Properties of BO100-AGR Clearcoat Anti-Graffiti Coating Systems used in the Railway Industry

Properties of BO100-AGR Clearcoat Anti-Graffiti Coating Systems used in the Railway Industry

PASIECZYŃSKI Łukasz, RADEK Norbert, KŁONICA Mariusz, KAMIŃSKI Janusz, ŚWIDERSKI Jacek

download PDF

Abstract. The paper presents tests results of the selected properties of anti-graffiti paint system for rolling stock industry. The system consists of high solid corrosion protection primer, putty, filler, basecoat and anti-graffiti clearcoat. The results of the research focus on the analysis of corrosion resistance and free surface energy of anti-graffiti clearcoat.

Keywords
Anti-Graffiti Coatings, Free Surface Energy, Rail, Anti-Graffiti Corrosion

Published online 7/16/2018, 6 pages
Copyright © 2018 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: PASIECZYŃSKI Łukasz, RADEK Norbert, KŁONICA Mariusz, KAMIŃSKI Janusz, ŚWIDERSKI Jacek, ‘Properties of BO100-AGR Clearcoat Anti-Graffiti Coating Systems used in the Railway Industry’, Materials Research Proceedings, Vol. 5, pp 225-230, 2018

DOI: https://dx.doi.org/10.21741/9781945291814-40

The article was published as article 40 of the book Terotechnology

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] N. Radek, E. Wajs, M. Luchka, The WC-Co electrospark alloying coatings modified by laser treatment, Powder Metallurgy and Metal Ceramics 47 (2008) 197-201. https://doi.org/10.1007/s11106-008-9005-7
[2] N. Radek, J. Konstanty, Cermet ESD coatings modified by laser treatment. Archives of Metallurgy and Materials 57 (2012) 665-670. https://doi.org/10.2478/v10172-012-0071-y
[3] J. Pietraszek, N. Radek, K. Bartkowiak, Advanced statistical refinement of surface layer’s discretization in the case of electro-spark deposited carbide-ceramic coatings modified by a laser beam, Solid State Phenomena 197 (2013) 198-202. https://doi.org/10.4028/www.scientific.net/SSP.197.198
[4] N. Radek, J. Pietraszek, B. Antoszewski, The average friction coefficient of laser textured surfaces of silicon carbide identified by RSM methodology, Advanced Materials Research 874 (2014) 29-34. https://doi.org/10.4028/www.scientific.net/AMR.874.29
[5] M. Scendo, N. Radek, J. Trela, Influence of laser treatment on the corrosive resistance of WC-Cu electrospark coatings, International Journal of Electrochemical Science 8 (2013) 9264-9277.
[6] R. Ulewicz, F. Novy, J. Selejdak, Fatigue Strength of Ductile Iron in Ultra-High Cycle Regime, Advanced Materials Research 874 (2014) 43-48. https://doi.org/10.4028/www.scientific.net/AMR.874.43
[7] R. Ulewicz, Hardening of steel X155CrVMo12-1 surface layer, Journal of the Balkan Tribological Association 21 (2015) 166-172.
[8] A. Dudek, C. Kolan, Assessments of shrinkage degree in bioceramic sinters HA+ZrO2, Solid State Phenomena 165 (2010) 25-30. https://doi.org/10.4028/www.scientific.net/SSP.165.25
[9] A. Dudek, R. Włodarczyk, Structure and properties of bioceramics layers used for implant coatings, Solid State Phenomena 165 (2010) 31-36. https://doi.org/10.4028/www.scientific.net/SSP.165.31
[10] J. Radziszewska-Wolińska, Fire properties of anticorrosion coatings to rolling stock, Technical Transactions 3-M (2016) 79-86.
[11] A. Gergely, E. Pfeifer, I. Bertóti, T. Török, E. Kálmán, Corrosion protection of cold-rolled steel by zinc-rich epoxy paint coatings loaded with nano-size alumina supported polypyrrole, Corrosion Science 53 (2011) 3486-3499. https://doi.org/10.1016/j.corsci.2011.06.014
[12] M.F. Montemor, Functional and smart coatings for corrosion protection: A review of recent advances, Surface & Coatings Technology 258 (2014) 17-37. https://doi.org/10.1016/j.surfcoat.2014.06.031
[13] A.J. Izenman, Modern Multivariate Statistical Techniques. Regression, Classification, and Manifold Learning. Springer, New York, 2008.
[14] J. Pietraszek, Response surface methodology at irregular grids based on Voronoi scheme with neural network approximator, Adv. Soft Comp. (2003) 250-255.
[15] B.S. Everitt, S. Landau, M. Leese, D. Stahl, Cluster Analysis, Wiley, Hoboken, 2012.
[16] E. Skrzypczak-Pietraszek, J. Pietraszek, Seasonal Changes of Flavonoid Content in Melittis melissophyllum L. (Lamiaceae), Chem. Biodivers. 11 (2014) (4) 562-570.
[17] I.T. Jolliffe, Principal Component Analysis, Springer, New York, 2010.
[18] E. Skrzypczak-Pietraszek, J. Pietraszek, Chemical profile and seasonal variation of phenolic acid content in bastard balm (Melittis melissophyllum L., Lamiaceae), J. Pharmaceut. Biomed. 66 (2012) 154-161. https://doi.org/10.1016/j.jpba.2012.03.037
[19] J. Pietraszek, A. Gadek-Moszczak, The Smooth Bootstrap Approach to the Distribution of a Shape in the Ferritic Stainless Steel AISI 434L Powders, Solid State Phenom. 197 (2013) 162-167. https://doi.org/10.4028/www.scientific.net/SSP.197.162
[20] J. Pietraszek, E. Skrzypczak-Pietraszek, The Optimization of the Technological Process with the Fuzzy Regression, Adv. Mater. Res.-Switz. 874 (2014) 151-155. https://doi.org/10.4028/www.scientific.net/AMR.874.151
[21] A. Szczotok, M. Sozanska, A Comparison of Grain Quantitative Evaluation Performed with Standard Method of Imaging with Light Microscopy and EBSD Analysis, Prakt. Metallogr.-Pr. M. 46 (2009) (9) 454-468.
[22] A. Gadek-Moszczak, L. Wojnar, Objective, Quantitative and Automatic X-Ray Image. Analysis of the Bone Regenerate in the Ilizarov Method, ECS10: The10th European Congress of Stereology and Image Analysis (2009) 453-458.
[23] J. Korzekwa, A. Gadek-Moszczak, M. Bara, The Influence of Sample Preparation on SEM Measurements of Anodic Oxide Layers, Prakt. Metallogr.-Pr. M. 53 (2016) (1) 36-49.
[24] A. Gadek-Moszczak, History of Stereology, Image Anal. Stereol. 36 (2017) (3) 151-152.
[25] A. Gadek-Moszczak, P. Matusiewicz, Polish Stereology – a Historical Review, Image Anal. Stereol. 36 (2017) (3) 207-221.