Processing and Characterisation of Ohmic Contacts to Silicon Carbide
K. Vasilevskiy, K. Zekentes, N. Wright
This chapter reports on formation and characterization of ohmic contacts to silicon carbide. At first, the theory of ohmic contacts is briefly described with special attention to dependence of contact resistance on semiconductor parameters and to the differences between ohmic contacts to silicon carbide and silicon. Then, different contact resistivity measurement techniques are discussed with primary emphasis upon the transfer length method (TLM). TLM limitations, accuracy and optimized test structure design are considered in detail. Recent progress in the development of ohmic contacts is reviewed with more detailed description of commonly used nickel and aluminum-titanium contacts to n- and p-type silicon carbide, respectively. Protection, overlaying and thermal stability of ohmic contacts to SiC are discussed as well as compatibility of ohmic contacts formation with SiC device processing. Finally, the requirements to further improvements in ohmic contacts fabrication and characterization are outlined.
Keywords
Silicon Carbide, Ohmic Contact, Transition Line Model, Transfer Length Method, Contact Resistivity, Metal Silicides, Metal Carbides, Diffusion Barrier, Schottky Barrier, High Temperature Electronics
Published online 9/1/2018, 100 pages
Citation: K. Vasilevskiy, K. Zekentes, N. Wright, Processing and Characterisation of Ohmic Contacts to Silicon Carbide, in: Advancing Silicon Carbide Electronics Technology I, K. Zekentes, K. Vasilevskiy (Eds.), Materials Research Forum LLC, Millersville, 2018, pp 27-126
DOI: https://dx.doi.org/10.21741/9781945291852-2
Part of the book on Advancing Silicon Carbide Electronics Technology I
References
[1] R. N. Hall, “Electrical Contacts to Silicon Carbide,” Journal of Applied Physics, vol. 29, no. 6, pp. 914-917, 1958.
[2] J. A. Lely, “Darstellung von Einkristallen von Silicium Carbid und Beherrschung von Art und Menge der eingebauten Verunreinigungen,” Ber. Dt. Keram. Ges., vol. 8, pp. 229, 1955.
[3] Y. M. Tairov, and V. F. Tsvetkov, “Investigation of growth processes of ingots of silicon carbide single crystals,” Journal of Crystal Growth, vol. 43, no. 2, pp. 209-212, 1978.
[4] N. Kuroda, K. Shibahara, W. Yoo, S. Nishino, and H. Matsunami, “Step-Controlled VPE Growth of SiC Single Crystals at Low Temperatures,” in Extended Abstracts of the 1987 Conference on Solid State Devices and Materials, 1987, pp. 227-230. https://doi.org/10.7567/SSDM.1987.C-4-2
[5] G. L. Harris, G. Kelner, and M. Shur, “Ohmic contacts to SiC,” Properties of Silicon Carbide, G. L. Harris, ed., p. 295, London, United Kingdom: INSPEC, the Institution of Electrical Engineers, 1993.
[6] L. M. Porter, and R. F. Davis, “A critical review of ohmic and rectifying contacts for silicon carbide,” Materials Science and Engineering: B, vol. 34, no. 2, pp. 83-105, 1995.
[7] J. Crofton, L. M. Porter, and J. R. Williams, “The Physics of Ohmic Contacts to SiC,” physica status solidi (b), vol. 202, no. 1, pp. 581-603, 1997.
[8] F. Roccaforte, F. La Via, and V. Raineri, “OHMIC CONTACTS TO SIC,” International Journal of High Speed Electronics and Systems, vol. 15, no. 04, pp. 781-820, 2005. https://doi.org/10.1142/S0129156405003429
[9] Z. Wang, W. Liu, and C. Wang, “Recent Progress in Ohmic Contacts to Silicon Carbide for High-Temperature Applications,” Journal of Electronic Materials, vol. 45, no. 1, pp. 267-284, 2016/01/01, 2016.
[10] E. H. Rhoderick, and R. H. Williams, Metal-Semiconductor Contacts, 2 ed., Oxford: Clarendon Press, 1988.
[11] D. K. Schroder, “Semiconductor Material and Device Characterization,” John Wiley & Sons, Inc., 2005. https://doi.org/10.1002/0471749095
[12] S. M. Sze, Physics of Semiconductor Devices, Second ed., p. 868, New York: Wiley, 1981.
[13] Y. A. Goldberg, M. E. Levinshtein, and S. L. Rumyantsev, “Silicon Carbide,” Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe, M. E. Levinshtein, S. L. Rumyantsev and M. S. Shur, eds., New York: John Wiley & Sons, Inc. , 2001.
[14] S. Y. Davydov, “On the electron affinity of silicon carbide polytypes,” Semiconductors, vol. 41, no. 6, pp. 696-698, June 01, 2007. https://doi.org/10.1134/S1063782607060152
[15] M. Wiets, M. Weinelt, and T. Fauster, “Electronic structure of SiC(0001) surfaces studied by two-photon photoemission,” Physical Review B, vol. 68, no. 12, pp. 125321, 2003.
[16] K. K. Ng, and R. Liu, “On the calculation of specific contact resistivity on <100> Si,” IEEE Transactions on Electron Devices, vol. 37, no. 6, pp. 1535-1537, 1990. https://doi.org/10.1109/16.106252
[17] C. Persson, and U. Lindefelt, “Relativistic band structure calculation of cubic and hexagonal SiC polytypes,” Journal of Applied Physics, vol. 82, pp. 5496-5508, 1997. https://doi.org/10.1063/1.365578
[18] W. M. Chen, N. T. Son, E. Janzén, D. M. Hofmann, and B. K. Meyer, “Effective Masses in SiC Determined by Cyclotron Resonance Experiments,” physica status solidi (a), vol. 162, no. 1, pp. 79-93, 1997.
[19] N. T. Son, W. M. Chen, O. Kordina, A. O. Konstantinov, B. Monemar, E. Janzen, D. M. Hofman, D. Volm, M. Drechsler, and B. K. Meyer, “Electron effective masses in 4H SiC,” Applied Physics Letters, vol. 66, no. 9, pp. 1074-1076, 1995. https://doi.org/10.1063/1.113576
[20] C. R. Crowell, “The Richardson constant for thermionic emission in Schottky barrier diodes,” Solid-State Electronics, vol. 8, no. 4, pp. 395-399, 1965. https://doi.org/10.1016/0038-1101(65)90116-4
[21] G. Pensl, F. Ciobanu, T. Frank, M. Krieger, S. Reshanov, F. Schmid, and M. Weidner, “SiC MATERIAL PROPERTIES,” International Journal of High Speed Electronics and Systems, vol. 15, no. 04, pp. 705-745, 2005. https://doi.org/10.1142/S0129156405003405
[22] A. Itoh, and H. Matsunami, “Analysis of Schottky Barrier Heights of Metal/SiC Contacts and Its Possible Application to High-Voltage Rectifying Devices,” physica status solidi (a), vol. 162, no. 1, pp. 389-408, 1997.
[23] R. C. Jaeger, Introduction to Microelectronic Fabrication, New York: Addison-Wesley Publishing Company, 1993.
[24] Y. M. Tairov, and V. F. Tsvetkov, “Semiconductor Compounds AIVBIV,” Handbook on electrotechnical materials, Y. V. Koritskii, V. V. Pasynkov and B. M. Tareev, eds., p. 728, Leningrad: Energomashizdat, 1988 [in Russian].
[25] A. Hallén, R. Nipoti, S. E. Saddow, S. Rao, and B. G. Svensson, “Advances in Selective Doping of SiC Via Ion Implantation,” Advances in Silicon Carbide Processing and Applications, S. E. Saddow and A. Agarwal, eds., pp. 109-153: Artech House, 2004.
[26] S. W. Jones, Diffusion in silicon: IC Knowledge LLC, 2008.
[27] S. V. Rendakova, V. Ivantsov, and V. A. Dmitriev, Mater. Sci. Forum, vol. 163, pp. 264-268, 1998.
[28] Y. Vodakov, E. N. Mokhov, M. G. Ramm, and A. D. Roenkov, Amorphous and Crystalline Silicon Carbide III [Springer Proceedings in Physics 56] pp. 329, 1992. https://doi.org/10.1007/978-3-642-84402-7_50
[29] R. S. Okojie, L. J. Evans, D. Lukco, and J. P. Morris, “A Novel Tungsten-Nickel Alloy Ohmic Contact to SiC at 900C,” Electron Device Letters, IEEE, vol. 31, no. 8, pp. 791-793, 2010. https://doi.org/10.1109/LED.2010.2050761
[30] M. Qin, V. M. C. Poon, and S. C. H. Ho, “Investigation of Polycrystalline Nickel Silicide Films as a Gate Material,” Journal of The Electrochemical Society, vol. 148, no. 5, pp. G271, 2001. https://doi.org/10.1149/1.1362551
[31] L. J. Chen, Silicide Technology for Integrated Circuits, Stevenage: Institution of Electrical Engineer, 2005.
[32] Y.-J. Chang, and J. L. Erskine, “Diffusion layers and the Schottky-barrier height in nickel silicide—silicon interfaces,” Physical Review B, vol. 28, no. 10, pp. 5766-5773, 1983.
[33] H. Yu, X. Zhang, H. Shen, Y. Tang, Y. Bai, Y. Wu, K. Liu, and X. Liu, “Thermal stability of Ni/Ti/Al ohmic contacts to p-type 4H-SiC,” Journal of Applied Physics, vol. 117, no. 2, pp. 025703, 2015.
[34] A. Nino, T. Hirabara, S. Sugiyama, and H. Taimatsu, “Preparation and characterization of tantalum carbide (TaC) ceramics,” International Journal of Refractory Metals and Hard Materials, vol. 52, pp. 203-208, 2015.
[35] C. P. Kempter, and M. R. Nadler, “Thermal Expansion of Tantalum Monocarbide to 3020°C,” The Journal of Chemical Physics, vol. 43, no. 5, pp. 1739-1742, 1965. https://doi.org/10.1063/1.1696999
[36] J. B. William, “Work Function of Tantalum Carbide and the Effects of Adsorption and Sputtering of Cesium,” Journal of Applied Physics, vol. 42, no. 7, pp. 2682-2688, 1971. https://doi.org/10.1063/1.1660608
[37] U. Gottlieb, O. Laborde, O. Thomas, F. Weiss, A. Rouault, J. P. Senateur, and R. Madar, “Resistivity and magnetoresistance of monocrystalline TaSi2 and VSi2,” Surface and Coatings Technology, vol. 45, no. 1, pp. 237-243, 1991.
[38] I. Engström, and B. Lönnberg, “Thermal expansion studies of the group IV‐VII transition‐metal disilicides,” Journal of Applied Physics, vol. 63, no. 9, pp. 4476-4484, 1988.
[39] R. G. Wilson, and W. E. McKee, “Vacuum Thermionic Work Functions and Thermal Stability of TaB2, ZrC, Mo2C, MoSi2, TaSi2, and WSi2,” Journal of Applied Physics, vol. 38, no. 4, pp. 1716-1718, 1967. https://doi.org/10.1063/1.1709747
[40] D. T. Morelli, “Thermal conductivity and thermoelectric power of titanium carbide single crystals,” Physical Review B, vol. 44, no. 11, pp. 5453-5458, 1991.
[41] S. Zaima, Y. Shibata, H. Adachi, C. Oshima, S. Otani, M. Aono, and Y. Ishizawa, “Atomic chemical composition and reactivity of the TiC(111) surface,” Surface Science, vol. 157, no. 2-3, pp. 380-392, 1985.
[42] M. Kadoshima, T. Matsuki, S. Miyazaki, K. Shiraishi, T. Chikyo, K. Yamada, T. Aoyama, Y. Nara, and Y. Ohji, “Effective-Work-Function Control by Varying the TiN Thickness in Poly-Si/TiN Gate Electrodes for Scaled High-k CMOSFETs,” IEEE Electron Device Letters, vol. 30, no. 5, pp. 466-468, 2009. https://doi.org/10.1109/LED.2009.2016585
[43] T. Abi-Tannous, M. Soueidan, G. Ferro, M. Lazar, C. Raynaud, B. Toury, M. F. Beaufort, J. F. Barbot, O. Dezellus, and D. Planson, “A Study on the Temperature of Ohmic Contact to p-Type SiC Based on Ti3SiC2 Phase,” IEEE Transactions on Electron Devices, vol. 63, no. 6, pp. 2462-2468, 2016. https://doi.org/10.1109/TED.2016.2556725
[44] M. Gao, S. Tsukimoto, S. H. Goss, S. P. Tumakha, T. Onishi, M. Murakami, and L. J. Brillson, “Role of Interface Layers and Localized States in TiAl-Based Ohmic Contacts to p-Type 4H-SiC,” Journal of Electronic Materials, vol. 36, no. 4, pp. 277-284, 2007.
[45] S. Y. Jiang, X. Y. Li, and Z. Z. Chen, “Role of W in W/Ni Bilayer Ohmic Contact to n-Type 4H-SiC From the Perspective of Device Applications,” IEEE Transactions on Electron Devices, vol. 65, no. 2, pp. 641-647, 2018. https://doi.org/10.1109/TED.2017.2784098
[46] E. N. Denbnovetskaya, V. A. Lavrenko, I. A. Podchernyaeva, T. G. Protsenko, N. I. Siman, and V. S. Fomenko, “Electron work function and surface recombination of hydrogen for alloys of the system HfC-WC,” Soviet Powder Metallurgy and Metal Ceramics, vol. 10, no. 4, pp. 289-291, April 01, 1971.
[47] A. L. Syrkin, J. M. Bluet, G. Bastide, T. Bretagnon, A. A. Lebedev, M. G. Rastegaeva, N. S. Savkina, and V. E. Chelnokov, “Surface barrier height in metal-SiC structures of 6H, 4H and 3C polytypes,” Materials Science and Engineering: B, vol. 46, no. 1, pp. 236-239, 1997.
[48] A. Iton, O. Takemura, T. Kimoto, and H. Matsunami, “Barrier height analysis of metal/4H-SiC Schottky contacts,” Inst. Phys. Conf. Ser. No 142, pp. 689, 1996.
[49] F. A. Padovani, and R. Stratton, “Field and thermionic-field emission in Schottky barriers,” Solid-State Electronics, vol. 9, no. 7, pp. 695-707, 1966.
[50] C. R. Crowell, “Richardson constant and tunneling effective mass for thermionic and thermionic-field emission in Schottky barrier diodes,” Solid-State Electronics, vol. 12, no. 1, pp. 55-59, 1969. https://doi.org/10.1016/0038-1101(69)90135-X
[51] A. Y. C. Yu, “Electron tunneling and contact resistance of metal-silicon contact barriers,” Solid-State Electronics, vol. 13, no. 2, pp. 239-247, 1970.
[52] R. H. Cox, and H. Strack, “Ohmic contacts for GaAs devices,” Solid-State Electronics, vol. 10, no. 12, pp. 1213-1218, 1967.
[53] G. K. Reeves, and H. B. Harrison, “Obtaining the specific contact resistance from transmission line model measurements,” IEEE Electron Device Letters, vol. 3, no. 5, pp. 111-113, 1982. https://doi.org/10.1109/EDL.1982.25502
[54] H. Murrmann, and D. Widmann, “Current crowding on metal contacts to planar devices,” IEEE Transactions on Electron Devices, vol. 16, no. 12, pp. 1022-1024, 1969.
[55] U. Haw-Jye, D. B. Janes, and K. J. Webb, “Error analysis leading to design criteria for transmission line model characterization of ohmic contacts,” IEEE Transactions on Electron Devices, vol. 48, no. 4, pp. 758-766, 2001. https://doi.org/10.1109/16.915721
[56] A. N. Andreev, A. M. Strel’chuk, N. S. Savkina, F. M. Snegov, and V. E. Chelnokov, “An investigation of SiC-6H dinistor structures,” Pisma Zh. Tekh. Fiz., vol. 29, no. 6, pp. 1083-1092, 1995.
[57] I. P. Nikitina, K. V. Vassilevski, N. G. Wright, A. B. Horsfall, A. G. Oneill, and C. M. Johnson, “Formation and role of graphite and nickel silicide in nickel based ohmic contacts to n-type silicon carbide,” Journal of Applied Physics, vol. 97, no. 8, pp. 083709-083709-7, 2005. https://doi.org/10.1063/1.1872200
[58] S. K. Lee, C. M. Zetterling, M. Östling, J. P. Palmquist, H. Högberg, and U. Jansson, “Low resistivity ohmic titanium carbide contacts to n- and p-type 4H-silicon carbide,” Solid-State Electronics, vol. 44, no. 7, pp. 1179-1186, 2000.
[59] S. Tanimoto, M. Inada, N. Kiritani, M. Hoshi, H. Okushi, and K. Arai, “Single Contact-Material MESFETs on 4H-SiC,” Materials Science Forum, vol. 457-460, pp. 1221-1224, 2004. https://doi.org/10.4028/www.scientific.net/MSF.457-460.1221
[60] H. Na, H. Kim, K. Adachi, N. Kiritani, S. Tanimoto, H. Okushi, and K. Arai, “High-quality schottky and ohmic contacts in planar 4H-SiC metal semiconductor field-effect transistors and device performance,” Journal of Electronic Materials, vol. 33, no. 2, pp. 89-93, 2004.
[61] M. Vivona, G. Greco, F. Giannazzo, R. Lo Nigro, S. Rascunà, M. Saggio, and F. Roccaforte, “Thermal stability of the current transport mechanisms in Ni-based Ohmic contacts on n- and p-implanted 4H-SiC,” Semiconductor Science and Technology, vol. 29, no. 7, pp. 075018, 2014.
[62] S. Tanimoto, N. Kiritani, M. Hoshi, and H. Okushi, “Ohmic Contact Structure and Fabrication Process Applicable to Practical SiC Devices,” Materials Science Forum, vol. 389-393, pp. 879-884, 2002. https://doi.org/10.4028/www.scientific.net/MSF.389-393.879
[63] S. Tanimoto, and H. Oohashi, “High-Temperature Reliable Ni2Si-Based Contacts on SiC Connected to Si-Doped Al Interconnect via Ta/TaN Barrier,” Materials Science Forum, vol. 615-617, pp. 561-564, 2009. https://doi.org/10.4028/www.scientific.net/MSF.615-617.561
[64] W. Daves, A. Krauss, V. Häublein, A. Bauer, and L. Frey, “Enhancement of the Stability of Ti and Ni Ohmic Contacts to 4H-SiC with a Stable Protective Coating for Harsh Environment Applications,” Journal of Electronic Materials, vol. 40, no. 9, pp. 1990-1997, 2011. https://doi.org/10.1007/s11664-011-1681-2
[65] K. Vassilevski, S. K. Roy, N. Wood, A. B. Horsfall, and N. G. Wright, “Process Compatibility of Heavily Nitrogen Doped Layers Formed by Ion Implantation in Silicon Carbide Devices,” Materials Science Forum, vol. 821-823, pp. 411-415, 2015. https://doi.org/10.4028/www.scientific.net/MSF.821-823.411
[66] C. Arnodo, S. Tyc, F. Wyczisk, and C. Brylinski, “Nickel and molibdenum ohmic contacts on silicon carbide,” Inst. Phys. Conf. , vol. 142, pp. 577, 1996.
[67] R. Kakanakov, L. Kassamakova-Kolaklieva, N. Hristeva, G. Lepoeva, and K. Zekentes, “Thermally stable low resistivity ohmic contacts for high power and high temperature SiC device applications,” 23rd International Conference on Microelectronics. Proceedings vol. 1, pp. 205-208, 2002.
[68] T. Marinova, A. Kakanakova-Georgieva, V. Krastev, R. Kakanakov, M. Neshev, L. Kassamakova, O. Noblanc, C. Arnodo, S. Cassette, C. Brylinski, B. Pecz, G. Radnoczi, and G. Vincze, “Nickel based ohmic contacts on SiC,” Materials Science and Engineering: B, vol. 46, no. 1-3, pp. 223-226, 1997.
[69] S.-K. Lee, E.-K. Suh, N.-K. Cho, H.-D. Park, L. Uneus, and A. L. Spetz, “Comparison study of ohmic contacts to 4H-silicon carbide in oxidizing ambient for harsh environment gas sensor applications,” Solid-State Electronics, vol. 49, no. 8, pp. 1297-1301, 2005.
[70] W. Daves, A. Krauss, V. Häublein, A. J. Bauer, and L. Frey, “Structural and Reliability Analysis of Ohmic Contacts to SiC with a Stable Protective Coating for Harsh Environment Applications,” ECS Journal of Solid State Science and Technology, vol. 1, no. 1, pp. P23-P29, 2012.
[71] K. Ito, T. Onishi, H. Takeda, K. Kohama, S. Tsukimoto, M. Konno, Y. Suzuki, and M. Murakami, “Simultaneous Formation of Ni/Al Ohmic Contacts to Both n- and p-Type 4H-SiC,” Journal of Electronic Materials, vol. 37, no. 11, pp. 1674-1680, 2008.
[72] A. Kakanakova-Georgieva, T. Marinova, O. Noblanc, C. Arnodo, S. Cassette, and C. Brylinski, “Characterization of ohmic and Schottky contacts on SiC,” Thin Solid Films, vol. 343-344, pp. 637-641, 1999.
[73] S. J. Yang, C. K. Kim, I. H. Noh, S. W. Jang, K. H. Jung, and N. I. Cho, “Study of Co- and Ni-based ohmic contacts to n-type 4H-SiC,” Diamond and Related Materials, vol. 13, no. 4-8, pp. 1149-1153, 2004.
[74] J.-C. Cheng, and B.-Y. Tsui, “Reduction of Specific Contact Resistance on n-Type Implanted 4H-SiC Through Argon Inductively Coupled Plasma Treatment and Post-Metal Deposition Annealing,” IEEE Electron Device Letters, vol. 38, no. 12, pp. 1700-1703, 2017.
[75] S. Liu, Z. He, L. Zheng, B. Liu, F. Zhang, L. Dong, L. Tian, Z. Shen, J. Wang, Y. Huang, Z. Fan, X. Liu, G. Yan, W. Zhao, L. Wang, G. Sun, F. Yang, and Y. Zeng, “The thermal stability study and improvement of 4H-SiC ohmic contact,” Applied Physics Letters, vol. 105, no. 12, pp. 122106, 2014.
[76] A. V. Adedeji, A. C. Ahyi, J. R. Williams, M. J. Bozack, S. E. Mohney, B. Liu, and J. D. Scofield, “Composite Ohmic Contacts to SiC,” Materials Science Forum, vol. 527-529, pp. 879-882, 2006. https://doi.org/10.4028/www.scientific.net/MSF.527-529.879
[77] E. D. Luckowski, J. M. Delucca, J. R. Williams, S. E. Mohney, M. J. Bozack, T. Isaacs-Smith, and J. Crofton, “Improved ohmic contact to n-type 4H and 6H-SiC using nichrome,” Journal of Electronic Materials, vol. 27, no. 4, pp. 330-334, 1998.
[78] R. S. Okojie, D. Lukco, Y. L. Chen, and D. J. Spry, “Reliability assessment of Ti/TaSi2/Pt ohmic contacts on SiC after 1000 h at 600 C,” Journal of Applied Physics, vol. 91, no. 10, pp. 6553-6559, 2002. https://doi.org/10.1063/1.1470255
[79] H. Tamaso, S. Yamada, H. Kitabayashi, and T. Horii, “Ti/Al/Si Ohmic Contacts for both n-Type and p-Type 4H-SiC,” Materials Science Forum, vol. 778-780, pp. 669-672, 2014. https://doi.org/10.4028/www.scientific.net/MSF.778-780.669
[80] S.-J. Joo, S. Baek, S.-C. Kim, and J.-S. Lee, “Simultaneous Formation of Ohmic Contacts on p+- and n+-4H-SiC Using a Ti/Ni Bilayer,” Journal of Electronic Materials, vol. 42, no. 10, pp. 2897-2904, 2013.
[81] T. Ohyanagi, Y. Onose, and A. Watanabe, “Ti∕Ni bilayer Ohmic contact on 4H-SiC,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 26, no. 4, pp. 1359, 2008. https://doi.org/10.1116/1.2949116
[82] K. Buchholt, R. Ghandi, M. Domeij, C. M. Zetterling, J. Lu, P. Eklund, L. Hultman, and A. L. Spetz, “Ohmic contact properties of magnetron sputtered Ti3SiC2 on n- and p-type 4H-silicon carbide,” Applied Physics Letters, vol. 98, no. 4, pp. 042108, 2011.
[83] H. S. Lee, M. Domeij, C. M. Zetterling, M. Östling, and J. Lu, “Investigation of TiW Contacts to 4H-SiC Bipolar Junction Devices,” Materials Science Forum, vol. 527-529, pp. 887-890, 2006. https://doi.org/10.4028/www.scientific.net/MSF.527-529.887
[84] S. K. Lee, S. M. Koo, C. M. Zetterling, and M. Östling, “Ohmic contact formation on inductively coupled plasma etched 4H-silicon carbide,” Journal of Electronic Materials, vol. 31, no. 5, pp. 340-345, 2002.
[85] N. Kiritani, M. Hoshi, S. Tanimoto, K. Adachi, S. Nishizawa, T. Yatsuo, H. Okushi, and K. Arai, “Single Material Ohmic Contacts Simultaneously Formed on the Source/P-Well/Gate of 4H-SiC Vertical MOSFETs,” Materials Science Forum, vol. 433-436, pp. 669-672, 2003. https://doi.org/10.4028/www.scientific.net/MSF.433-436.669
[86] S.-C. Chang, S.-J. Wang, K.-M. Uang, and B.-W. Liou, “Investigation of Au/Ti/Al ohmic contact to N-type 4H–SiC,” Solid-State Electronics, vol. 49, no. 12, pp. 1937-1941, 2005.
[87] S. Tsukimoto, T. Sakai, T. Onishi, K. Ito, and M. Murakami, “Simultaneous formation of p- and n-type ohmic contacts to 4H-SiC using the ternary Ni/Ti/Al system,” Journal of Electronic Materials, vol. 34, no. 10, pp. 1310-1312, 2005.
[88] T. N. Oder, J. R. Williams, K. W. Bryant, M. J. Bozack, and J. Crofton, “Low Resistance Ohmic Contacts to n-SiC Using Niobium,” Materials Science Forum, vol. 338-342, pp. 997-1000, 2000. https://doi.org/10.4028/www.scientific.net/MSF.338-342.997
[89] L. J. Evans, R. S. Okojie, and D. Lukco, “Development of an Extreme High Temperature n-Type Ohmic Contact to Silicon Carbide,” Materials Science Forum, vol. 717-720, pp. 841-844, 2012. https://doi.org/10.4028/www.scientific.net/MSF.717-720.841
[90] F. Roccaforte, F. La Via, V. Raineri, L. Calcagno, and P. Musumeci, “Improvement of high temperature stability of nickel contacts on n-type 6H–SiC,” Applied Surface Science, vol. 184, no. 1-4, pp. 295-298, 2001.
[91] J. Crofton, P. G. McMullin, J. R. Williams, and M. J. Bozack, “High‐temperature ohmic contact to n‐type 6H‐SiC using nickel,” Journal of Applied Physics, vol. 77, no. 3, pp. 1317-1319, 1995.
[92] M. G. Rastegaeva, A.N. Andreev, V.V. Zelenin, A.I. Babanin, I.P. Nikitina, V.E. Chelnokov, and V.P. Rastegaev, Inst. Phys. Conf. , vol. 142, pp. 581, 1996.
[93] M. G. Rastegaeva, A. N. Andreev, A. A. Petrov, A. I. Babanin, M. A. Yagovkina, and I. P. Nikitina, “The influence of temperature treatment on the formation of Ni-based Schottky diodes and ohmic contacts to n-6H-SiC,” Materials Science and Engineering: B, vol. 46, no. 1-3, pp. 254-258, 1997.
[94] T. Uemoto, “Reduction of Ohmic Contact Resistance on n-Type 6H-SiC by Heavy Doping,” Japanese Journal of Applied Physics, vol. 34, no. Part 2, No. 1A, pp. L7-L9, 1995.
[95] T. Marinova, V. Krastev, C. Hallin, R. Yakimova, and E. Janzén, “Interface chemistry and electric characterisation of nickel metallisation on 6H-SiC,” Applied Surface Science, vol. 99, no. 2, pp. 119-125, 1996.
[96] E. Kurimoto, H. Harima, T. Toda, M. Sawada, M. Iwami, and S. Nakashima, “Raman study on the Ni/SiC interface reaction,” Journal of Applied Physics, vol. 91, no. 12, pp. 10215-10217, 2002. https://doi.org/10.1063/1.1473226
[97] F. La Via, F. Roccaforte, V. Raineri, M. Mauceri, A. Ruggiero, P. Musumeci, L. Calcagno, A. Castaldini, and A. Cavallini, “Schottky–ohmic transition in nickel silicide/SiC-4H system: is it really a solved problem?,” Microelectronic Engineering, vol. 70, no. 2-4, pp. 519-523, 2003.
[98] A. Virshup, F. Liu, D. Lukco, K. Buchholt, A. L. Spetz, and L. M. Porter, “Improved Thermal Stability Observed in Ni-Based Ohmic Contacts to n-Type SiC for High-Temperature Applications,” Journal of Electronic Materials, vol. 40, no. 4, pp. 400-405, 2010.
[99] C. Deeb, and A. H. Heuer, “A low-temperature route to thermodynamically stable ohmic contacts to n-type 6H-SiC,” Applied Physics Letters, vol. 84, no. 7, pp. 1117-1119, 2004.
[100] F. La Via, F. Roccaforte, A. Makhtari, V. Raineri, P. Musumeci, and L. Calcagno, “Structural and electrical characterisation of titanium and nickel silicide contacts on silicon carbide,” Microelectronic Engineering, vol. 60, no. 1-2, pp. 269-282, 2002.
[101] T.-Y. Zhou, X.-C. Liu, C.-C. Dai, W. Huang, S.-Y. Zhuo, and E.-W. Shi, “Effect of graphite related interfacial microstructure created by high temperature annealing on the contact properties of Ni/Ti/6H-SiC,” Materials Science and Engineering: B, vol. 188, pp. 59-65, 2014.
[102] A. K. Chaddha, J. D. Parsons, and G. B. Kruaval, “Thermally stable, low specific resistance (1.30×10−5 Ω cm2) TiC Ohmic contacts to n‐type 6H‐SiC,” Applied Physics Letters, vol. 66, no. 6, pp. 760-762, 1995.
[103] U. Schmid, R. Getto, S. T. Sheppard, and W. Wondrak, “Temperature behavior of specific contact resistance and resistivity on nitrogen implanted 6H-SiC with titanium silicide ohmic contacts,” Journal of Applied Physics, vol. 85, no. 5, pp. 2681-2686, 1999. https://doi.org/10.1063/1.369628
[104] H. Yang, T. H. Peng, W. J. Wang, D. F. Zhang, and X. L. Chen, “Ta/Ni/Ta multilayered ohmic contacts on n-type SiC,” Applied Surface Science, vol. 254, no. 2, pp. 527-531, 2007.
[105] G. Y. McDaniel, S. T. Fenstermaker, W. V. Lampert, and P. H. Holloway, “Rhenium ohmic contacts on 6H-SiC,” Journal of Applied Physics, vol. 96, no. 9, pp. 5357-5364, 2004.
[106] K. Gottfried, J. Kriz, J. Leibelt, C. Kaufmann, and T. Gessner, “High temperature stable metallization schemes for SiC-technology operating in air,” in 1998 High-Temperature Electronic Materials, Devices and Sensors Conference (Cat. No.98EX132). https://doi.org/10.1109/HTEMDS.1998.730691
[107] T. Jang, L. M. Porter, G. W. M. Rutsch, and B. Odekirk, “Tantalum carbide ohmic contacts ton-type silicon carbide,” Applied Physics Letters, vol. 75, no. 25, pp. 3956-3958, 1999.
[108] T. Jang, B. Odekirk, L. D. Madsen, and L. M. Porter, “Thermal stability and contact degradation mechanisms of TaC ohmic contacts with W/WC overlayers ton-type 6H SiC,” Journal of Applied Physics, vol. 90, no. 9, pp. 4555-4559, 2001.
[109] J. Crofton, E. D. Luckowski, J. R. Williams, T. Isaacs-Smith, M. J. Bozack, and R. Siergiej, “Specific contact resistance as a function of doping for n-type 4H and 6H-SiC,” Inst. Phys. Conf. Ser. No 142, pp. 569-572, 1996.
[110] M. Levit, I. Grimberg, and B. Z. Weiss, “Interaction of Ni90Ti10 alloy thin film with 6H‐SiC single crystal,” Journal of Applied Physics, vol. 80, no. 1, pp. 167-173, 1996.
[111] S. Ferrero, A. Albonico, U. M. Meotto, G. Rambolà, S. Porro, F. Giorgis, D. Perrone, L. Scaltrito, E. Bontempi, L. E. Depero, G. Richieri, and L. Merlin, “Phase Formation at Rapid Thermal Annealing of Nickel Contacts on C-Face n-Type 4H-SiC,” Materials Science Forum, vol. 483-485, pp. 733-736, 2005. https://doi.org/10.4028/www.scientific.net/MSF.483-485.733
[112] F. Roccaforte, F. La Via, V. Raineri, R. Pierobon, and E. Zanoni, “Richardson’s constant in inhomogeneous silicon carbide Schottky contacts,” Journal of Applied Physics, vol. 93, no. 11, pp. 9137-9144, 2003.
[113] I. Nikitina, K. Vassilevski, A. Horsfall, N. Wright, A. G. O’Neill, S. K. Ray, K. Zekentes, and C. M. Johnson, “Phase composition and electrical characteristics of nickel silicide Schottky contacts formed on 4H-SiC,” Semiconductor Science and Technology, vol. 24, no. 5, pp. 055006, 2009. https://doi.org/10.1088/0268-1242/24/5/055006
[114] I. P. Nikitina, K. V. Vassilevski, A. B. Horsfall, N. G. Wright, A. G. O’Neill, C. M. Johnson, T. Yamamoto, and R. K. Malhan, “Structural pattern formation in titanium-nickel contacts on silicon carbide following high-temperature annealing,” Semiconductor Science and Technology, vol. 21, no. 7, pp. 898-905, 2006. https://doi.org/10.1088/0268-1242/21/7/013
[115] M. R. Rijnders, A. A. Kodentsov, J. A. van Beek, J. van den Akker, and F. J. J. van Loo, “Pattern formation in Pt-SiC diffusion couples,” Solid State Ionics, vol. 95, no. 1, pp. 51-59, 1997.
[116] J. J. Lander, H. E. Kern, and A. L. Beach, “Solubility and Diffusion Coefficient of Carbon in Nickel: Reaction Rates of Nickel‐Carbon Alloys with Barium Oxide,” Journal of Applied Physics, vol. 23, no. 12, pp. 1305-1309, 1952. https://doi.org/10.1063/1.1702064
[117] A. Hähnel, V. Ischenko, and J. Woltersdorf, “Oriented growth of silicide and carbon in SiC-based sandwich structures with nickel,” Materials Chemistry and Physics, vol. 110, no. 2-3, pp. 303-310, 2008. https://doi.org/10.1016/j.matchemphys.2008.02.009
[118] C. Y. Kang, L. L. Fan, S. Chen, Z. L. Liu, P. S. Xu, and C. W. Zou, “Few-layer graphene growth on 6H-SiC(0001) surface at low temperature via Ni-silicidation reactions,” Applied Physics Letters, vol. 100, no. 25, pp. 251604, 2012.
[119] T. Yoneda, M. Shibuya, K. Mitsuhara, A. Visikovskiy, Y. Hoshino, and Y. Kido, “Graphene on SiC(0001) and SiC(0001̅) surfaces grown via Ni-silicidation reactions,” Surface Science, vol. 604, no. 17-18, pp. 1509-1515, 2010.
[120] E. Escobedo-Cousin, K. Vassilevski, T. Hopf, N. Wright, A. O’Neill, A. Horsfall, J. Goss, and P. Cumpson, “Local solid phase growth of few-layer graphene on silicon carbide from nickel silicide supersaturated with carbon,” Journal of Applied Physics, vol. 113, no. 11, pp. 114309-11, 2013. https://doi.org/10.1063/1.4795501
[121] M. W. Cole, P. C. Joshi, and M. Ervin, “Fabrication and characterization of pulse laser deposited Ni2Si Ohmic contacts on n-SiC for high power and high temperature device applications,” Journal of Applied Physics, vol. 89, no. 8, pp. 4413-4416, 2001.
[122] W. Lu, W. C. Mitchel, G. R. Landis, T. R. Crenshaw, and W. E. Collins, “Ohmic contact properties of Ni/C film on 4H-SiC,” Solid-State Electronics, vol. 47, no. 11, pp. 2001-2010, 2003.
[123] M. H. Ervin, K. A. Jones, U. C. Lee, T. Das, and M. C. Wood, “An Approach to Improving the Morphology and Reliability of n-SiC Ohmic Contacts to SiC Using Second-Metal Contacts,” Materials Science Forum, vol. 527-529, pp. 859-862, 2006. https://doi.org/10.4028/www.scientific.net/MSF.527-529.859
[124] M. H. Ervin, K. A. Jones, U. Lee, and M. C. Wood, “Approach to optimizing n-SiC Ohmic contacts by replacing the original contacts with a second metal,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 24, no. 3, pp. 1185, 2006. https://doi.org/10.1116/1.2190663
[125] S. Cichoň, P. Macháč, and J. Vojtík, “Ni, NiSi2 and Si Secondary Ohmic Contacts on SiC with High Thermal Stability,” Materials Science Forum, vol. 740-742, pp. 797-800, 2013. https://doi.org/10.4028/www.scientific.net/MSF.740-742.797
[126] T. Nakamura, and M. Satoh, “Schottky barrier height of a new ohmic contact NiSi2 to n-type 6H-SiC,” Solid-State Electronics, vol. 46, no. 12, pp. 2063-2067, 2002.
[127] C. Lavoie, C. Detavernier, and P. Besser, “Nickel silicide technology,” Silicide technology for integrated circuits, L. I. Chen, ed., pp. 95-152, London: the IEE, 2004. https://doi.org/10.1049/PBEP005E_ch5
[128] K. Zekentes, A. Stavrinidis, G. Konstantinidis, M. Kayambaki, K. Vamvoukakis, E. Vassakis, K. Vassilevski, A. B. Horsfall, N. G. Wright, P. Brosselard, S. Q. Niu, M. Lazar, D. Planson, D. Tournier, N. Camara, and M. Bucher, “4H-SiC VJFETs with Self-Aligned Contacts,” Materials Science Forum, vol. 821-823, pp. 793-796, 2015. https://doi.org/10.4028/www.scientific.net/MSF.821-823.793
[129] K. V. Vassilevski, N. G. Wright, I. P. Nikitina, A. B. Horsfall, A. G. O’Neill, M. J. Uren, K. P. Hilton, A. G. Masterton, A. J. Hydes, and C. M. Johnson, “Protection of selectively implanted and patterned silicon carbide surfaces with graphite capping layer during post-implantation annealing,” Semiconductor Science and Technology, vol. 20, no. 3, pp. 271, 2005. https://doi.org/10.1088/0268-1242/20/3/003
[130] J. Senzaki, K. Fukuda, and K. Arai, “Influences of postimplantation annealing conditions on resistance lowering in high-phosphorus-implanted 4H–SiC,” Journal of Applied Physics, vol. 94, no. 5, pp. 2942-2947, 2003. https://doi.org/10.1063/1.1597975
[131] J. C. Cheng, and B. Y. Tsui, “Reduction of Specific Contact Resistance on n-Type Implanted 4H-SiC Through Argon Inductively Coupled Plasma Treatment and Post-Metal Deposition Annealing,” IEEE Electron Device Letters, vol. 38, no. 12, pp. 1700-1703, 2017. https://doi.org/10.1109/LED.2017.2760884
[132] B. J. Johnson, and M. A. Capano, “Mechanism of ohmic behavior of Al/Ti contacts top-type 4H-SiC after annealing,” Journal of Applied Physics, vol. 95, no. 10, pp. 5616-5620, 2004.
[133] K. Tone, and J. H. Zhao, “A comparative study of C plus Al coimplantation and Al implantation in 4Hand 6H-SiC,” IEEE Transactions on Electron Devices, vol. 46, no. 3, pp. 612-619, 1999.
[134] R. Kakanakov, L. Kassamakova, N. Hristeva, G. Lepoeva, N. I. Kuznetsov, and K. Zekentes, “Reliable Ohmic Contacts to LPE p-Type 4H-SiC for High-Power p-n Diode,” Materials Science Forum, vol. 389-393, pp. 917-920, 2002. https://doi.org/10.4028/www.scientific.net/MSF.389-393.917
[135] F. A. Mohammad, Y. Cao, K. C. Chang, and L. M. Porter, “Comparison of Pt-Based Ohmic Contacts with Ti–Al Ohmic Contacts forp-Type SiC,” Japanese Journal of Applied Physics, vol. 44, no. 8, pp. 5933-5938, 2005.
[136] N. A. Papanicolaou, A. Edwards, M. V. Rao, and W. T. Anderson, “Si/Pt Ohmic contacts to p-type 4H–SiC,” Applied Physics Letters, vol. 73, no. 14, pp. 2009-2011, 1998.
[137] S. Tsukimoto, K. Nitta, T. Sakai, M. Moriyama, and M. Murakami, “Correlation between the electrical properties and the interfacial microstructures of TiAl-based ohmic contacts to p-type 4H-SiC,” Journal of Electronic Materials, vol. 33, no. 5, pp. 460-466, 2004.
[138] R. Kakanakov, L. Kasamakova-Kolaklieva, N. Hristeva, G. Lepoeva, J. B. Gomes, I. Avramova, and T. Marinova, “High Temperature and High Power Stability Investigation of Al-Based Ohmic Contacts to p-Type 4H-SiC,” Materials Science Forum, vol. 457-460, pp. 877-880, 2004. https://doi.org/10.4028/www.scientific.net/MSF.457-460.877
[139] K. V. Vasilevskii, S. V. Rendakova, I. P. Nikitina, A. I. Babanin, A. N. Andreev, and K. Zekentes, “Electrical characteristics and structural properties of ohmic contacts to p-type 4H-SiC epitaxial layers,” Semiconductors, vol. 33, no. 11, pp. 1206-1211, 1999.
[140] K. Vassilevski, K. Zekentes, K. Tsagaraki, G. Constantinidis, and I. Nikitina, “Phase formation at rapid thermal annealing of Al/Ti/Ni ohmic contacts on 4H-SiC,” Materials Science and Engineering: B, vol. 80, no. 1-3, pp. 370-373, 2001.
[141] R. Kakanakov, L. Kassamakova, I. Kassamakov, K. Zekentes, and N. Kuznetsov, “Improved Al/Si ohmic contacts to p-type 4H-SiC,” Materials Science and Engineering: B, vol. 80, no. 1-3, pp. 374-377, 2001.
[142] J. Crofton, S. E. Mohney, J. R. Williams, and T. Isaacs-Smith, “Finding the optimum Al–Ti alloy composition for use as an ohmic contact to p-type SiC,” Solid-State Electronics, vol. 46, no. 1, pp. 109-113, 2002.
[143] B. P. Downey, S. E. Mohney, T. E. Clark, and J. R. Flemish, “Reliability of aluminum-bearing ohmic contacts to SiC under high current density,” Microelectronics Reliability, vol. 50, no. 12, pp. 1967-1972, 2010.
[144] A. Frazzetto, F. Giannazzo, R. L. Nigro, V. Raineri, and F. Roccaforte, “Structural and transport properties in alloyed Ti/Al Ohmic contacts formed on p-type Al-implanted 4H-SiC annealed at high temperature,” Journal of Physics D: Applied Physics, vol. 44, no. 25, pp. 255302, 2011. https://doi.org/10.1088/0022-3727/44/25/255302
[145] Y. D. Tang, H. J. Shen, X. F. Zhang, F. Guo, Y. Bai, Z. Y. Peng, and X. Y. Liu, “Effect of Annealing on the Characteristics of Ti/Al Ohmic Contacts to p-Type 4H-SiC,” Materials Science Forum, vol. 897, pp. 395-398, 2017. https://doi.org/10.4028/www.scientific.net/MSF.897.395
[146] M. Vivona, G. Greco, C. Bongiorno, R. Lo Nigro, S. Scalese, and F. Roccaforte, “Electrical and structural properties of surfaces and interfaces in Ti/Al/Ni Ohmic contacts to p-type implanted 4H-SiC,” Applied Surface Science, vol. 420, pp. 331-335, 2017.
[147] O. Nakatsuka, T. Takei, Y. Koide, and M. Murakami, “Low Resistance TiAl Ohmic Contacts with Multi-Layered Structure for p-Type 4H-SiC,” MATERIALS TRANSACTIONS, vol. 43, no. 7, pp. 1684-1688, 2002. https://doi.org/10.2320/matertrans.43.1684
[148] M. Vivona, G. Greco, R. L. Nigro, C. Bongiorno, and F. Roccaforte, “Ti/Al/W Ohmic contacts to p-type implanted 4H-SiC,” Journal of Applied Physics, vol. 118, no. 3, pp. 035705, 2015. https://doi.org/10.1063/1.4927271
[149] S. H. Wang, O. Arnold, C. M. Eichfeld, S. E. Mohney, A. V. Adedeji, and J. R. Williams, “Tantalum-Ruthenium Diffusion Barriers for Contacts to SiC,” Materials Science Forum, vol. 527-529, pp. 883-886, 2006. https://doi.org/10.4028/www.scientific.net/MSF.527-529.883
[150] O. Nakatsuka, Y. Koide, and M. Murakami, “CoAl Ohmic Contact Materials with Improved Surface Morphology for p-Type 4H-SiC,” Materials Science Forum, vol. 389-393, pp. 885-888, 2002. https://doi.org/10.4028/www.scientific.net/MSF.389-393.885
[151] T. Sakai, K. Nitta, S. Tsukimoto, M. Moriyama, and M. Murakami, “Ternary TiAlGe ohmic contacts for p-type 4H-SiC,” Journal of Applied Physics, vol. 95, no. 4, pp. 2187-2189, 2004.
[152] B. H. Tsao, J. Lawson, and J. D. Scofield, “Ti/AlNi/W and Ti/Ni2Si/W Ohmic Contacts to P-Type SiC,” Materials Science Forum, vol. 527-529, pp. 903-906, 2006. https://doi.org/10.4028/www.scientific.net/MSF.527-529.903
[153] B. P. Downey, J. R. Flemish, B. Z. Liu, T. E. Clark, and S. E. Mohney, “Current-Induced Degradation of Nickel Ohmic Contacts to SiC,” Journal of Electronic Materials, vol. 38, no. 4, pp. 563-568, 2009.
[154] R. Konishi, R. Yasukochi, O. Nakatsuka, Y. Koide, M. Moriyama, and M. Murakami, “Development of Ni/Al and Ni/Ti/Al ohmic contact materials for p-type 4H-SiC,” Materials Science and Engineering: B, vol. 98, no. 3, pp. 286-293, 2003.
[155] B. P. Downey, S. E. Mohney, and J. R. Flemish, “Improved Stability of Pd/Ti Contacts to p-Type SiC Under Continuous DC and Pulsed DC Current Stress,” Journal of Electronic Materials, vol. 40, no. 4, pp. 406-412, 2010.
[156] L. Kassamakova, R. Kakanakov, N. Nordell, S. Savage, A. Kakanakova-Georgieva, and T. Marinova, “Study of the electrical, thermal and chemical properties of Pd ohmic contacts to p-type 4H-SiC: dependence on annealing conditions,” Materials Science and Engineering: B, vol. 61-62, pp. 291-295, 1999/07, 1999.
[157] L. Kolaklieva, R. Kakanakov, T. Marinova, and G. Lepoeva, “Effect of the Metal Composition on the Electrical and Thermal Properties of Au/Pd/Ti/Pd Contacts to p-Type SiC,” Materials Science Forum, vol. 483-485, pp. 749-752, 2005. https://doi.org/10.4028/www.scientific.net/MSF.483-485.749
[158] L. Kassamakova, R. Kakanakov, N. Nordell, and S. Savage, “Thermostable Ohmic Contacts on p-Type SiC,” Materials Science Forum, vol. 264-268, pp. 787-790, 1998. https://doi.org/10.4028/www.scientific.net/MSF.264-268.787
[159] S. K. Lee, C. M. Zetterling, E. Danielsson, M. Östling, J. P. Palmquist, H. Högberg, and U. Jansson, “Electrical characterization of TiC ohmic contacts to aluminum ion implanted 4H–silicon carbide,” Applied Physics Letters, vol. 77, no. 10, pp. 1478-1480, 2000.
[160] K. H. Jung, N. I. Cho, J. H. Lee, S. J. Yang, C. K. Kim, B. T. Lee, K. H. Rim, N. K. Kim, and E. D. Kim, “Titanium-Based Ohmic Contact on p-Type 4H-SiC,” Materials Science Forum, vol. 389-393, pp. 913-916, 2002. https://doi.org/10.4028/www.scientific.net/MSF.389-393.913
[161] J. O. Olowolafe, J. Liu, and R. B. Gregory, “Effect of Si or Al interface layers on the properties of Ta and Mo contacts to p-type SiC,” Journal of Electronic Materials, vol. 29, no. 3, pp. 391-397, 2000.
[162] B. Pécz, L. Tóth, M. A. di Forte-Poisson, and J. Vacas, “Ti3SiC2 formed in annealed Al/Ti contacts to p-type SiC,” Applied Surface Science, vol. 206, no. 1-4, pp. 8-11, 2003.
[163] J. Crofton, P. A. Barnes, J. R. Williams, and J. A. Edmond, “Contact resistance measurements on p‐type 6H‐SiC,” Applied Physics Letters, vol. 62, no. 4, pp. 384-386, 1993.
[164] F. Moscatelli, A. Scorzoni, A. Poggi, G. C. Cardinali, and R. Nipoti, “Improved electrical characterization of Al–Ti ohmic contacts on p-type ion implanted 6H-SiC,” Semiconductor Science and Technology, vol. 18, no. 6, pp. 554-559, 2003.
[165] N. Lundberg, and M. Östling, “Thermally stable low ohmic contacts to p-type 6H-SiC using cobalt silicides,” Solid-State Electronics, vol. 39, no. 11, pp. 1559-1565, 1996.
[166] T. N. Oder, J. R. Williams, M. J. Bozack, V. Iyer, S. E. Mohney, and J. Crofton, “High temperature stability of chromium boride ohmic contacts to p-type 6H-SiC,” Journal of Electronic Materials, vol. 27, no. 4, pp. 324-329, 1998.
[167] T. Jang, J. W. Erickson, and L. M. Porter, “Effects of Si interlayer conditions on platinum ohmic contacts for p-type silicon carbide,” Journal of Electronic Materials, vol. 31, no. 5, pp. 506-511, 2002.
[168] J. Crofton, L. Beyer, J. R. Williams, E. D. Luckowski, S. E. Mohney, and J. M. Delucca, “Titanium and aluminum-titanium ohmic contacts to p-type SiC,” Solid-State Electronics, vol. 41, no. 11, pp. 1725-1729, 1997.
[169] A. A. Iliadis, S. N. Andronescu, K. Edinger, J. H. Orloff, R. D. Vispute, V. Talyansky, R. P. Sharma, T. Venkatesan, M. C. Wood, and K. A. Jones, “Ohmic contacts to p-6H–SiC using focused ion-beam surface-modification and pulsed laser epitaxial TiN deposition,” Applied Physics Letters, vol. 73, no. 24, pp. 3545-3547, 1998.
[170] J. S. Shier, “Ohmic Contacts to Silicon Carbide,” Journal of Applied Physics, vol. 41, no. 2, pp. 771-773, 1970. https://doi.org/10.1063/1.354963
[171] K. V. Vassilevski, V. A. Dmitriev, and A. V. Zorenko, “Silicon carbide diode operating at avalanche breakdown current density of 60 kA/cm2,” Journal of Applied Physics, vol. 74, no. 12, pp. 7612-7614, 1993.
[172] W. v. Muench, and I. Pfaffeneder, “Breakdown field in vapor‐grown silicon carbidep‐njunctions,” Journal of Applied Physics, vol. 48, no. 11, pp. 4831-4833, 1977.
[173] W. R. King, “Electrical Resistivity of Aluminum Carbide at 990–1240 K,” Journal of The Electrochemical Society, vol. 132, no. 2, pp. 388, 1985. https://doi.org/10.1149/1.2113847
[174] A. Suzuki, Y. Fujii, H. Saito, Y. Tajima, K. Furukawa, and S. Nakajima, “Effect of the junction interface properties on blue emission of SiC blue LEDs grown by step-controlled CVD,” Journal of Crystal Growth, vol. 115, no. 1-4, pp. 623-627, 1991.
[175] N. I. Medvedeva, D. L. Novikov, A. L. Ivanovsky, M. V. Kuznetsov, and A. J. Freeman, “Electronic properties of Ti3SiC2-based solid solutions,” Physical Review B, vol. 58, no. 24, pp. 16042-16050, 1998.
[176] A. Parisini, A. Poggi, and R. Nipoti, “Structural Characterization of Alloyed Al/Ti and Ti Contacts on SiC,” Materials Science Forum, vol. 457-460, pp. 837-840, 2004. https://doi.org/10.4028/www.scientific.net/MSF.457-460.837
[177] J. L. Freeouf, “Silicide Schottky barriers: An elemental description,” Solid State Communications, vol. 33, no. 10, pp. 1059-1061, 1980.
[178] F. A. Mohammad, Y. Cao, and L. M. Porter, “Ohmic contacts to silicon carbide determined by changes in the surface,” Applied Physics Letters, vol. 87, no. 16, pp. 161908, 2005. https://doi.org/10.1063/1.2106005
[179] N. Nordell, S. Savage, and A. Schoner, “Aluminium doped 6H SiC: CVD growth and formation of ohmic contacts,” Inst. Phys. Conf. Ser., vol. 142, pp. 573-576, 1995.
[180] K. Vasilevskii, S. Rendakova, I. Nikitina, A. Babanin, A. Andreev, and K. Zekentes, “Electrical characteristics and structural properties of ohmic contacts to p-type 4H-SiC epitaxial layers,” Semiconductors, vol. 33, no. 11, pp. 1206-1211, 1999. https://doi.org/10.1134/1.1187850
[181] K. V. Vassilevski, G. Constantinidis, N. Papanicolaou, N. Martin, and K. Zekentes, “Study of annealing conditions on the formation of ohmic contacts on p+4H-SiC layers grown by CVD and LPE,” Materials Science and Engineering B-Solid State Materials for Advanced Technology, vol. 61-2, pp. 296-300, Jul, 1999. https://doi.org/10.1016/S0921-5107(98)00521-2
[182] T. Troffer, M. Schadt, T. Frank, H. Itoh, G. Pensl, J. Heindl, H. P. Strunk, and M. Maier, “Doping of SiC by Implantation of Boron and Aluminum,” physica status solidi (a), vol. 162, no. 1, pp. 277-298, 1997.
[183] T. Kimoto, A. Itoh, N. Inoue, O. Takemura, T. Yamamoto, T. Nakajima, and H. Matsunami, “Conductivity Control of SiC by In-Situ Doping and Ion Implantation,” Materials Science Forum, vol. 264-268, pp. 675-680, 1998. https://doi.org/10.4028/www.scientific.net/MSF.264-268.675
[184] S. K. Roy, K. Vassilevski, N. G. Wright, and A. B. Horsfall, “Silicon Nitride Encapsulation to Preserve Ohmic Contacts Characteristics in High Temperature, Oxygen Rich Environments,” Materials Science Forum, vol. 821-823, pp. 420-423, 2015. https://doi.org/10.4028/www.scientific.net/MSF.821-823.420
[185] F. Arith, J. Urresti, K. Vasilevskiy, S. Olsen, N. Wright, and A. O’Neill, “Increased Mobility in Enhancement Mode 4H-SiC MOSFET Using a Thin SiO2/Al2O3 Gate Stack,” IEEE Electron Device Letters, vol. 39, no. 4, pp. 564-567, 2018. https://doi.org/10.1109/LED.2018.2807620
[186] R. Malhan, Y. Takeuchi, I. Nikitina, K. Vassilevski, N. Wright, and A. Horsfall, “Method of forming an ohmic contact in wide band semiconductor,” US patent, 7,141,498, November 28, 2006.
[187] R. Rupp, R. Kern, and R. Gerlach, “Laser backside contact annealing of SiC power devices: A prerequisite for SiC thin wafer technology,” in 25th International Symposium on Power Semiconductor Devices & IC’s (ISPSD), 2013, pp. 51-55. https://doi.org/10.1109/ISPSD.2013.6694396
[188] K. Nakashima, O. Eryu, S. Ukai, K. Yoshida, and M. Watanabe, “Improved Ohmic Contacts to 6H-SiC by Pulsed Laser Processing,” Materials Science Forum, vol. 338-342, pp. 1005-1008, 2000. https://doi.org/10.4028/www.scientific.net/MSF.338-342.1005
[189] Y. Ota, Y. Ikeda, and M. Kitabatake, “Laser Alloying for Ohmic Contacts on SiC at Room Temperature,” Materials Science Forum, vol. 264-268, pp. 783-786, 1998. https://doi.org/10.4028/www.scientific.net/MSF.264-268.783
[190] R. Rupp, R. Kern, and R. Gerlach, Production of an integrated circuit including an electrical contact on SiC, US 8,895,422 B2 2014.
[191] M. de Silva, S. Ishikawa, T. Kikkawa, and S. I. Kuroki, “Low Resistance Ohmic Contact Formation on 4H-SiC C-Face with NbNi Silicidation Using Nanosecond Laser Annealing,” Materials Science Forum, vol. 858, pp. 549-552, 2016. https://doi.org/10.4028/www.scientific.net/MSF.858.549
[192] M. De Silva, S. Ishikawa, T. Miyazaki, T. Kikkawa, and S.-I. Kuroki, “Formation of amorphous alloys on 4H-SiC with NbNi film using pulsed-laser annealing,” Applied Physics Letters, vol. 109, no. 1, pp. 012101, 2016.
[193] M. de Silva, T. Kawasaki, T. Kikkawa, and S. I. Kuroki, “Low Resistance Ti-Si-C Ohmic Contacts for 4H-SiC Power Devices Using Laser Annealing,” Materials Science Forum, vol. 897, pp. 399-402, 2017/05, 2017. https://doi.org/10.4028/www.scientific.net/MSF.897.399
[194] “Information on https://www.wolfspeed.com”.
[195] D. P. Hamilton, S. A. Hindmarsh, F. Li, M. R. Jennings, S. A. O. Russell, R. A. McMahon, and P. A. Mawby, “Demonstrating the Instability of SiC Ohmic Contacts and Drain Terminal Metallization Schemes Aged at 300 °C,” Materials Science Forum, vol. 897, pp. 387-390, 2017. https://doi.org/10.4028/www.scientific.net/MSF.897.387
[196] A. Baeri, V. Raineri, F. Roccaforte, F. La Via, and E. Zanetti, “Study of TiW/Au thin films as metallization stack for high temperature and harsh environment devices on 6H Silicon Carbide,” Materials Science Forum, vol. 457-460, pp. 873-876, 2004. https://doi.org/10.4028/www.scientific.net/MSF.457-460.873
[197] A. Virshup, L. M. Porter, D. Lukco, K. Buchholt, L. Hultman, and A. L. Spetz, “Investigation of Thermal Stability and Degradation Mechanisms in Ni-Based Ohmic Contacts to n-Type SiC for High-Temperature Gas Sensors,” Journal of Electronic Materials, vol. 38, no. 4, pp. 569-573, 2009.
[198] R. S. Okojie, D. J. Spry, J. Krotine, C. Salupo, and D. R. Wheeler, “Stable Ti/TaSi2/Pt Ohmic Contacts on N-Type 6H-SiC Epilayer at 600C in Air,” Materials Research Society Symposia Proceedings, vol. 622, pp. T8.3.1 – 6, 2000.
[199] P. G. Neudeck, D. J. Spry, C. Liang-Yu, G. M. Beheim, R. S. Okojie, C. W. Chang, R. D. Meredith, T. L. Ferrier, L. J. Evans, M. J. Krasowski, and N. F. Prokop, “Stable Electrical Operation of 6H-SiC JFETs and ICs for Thousands of Hours at 500C,” Electron Device Letters, IEEE, vol. 29, no. 5, pp. 456-459, 2008. https://doi.org/10.1109/LED.2008.919787
[200] P. G. Neudeck, S. L. Garverick, D. J. Spry, L.-Y. Chen, G. M. Beheim, M. J. Krasowski, and M. Mehregany, “Extreme temperature 6H-SiC JFET integrated circuit technology,” physica status solidi (a), vol. 206, no. 10, pp. 2329-2345, 2009. https://doi.org/10.1002/9783527629077.ch6
[201] P. G. Neudeck, D. J. Spry, L. Y. Chen, R. S. Okojie, G. M. Beheim, R. Meredith, and T. L. Ferrier, “SiC Field Effect Transistor Technology Demonstrating Prolonged Stable Operation at 500 °C,” Materials Science Forum, vol. 556-557, pp. 831-834, 2007. https://doi.org/10.4028/www.scientific.net/MSF.556-557.831
[202] D. J. Spry, P. G. Neudeck, L. Chen, D. Lukco, C. W. Chang, and G. M. Beheim, “Prolonged 500 C Demonstration of 4H-SiC JFET ICs With Two-Level Interconnect,” IEEE Electron Device Letters, vol. 37, no. 5, pp. 625-628, 2016. https://doi.org/10.1109/LED.2016.2544700