graphene nanocomposite under visible and UV light irradiation, Journal of Materials Science, 47 (2012) 3185-3190. https://doi.org/10.1007/s10853-011-6153-9
[117] N. Farhangi, R.R. Chowdhury, Y. Medina-Gonzalez, M.B. Ray, P.A. Charpentier, Visible light active Fe doped TiO2 nanowires grown on graphene using supercritical CO2, Applied Catalysis B: Environmental, 110 (2011) 25-32. https://doi.org/10.1016/j.apcatb.2011.08.012
[118] Q. Zhang, Y. He, X. Chen, D. Hu, L. Li, T. Yin, L. Ji, Structure and photocatalytic properties of TiO2-graphene oxide intercalated composite, Chinese Science Bulletin, 56 (2011) 331-339. https://doi.org/10.1007/s11434-010-3111-x
[119] A. Mukherji, B. Seger, G.Q. Lu, L. Wang, Nitrogen doped Sr2Ta2O7 coupled with graphene sheets as photocatalysts for increased photocatalytic hydrogen production, ACS Nano, 5 (2011) 3483-3492. https://doi.org/10.1021/nn102469e
[120] S. M. Paek, E. Yoo, I. Honma, Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure, Nano Letters, 9 (2008) 72-75. https://doi.org/10.1021/nl802484w
[121] X. Geng, L. Niu, Z. Xing, R. Song, G. Liu, M. Sun, G. Cheng, H. Zhong, Z. Liu, Z. Zhang, Aqueous‐Processable Noncovalent Chemically Converted Graphene–Quantum Dot Composites for Flexible and Transparent Optoelectronic Films, Advanced Materials, 22 (2010) 638-642. https://doi.org/10.1002/adma.200902871
[122] N. Li, G. Liu, C. Zhen, F. Li, L. Zhang, H.M. Cheng, Battery Performance and Photocatalytic Activity of Mesoporous Anatase TiO2 Nanospheres/Graphene Composites by Template‐Free Self‐Assembly, Advanced Functional Materials, 21 (2011) 1717-1722. https://doi.org/10.1002/adfm.201002295
[123] T.N. Lambert, C.A. Chavez, B. Hernandez-Sanchez, P. Lu, N.S. Bell, A. Ambrosini, T. Friedman, T.J. Boyle, D.R. Wheeler, D.L. Huber, Synthesis and characterization of titania− graphene nanocomposites, The Journal of Physical Chemistry C, 113 (2009) 19812-19823. https://doi.org/10.1021/jp905456f
[124] J. Guo, S. Zhu, Z. Chen, Y. Li, Z. Yu, Q. Liu, J. Li, C. Feng, D. Zhang, Sonochemical synthesis of TiO2 nanoparticles on graphene for use as photocatalyst, Ultrasonics Sonochemistry, 18 (2011) 1082-1090. https://doi.org/10.1016/j.ultsonch.2011.03.021
[125] M.R. Hasan, C.W. Lai, S. Bee Abd Hamid, W. Jeffrey Basirun, Effect of Ce doping on RGO-TiO2 nanocomposite for high photoelectrocatalytic behavior, International Journal of Photoenergy, 2014 (2014).
[126] A. Morais, C. Longo, J.R. Araujo, M. Barroso, J.R. Durrant, A.F. Nogueira, Nanocrystalline anatase TiO2/reduced graphene oxide composite films as photoanodes for photoelectrochemical water splitting studies: the role of reduced graphene oxide, Physical Chemistry Chemical Physics, 18 (2016) 2608-2616. https://doi.org/10.1039/C5CP06707C
[127] C. H. Yang, L. S. Wang, S. Y. Chen, M. C. Huang, Y. H. Li, Y. C. Lin, P. F. Chen, J. F. Shaw, K. S. Huang, Microfluidic assisted synthesis of silver nanoparticle–chitosan composite microparticles for antibacterial applications, International Journal of Pharmaceutics, 510 (2016) 493-500. https://doi.org/10.1016/j.ijpharm.2016.01.010
[128] D. Chen, L. Zou, S. Li, F. Zheng, Nanospherical like reduced graphene oxide decorated TiO2 nanoparticles: an advanced catalyst for the hydrogen evolution reaction, Scientific Reports, 6 (2016). https://doi.org/10.1038/srep20335
[129] H. Liu, K. Cao, X. Xu, L. Jiao, Y. Wang, H. Yuan, Ultrasmall TiO2 nanoparticles in situ growth on graphene hybrid as superior anode material for sodium/lithium ion batteries, ACS Applied Materials&Interfaces, 7 (2015) 11239-11245. https://doi.org/10.1021/acsami.5b02724
[130] H. Xing, W. Wen, J. M. Wu, One-pot low-temperature synthesis of TiO2 nanowire/rGO composites with enhanced photocatalytic activity, RSC Advances, 6 (2016) 94092-94097. https://doi.org/10.1039/C6RA16484F