Chitosan-Based Adsorbents: Environmental Applications for the Removal of Arsenicals

$20.00

Chitosan-Based Adsorbents: Environmental Applications for the Removal of Arsenicals

Lee D. Wilson, Brij B. Tewari

Diverse types of arsenic contaminants occur in aquatic environments due to their multiple oxidation states and ionization properties. To address the removal of arsenic species in water, chitosan has been studied as a platform biopolymer for the design of adsorbent materials. This chapter examines the utility of chitosan and its modified forms as sorbent materials for the removal of arsenic species in aquatic environments. A selected coverage of the literature will provide an overview of various chitosan-based adsorbents and the general utility of chitosan sorbents for the removal of inorganic and organoarsenicals.

Keywords
Chitosan, Chemical Modification, Adsorption, Adsorbent, Contaminants, Inorganic Arsenicals

Published online 7/1/2018, 28 pages

DOI: https://dx.doi.org/10.21741/9781945291753-7

Part of the book on Chitosan-Based Adsorbents for Wastewater Treatment

References
[1] W. M. Alley, R. Alley, In High and Dry: Meeting the Challenges of the World’s Growing Dependence on Groundwater, NEW HAVEN; Yale University Press, London, UK, 2017, Chapter 13. https://doi.org/10.12987/yale/9780300220384.001.0001
[2] E. Merian, M. Anke, M. Ihnat, M. Stoeppler, In Elements and Their Compounds in the Environment, Wiley‐VCH Verlag GmbH: Weinheim, Germany, 2008, 1321-1364.
[3] A. Masotti, In Arsenic: Sources, Environmental Impact, Toxicity and Human Health – a medical geology perspective, Nova Publishers: New York, USA, 2013.
[4] S. E. Manahan In Environmental Chemistry 10th Edition, CRC Press: Boca Raton, FL., 2017, Chapter 6.
[5] S. Murcott, Arsenic Contamination in the World, IWA Publishing, London, UK, 2012, Chapter 2.
[6] C. F. McGuigan, C. L. A. Hamula, S. Huang, S. Gabos, Le Environ. Rev. 18 (2010) 291-307. https://doi.org/10.1139/A10-012
[7] L. D. Wilson, Chitosan-based Materials and Their Application toward Arsenic Removal from Water, Water Conditioning & Purification International Magazine, 56 (12) (2014) 28-33. www.wcponline.com
[8] M. Rahim, M. R. H. M. Haris, Application of biopolymer composites in arsenic removal from aqueous medium: A review. J. Radiation Res. Appl. Sci. 8 (2015) 255 -263. https://doi.org/10.1016/j.jrras.2015.03.001
[9] C. O. Abernathy, R. L. Calderon, W. R. Chappell, In Arsenic: Exposure and health effects, Springer Science & Business Media: Hong Kong, Macau, 2012.
[10] L. Liu, Environment Magazine, 2010. .
[11] J. Bundschuh, M. I. Litter, F. Parvez, G. Román-Ross, H. B. Nicolli, J-S Jean, C-W Liu, D. López, M. A. Armienta, L. R.G. Guilherme, A. G. Cuevas, L. Cornejo, L. Cumbal, R. Toujaguez, One century of arsenic exposure in Latin America: A review of history and occurrence from 14 countries, Sci. Total Environ. 429 (2012) 2–35. https://doi.org/10.1016/j.scitotenv.2011.06.024
[12] M. Barlow, In Blue Covenant: The global water crisis and the coming battle for the right to water. The New Press. 2010.
[13] R. Nickson, C. Sengupta, P. Mitra, S. N. Dave, A. K. Banerjee, A. Bhattachary, S. Basu, N. Kakoti, N. S. Moorthy, M. Wasuja, M. Kumar, D. S. Mishra, A. Ghosh, D. P. Vaish, A. K. Srivastava, R. M. Tripathi, S. N. Singh, R. Prasad, S. Bhattachary, P. Deverill, Current knowledge on the distribution of arsenic in groundwater in five states of India, J. Environ. Sci. Health. A. Tox. Hazard. Subst. Environmental Eng. 42 (2007) 1707–1718. https://doi.org/10.1080/10934520701564194
[14] W. Lepkowski, Arsenic crisis in Bangladesh, Chem. Eng. News, (1998) 27-29. https://doi.org/10.1021/cen-v076n046.p027
[15] P. Bagla, J. Kaiser, India’s spreading health crisis draws global arsenic experts, Science, 274 (1996) 174-175. https://doi.org/10.1126/science.274.5285.174
[16] Z. Yang, H. Peng, X. Lu, Q. Liu, R. Huang, B. Hu, G. Kachanoski, M. J. Zuidhof, X. C. Le Arsenic Metabolites, Including N-Acetyl-4-hydroxy-m-arsanilic Acid, in Chicken Litter from a Roxarsone-Feeding Study Involving 1600 Chickens. Environ. Sci. Technol., 50 (13) (2016) 6737–6743, and references cited therein. https://doi.org/10.1021/acs.est.5b05619
[17] G. M. Momplaisir, C.G. Rosal, E.M. Heithmar, Arsenic Speciation Methods for Studying the Environmental Fate of Organoarsenic Animal-Feed Additives, U.S. EPA, NERL-Las Vegas, TIM No. 01-11 (2001). www.epa.gov/nerlesd1/chemistry/labmonitor/labresearch.htm
[18] G. Kyzas, D. Bikiaris, Recent modifications of chitosan for adsorption applications: a critical and systematic review. Mar. Drugs. 13 (2015) 312-337. https://doi.org/10.3390/md13010312
[19] L. Poon, S. Younus, L. D. Wilson, Adsorption Study of an organo-arsenical with chitosan-based sorbents, J. Colloid Interf. Sci. 420 (2014) 136–144, and references cited therein. https://doi.org/10.1016/j.jcis.2014.01.003
[20] W. R. Cullen, K. J. Reimer, Arsenic speciation in the environment, Chem. Rev. 89 (1989) 713-764. https://doi.org/10.1021/cr00094a002
[21] J. Qu, Research progress of novel adsorption processes in water purification: A review, J. Environ. Sci. (China). 20(1) (2008) 1-13. https://doi.org/10.1016/S1001-0742(08)60001-7
[22] D. Mohan, C. U. Pittman Jr. Arsenic removal from water/wastewater using adsorbents–A critical review, J. Hazard. Mater. 142 (2007) 1–53. https://doi.org/10.1016/j.jhazmat.2007.01.006
[23] Information on www.rsc.org/education/eic/issues/2007July/HistoricalHighlights-InOrganoarsenicChemistry.asp
[24] Information on https://pubs.acs.org/cen/government/85/8515gov2.html
[25] S. Cowen, M. Duggal, T. Hoang, H. A. Al-Abadleh, Vibrational spectroscopic characterization of some environmentally important organoarsenicals – A guide for understanding the nature of their surface complexes. Can. J. Chem., 86 (2008) 942-950. https://doi.org/10.1139/v08-102
[26] H. R. Guo, H. S. Chang, H. Hu, S. R. Lipsitz, R. R. Monson, Arsenic in drinking water and incidence of urinary cancers, Epidemiol., 8 (1997) 545-550. https://doi.org/10.1097/00001648-199709000-00012
[27] T. Tsula, A. Babazono, E. Yamamoto, N. Kurumatani, Y. Mino, T. Ogawa, Y. Kishi, H. Ayoama, Ingested arsenic and internal cancer: a historical cohort study followed for 33 years, Amer. J. Epidemiol., 141 (1995) 198-209. https://doi.org/10.1093/oxfordjournals.aje.a117421
[28] R. A. A. Muzzarelli, In Natural Chelating Polymers; Pergamon Press: Oxford, UK, 1973.
[29] K. M. Varum, O. Smidsrød, O. In: S. Dumitriu (Ed.), Polysaccharides – Structure Diversity and Functional Versatility, 2nd ed., Marcel Dekker: New York, 2005, Chapter 26.
[30] G. Crini, Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog. Polym. Sci., 30 (2005) 38–70. https://doi.org/10.1093/oxfordjournals.aje.a117421
[31] G. Crini, P. Badot, Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature, Prog. Polym. Sci. 33 (2008) 399–447. https://doi.org/10.1016/j.progpolymsci.2007.11.001
[32] F. Renault, B. Sancey, P.–M. Badot, G. Crini, Chitosan for coagulation/flocculation processes – An ecofriendly approach, Eur. Polym. J. 45 (2009) 1337–1348. https://doi.org/10.1016/j.eurpolymj.2008.12.027
[33] A. Bhatnagar, M. Sillanpaa, Applications of chitin- and chitosan-derivatives for the detoxification of water and wastewater–a short review, Adv. Coll. Interface Sci. 152 (2009) 26–38, and references cited therein. https://doi.org/10.1016/j.cis.2009.09.003
[34] L. Pontoni M. Fabbricino, Use of chitosan and chitosan-derivatives to remove arsenic from aqueous solutions—a mini review. Carbohydr Res. 356 (2012) 86–92, and references cited therein. https://doi.org/10.1016/j.carres.2012.03.042
[35] X. Wang, Y. Liu, J. Zheng, Removal of As(III) and As(V) from water by chitosan and chitosan derivatives: a review. Environ Sci Pollut Res. 23 (2016) 13789–13801, and references cited therein. https://doi.org/10.1007/s11356-016-6602-8
[36] E. B. Denkbas, M. Odabas, Chitosan microspheres and sponges: Preparation and characterization. J. Appl. Polym. Sci., 76 (2000) 1637. https://doi.org/10.1002/(SICI)1097-4628(20000613)76:11<1637::AID-APP4>3.0.CO;2-Q
[37] K. C.M. Kwok, L. F. Koong, G. Chen, G. McKay, Mechanism of arsenic removal using chitosan and nanochitosan. J. Colloid Interf. Sci. 416 (2014) 1–10. https://doi.org/10.1016/j.jcis.2013.10.031
[38] H. K. Agbovi, L. D. Wilson, Design of amphoteric chitosan flocculants for phosphate and turbidity removal in wastewater, Carbohydr. Polym. 189 (2018) 360−370, and references cited therein. https://doi.org/10.1016/j.carbpol.2018.02.024
[39] C. Xue, L. D. Wilson, Design and characterization of chitosan-based composite particles with tunable interfacial properties, Carbohydr. Polym., 132 (2015) 369-77. https://doi.org/10.1016/j.carbpol.2015.06.058
[40] K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption isotherm systems. Chem. Eng. J., 156(1) (2010) 2-10. https://doi.org/10.1016/j.cej.2009.09.013
[41] G. Z. Kyzas, In Green Adsorbents, Bentham Science Publishers: 2015, DOI: 10.2174/97816810813661150101. https://doi.org/10.2174/97816810813661150101
[42] S. N. Kartal, Y. Imamura, Removal of copper, chromium, and arsenic from CCA-treated wood onto chitin and chitosan, Biores. Technol. 96 (2005) 389–392. https://doi.org/10.1016/j.biortech.2004.03.004
[43] A. J. Verma, S. V. Deshpande, J. F. Kennedy, Metal complexation by chitosan and its derivatives: a review, Carbohydr. Polym., 55 (2004) 77–93. https://doi.org/10.1016/j.carbpol.2003.08.005
[44] E. Guibal, Interactions of metal ions with chitosan-based sorbents: A review. Sep. Purif. Technol., 38 (2004) 43–74. https://doi.org/10.1016/j.seppur.2003.10.004
[45] C. Gerente, V. K. C. Lee, P. L. Cloirec, G. McKay, Application of chitosan for the removal of metals from wastewaters by adsorption –mechanisms and models review, Crit. Rev. Environ. Sci. Technol., 37 (2007) 41–127. https://doi.org/10.1080/10643380600729089
[46] W. S. Wan Ngah, L. C. Teong, M. A. K. M. Hanafiah, Adsorption of dyes and heavy metal ions by chitosan composites: a review. Carbohydr. Polym., 83 (2011) 1446–1456. https://doi.org/10.1016/j.carbpol.2010.11.004
[47] D-W. Cho, B-H. Jeon, C-M. Chon, Y. Kim, F. W. Schwartz, E-S. Lee, H. Song. A novel chitosan/clay/magnetite composite for adsorption of Cu(II) and As(V) Chem. Eng. J. 200–202 (2012) 654–662. https://doi.org/10.1016/j.cej.2012.06.126
[48] L. Lalchhingpuii, B.P. Nautiyal, D. Tiwari, S.I. Choi, S-H. Kong; S-M. Lee, Silane grafted chitosan for the efficient remediation of aquatic environment contaminated with arsenic(V). J. Colloid Interf. Sci., 467 (2016) 203–212. https://doi.org/10.1016/j.jcis.2016.01.019
[49] L. Da Sacco, A. Masotti, Chitin and Chitosan as Multipurpose Natural Polymers for Groundwater Arsenic Removal and As2O3 Delivery in Tumor Therapy, Mar. Drugs, 8 (2010) 1518-1525. https://doi.org/10.3390/md8051518
[50] K. C. M. Kwok, V. K. C. Lee, C. Gerente, G. McKay, Novel batch reactor design for the adsorption of arsenate on chitosan. J. Chem. Technol. Biotechnol. 85 (2010) 1561-68. https://doi.org/10.1002/jctb.2466
[51] W. S. Wan Ngah, S. Fatinathan, Chitosan flakes and chitosan–GLA beads for adsorption of p-nitrophenol in aqueous solution. Coll. Surf. A: Physicochem. Eng. Aspects, 277 (2006) 214-222. https://doi.org/10.1016/j.colsurfa.2005.11.093
[52] Y.-T Wei, Y.-M. Zheng, J. P. Chen, Enhanced adsorption of arsenate onto a natural polymer-based sorbent by surface atom transfer radical polymerization. J. Colloid Interf. Sci., 356 (2011) 234–239. https://doi.org/10.1016/j.jcis.2010.12.020
[53] R. Brion-Roby, J. Gagnon, J.-S. Deschênes, B. Chabot, Development and treatment procedure of arsenic contaminated water using a new and green chitosan sorbent: kinetic, isotherm, thermodynamic and dynamic studies, Pure Appl. Chem. (2017) https://dx.doi.org/10.1515/pac-2017-0305. https://doi.org/10.1515/pac-2017-0305
[54] R. Brion-Robya, J. Gagnon, J-S Deschênes, B. Chabot Investigation of fixed bed adsorption column operation parameters using a chitosan material for treatment of arsenate contaminated water, J. Environ. Chem. Eng. 6 (2018) 505–511. https://doi.org/10.1016/j.jece.2017.12.032
[55] B. J. Mcafee, W. D. Gould, J. C. Nadeau, A. C. A. Da Costa, Biosorption of metal ions using chitosan, chitin, and biomass of Rhizopus oryzae, Sep. Sci. Technol. 36 (14) (2001) 3207–3222. https://doi.org/10.1081/SS-100107768
[56] Y-T. Wei, Y-M. Zheng, J. P. Chen, Enhanced adsorption of arsenate onto a natural polymer-basedsorbent by surface atom transfer radical polymerization, J. Colloid Interf. Sci. 356 (2011) 234–239. https://doi.org/10.1016/j.jcis.2010.12.020
[57] A. Gupta, V. S. Chauhan, N. Sankararamakrishnan, Preparation and evaluation of iron-chitosan composites for removal of As(III) and As(V) from arsenic contaminated real life groundwater, Water Res. 43 (2009) 3862–3870. https://doi.org/10.1016/j.watres.2009.05.040
[58] S. M. Miller, J. B. Zimmerman, Novel, bio-based, photoactive arsenic sorbent: TiO2-impregnated chitosan bead, Water Res., 44 (2010) 5722-5729. https://doi.org/10.1016/j.watres.2010.05.045
[59] P. Singh, J. Bajpai, A. K. Bajpai, R.B. Shrivastava, Removal of arsenic ions and bacteriological contamination from aqueous solutions using chitosan nanospheres. Indian J. Chem. Technol., 18 (2011) 403-413.
[60] D. Y. Pratt, L. D. Wilson, J. A. Kozinski, Preparation and sorption studies of glutaraldehyde cross-linked chitosan copolymers, J. Colloid Interf. Sci. 395 (2013) 205-211. https://doi.org/10.1016/j.jcis.2012.12.044
[61] M. V. Dhanapala, K. Subramanian., Modified chitosan for the collection of reactive blue 4, arsenic and mercury from aqueous media, Carbohydr. Polym. 117 (2015) 123–132. https://doi.org/10.1016/j.carbpol.2014.09.027
[62] M. Rahim, M. R. H. M. Haris, Application of biopolymer composites in arsenic removal from aqueous medium: A review. J. Radiation Res. Appl. Sci. 8 (2015) 255 -263. https://doi.org/10.1016/j.jrras.2015.03.001
[63] H. H. dos Santos, C. A. Demarchi, C. A. Rodrigues, J. M. Greneche, N. Nedelko, A. S´lawska-Waniewska, Adsorption of As(III) on chitosan-Fe-crosslinked complex (Ch-Fe). Chemosphere, 82 (2011) 278–283. https://doi.org/10.1016/j.chemosphere.2010.09.033
[64] A. Shekhawat, S. Kahu, D. Saravanan, R. Jugade, Tin(IV) cross-linked chitosan for the removal of As(III), Carbohydr. Polym. 172 (2017) 205–212. https://doi.org/10.1016/j.carbpol.2017.05.038
[65] I. A. Udoetok, L. D. Wilson, J. V. Headley, Self-Assembled and Cross-Linked Animal and Plant-Based Polysaccharides: Chitosan−Cellulose Composites and Their Anion Uptake, ACS Appl. Mater. Interfaces, 8 (2016), 33197–33209. https://doi.org/10.1021/acsami.6b11504
[66] M. H. Mahaninia, L. D. Wilson, Phosphate uptake studies of cross-linked chitosan bead materials, J. Colloid Interf. Sci., 485 (2017) 201–212. https://doi.org/10.1016/j.jcis.2016.09.031
[67] M. H. Mohamed, L. D. Wilson, Sequestration of Agrochemicals from Aqueous Media Using Cross-linked Chitosan-based Sorbents, Adsorption, 22 (2016) 1025–1034. https://doi.org/10.1007/s10450-016-9796-7
[68] J. H. Kwon, L. D. Wilson, Sammynaiken, R. S. Sorptive uptake of selenium with magnetite and its supported materials onto activated carbon, J. Colloid Interf. Sci., 457 (2015) 388-97. https://doi.org/10.1016/j.jcis.2015.07.013
[69] L. S. Casey, L. D. Wilson, Investigation of Chitosan-PVA Composite Films and their Adsorption Properties, J. Geosci. Environ. Prot., 3 (2015) 78-84. https://doi.org/10.4236/gep.2015.32013
[70] L. Poon, L.D.Wilson, J. V Headley, Chitosan-glutaraldehyde copolymers and their sorption properties, Carbohydr. Polym., 109 (2014) 92–101. https://doi.org/10.1016/j.carbpol.2014.02.086
[71] M. H. Mohamed, I. A. Udoetok, R. M. Dimmick, L. D. Wilson, J. V. Headley, Fractionation of Carboxylate Anions from Aqueous Solution Using Chitosan Cross-Linked Sorbent Materials, RSC Adv., 5 (2015) 82065-82077. https://doi.org/10.1039/C5RA13981C
[72] M. H. Mahaninia, L. D. Wilson, Cross-linked chitosan beads for phosphate removal from aqueous solution, J. Applied Polym. Sci., 132 (2015) 42949-42958.
[73] L. D. Wilson, C. Xue, Studies of Macromolecular Materials Sorbent for Urea Capture J. Appl. Polym. Sci. 128 (2013) 667-675. https://doi.org/10.1002/app.38247
[74] M. H. Mahaninia, L. D. Wilson, Modular Cross-Linked Chitosan Beads with Calcium Doping for Enhanced Adsorptive Uptake of Organophosphate Anions, Ind. Eng. Chem. Res., 55 (45) (2016) 11706–11715. https://doi.org/10.1021/acs.iecr.6b02814
[75] M. H. Mahaninia, L. D. Wilson, A kinetic uptake study of roxarsone using cross-linked chitosan beads, Ind. Eng. Chem. Res. 56 (7) (2017) 1704–1712. https://doi.org/10.1021/acs.iecr.6b04412
[76] L. D. Wilson, D. Y. Pratt; J. A. Kozinski, Preparation and Sorption Studies of β-Cyclodextrin-Chitosan-Glutaraldehyde Terpolymers, J. Colloid Interf. Sci. 393 (2013) 271-277. https://doi.org/10.1016/j.jcis.2012.10.046
[77] M. T. Sikder, S. Tanaka, T. Saito, M. Kurasaki. Application of zerovalent iron impregnated chitosan-caboxymethyl-β-cyclodextrin composite beads as arsenic sorbent. J. Environ. Chem. Eng. 2 (2014) 370–376. https://doi.org/10.1016/j.jece.2014.01.009
[78] Z. K. Elwakeela, E. Guibal. Arsenic(V) sorption using chitosan/Cu(OH)2 and chitosan/CuOcomposite sorbents. Carbohydr. Polym., 134 (2015) 190–204. https://doi.org/10.1016/j.carbpol.2015.07.012
[79] G. Neeraj, S. K. Raghunandan, P. S. Kumar, H. Cabanac, V. V. Kumar. Adsorptive potential of dispersible chitosan coatediron-oxide nanocomposites toward the elimination of arsenic from aqueous solution. Proc. Saf. Environ. Prot., 104 (2016) 185–195. https://doi.org/10.1016/j.psep.2016.09.006
[80] D-W. Cho, B-H. Jeon, C-M. Chon, Y. Kim, F. W. Schwartz, E-S. Lee, H. Song, A novel chitosan/clay/magnetite composite for adsorption of Cu(II) and As(V) Chem. Eng. J., 200–202, (2012) 654–662. https://doi.org/10.1016/j.cej.2012.06.126
[81] F. Su, H. Zhou, Y. Zhang, G. Wang, Three-dimensional honeycomb-like structured zero-valent iron/chitosan composite foams for effective removal of inorganic arsenic in water. J. Colloid Interf. Sci. 478 (2016) 421–429. https://doi.org/10.1016/j.jcis.2016.06.035
[82] M. (R.) Yazdani, A. Bhatnagar, R. Vahala, Synthesis, characterization and exploitation of nano-TiO2/feldsparembedded chitosan beads towards UV-assisted adsorptive abatement of aqueous arsenic (As), Chem. Eng. J., 316 (2017) 370-382. https://doi.org/10.1016/j.cej.2017.01.121
[83] A. Anjum, C. K. Seth, M. Datta, Removal of As3O4 Using Chitosan–Montmorillonite Composite: Sorptive Equilibrium and Kinetics Adsorp. Sci. Technol. 31(4) (2013) 303-324. https://doi.org/10.1260/0263-6174.31.4.303
[84] A. Shahzad, W. Miran, K. Rasool, M. Nawaz, J. Jang, S-R. Lim, D. S. Lee, Heavy metals removal by EDTA-functionalized chitosan graphene oxide nanocomposites, RSC Adv., 7 (2017) 9764–9771. https://doi.org/10.1039/C6RA28406J
[85] B. An, H. Kim, C. Park, S-H Lee, J-W. Choi, Preparation and characterization of an organic/inorganic hybrid sorbent (PLE) to enhance selectivity for As(V), J. Hazard. Mater., 289 (2015) 54–62. https://doi.org/10.1016/j.jhazmat.2015.02.029
[86] C. Liu, B. Wang, Y. Deng, B. Cui, J. Wang, W. Chen, S-Y. He. Performance of a New Magnetic Chitosan Nanoparticle to Remove Arsenic and Its Separation from Water. J. Nanomater., Article ID 191829 (2015), https://dx.doi.org/10.1155/2015/191829
[87] L-L. Min, Z-H. Yuan, L-B. Zhong, Q. Liu, R-X. Wu, Y-M. Zheng, Preparation of chitosan based electrospun nanofiber membrane and its adsorptive removal of arsenate from aqueous solution. Chem. Eng. J. 267 (2015) 132–141. https://doi.org/10.1016/j.cej.2014.12.024
[88] M. H. Dehghani, A. Zarei, A. Mesdaghinia, R. Nabizadeh, M. Alimohammadi, M. Afsharnia Response surface modeling, isotherm, thermodynamic and optimization study of arsenic (V) removal from aqueous solutions using modified bentonite-chitosan (MBC), Korean J. Chem. Eng., 34(3) (2017) 757-767. https://doi.org/10.1007/s11814-016-0330-0
[89] J. H. Kwon, L. D. Wilson, R. S. Sammynaiken, Sorptive Uptake Studies of an Arylarsenical with Iron Oxide Composites on an Activated Carbon Support, Materials, 7 (2014) 1880-1898. https://doi.org/10.3390/ma7031880
[90] A. Tawfik A. S. Saleh, M. Tuzen, Chitosan-modified vermiculite for As(III) adsorption from aqueous solution: Equilibrium, thermodynamic and kinetic studies. J. Mol. Liquids 219 (2016) 937–945. https://doi.org/10.1016/j.molliq.2016.03.060
[91] V.M. Boddu, K. Abburib, J.L. Talbottc, E.D. Smitha, R. Haaschd, Removal of arsenic(III) and arsenic (V) from aqueous medium using chitosan-coated biosorbent, Water Res. 42 (2008) 633–642. https://doi.org/10.1016/j.watres.2007.08.014
[92] R. Sharma, N. Singh, A. Gupta, S. Tiwari, S. K. Tiwari, S. R. Dhakate, Electrospun chitosan–polyvinyl alcohol composite nanofibers loaded with cerium for efficient removal of arsenic from contaminated water. J. Mater. Chem. A, 2 (2014) 16669–16677. https://doi.org/10.1039/C4TA02363C
[93] C-Y. Chen, T-H. Chang, J-T. Kuo, Y-F. Chen, Y-C. Chung, Characteristics of molybdate-impregnated chitosan beads (MICB) in terms of arsenic removal from water and the application of a MICB-packed column to remove arsenic from wastewater. Biores. Technol., 219 (2008) 7487–7494. https://doi.org/10.1016/j.biortech.2008.02.015
[94] S. Liu, B. Huang, L. Chai, Y. Liu, G. Zeng, X. Wang, W. Zeng, M. Shang, J. Deng, Z. Zhou, Enhancement of As(V) adsorption from aqueous solution by a magnetic chitosan/biochar composite. RSC Adv., 7 (2017) 10891–10900. https://doi.org/10.1039/C6RA27341F
[95] J. Qi, G. Zhang, H. Li. Efficient removal of arsenic from water using a granular adsorbent: Fe–Mn binary oxide impregnated chitosan bead. Biores. Technol. 193 (2015) 243–249. https://doi.org/10.1016/j.biortech.2015.06.102
[96] M. E. Pena, G. P. Koratis, M. Patel, L. Lippincott, X. Meng, Adsorption of As(V) and As(III) by nanocrystalline titanium dioxide, Water Res., 39 (2005) 2327–2337. https://doi.org/10.1016/j.watres.2005.04.006
[97] E.A. Deliyanni, D.N. Bakoyannnnakis, A.I. Zouboulis, K.A. Matis, Sorption of As(V) ions by akaganeite-type nanocrystals, Chemosphere 50 (2003) 155–163. https://doi.org/10.1016/S0045-6535(02)00351-X
[98] S. R. Kanel, B. Charlet, L. Choi, Removal of As(III) from groundwater by nanoscale zerovalent iron, Environ. Sci. Technol., 39 (2005) 1291–1298. https://doi.org/10.1021/es048991u
[99] B. Dousova, T. Grygar, A. Martaus, L. Fuitova, D. Kolousek, V. Machovi, Sorption of As(V) on aluminosilicates treated with Fe(II) nanoparticles, J. Colloid Interf. Sci., 302 (2006) 424–431. https://doi.org/10.1016/j.jcis.2006.06.054
[100] B. Liu; D. Wang; G. Yu; X. Meng. Adsorption of heavy metal ions, dyes and proteins by chitosan composites and derivatives — A review, J. Ocean Univ. China, 12(3) (2013) 500–508. https://doi.org/10.1007/s11802-013-2113-0
[101] P. Miretzky, A. F. Cirelli, Fluoride removal from water by chitosan derivatives and composites: A review. J. Fluor. Chem., 132 (4) (2011) 231-240. https://doi.org/10.1016/j.jfluchem.2011.02.001
[102] K. J. Reimer, I. Koch, W. R. Cullen, Organoarsenicals. Distribution and transformation in the environment, Metal Ions in Life Sci., 7 (2010) 165-229. https://doi.org/10.1039/9781849730822-00165
[103] D. Kong, L. D. Wilson, Synthesis and characterization of cellulose-goethite composites and their adsorption properties with roxarsone, Carbohyr. Polym., 169 (2017) 282-294. https://doi.org/10.1016/j.carbpol.2017.04.019
[104] T. P. Joshi; G. Zhang; R. Koju, Z. Qi, R. Liu, H. Liu, J. Qu, The removal Efficiency and insight into the mechanism of para-arsanilic acid adsopton on Fe-Mn framework, Sci. Total Environ., 601-602 (2017) 713-722. https://doi.org/10.1016/j.scitotenv.2017.05.219
[105] Y-T. Wei, Y-M. Zheng, J. P. Chen. Uptake of methylated arsenic by a polymeric adsorbent: Process performance and adsorption chemistry, Water Res. 45 (2011) 2290-2296. https://doi.org/10.1016/j.watres.2011.01.002
[106] S. Lunge, S. Singh, A. Sinha, A, Magnetic iron oxide (Fe3O4) nanoparticles from tea waste for arsenic removal. J. Magnetism Magnet. Mater., 356 (2014) 21-31. https://doi.org/10.1016/j.jmmm.2013.12.008
[107] Y. C. Sharma, V. Srivastava, V. K. Singh, S. N. Kaul, C. H. Weng, Nano-adsorbents for the removal of metallic pollutants from water and wastewater. Environ. Technol., 30(6) (2009) 583–609. https://doi.org/10.1080/09593330902838080
[108] M. M. Khin, A. S. Nair, V. J. Babu, R. Murugana, S. Ramakrishna, A review on nanomaterials for environmental remediation. Energy Environ. Sci., 5 (2012) 8075-8109. https://doi.org/10.1039/c2ee21818f
[109] L. Cumbal, A.K. Sengupta, Arsenic removal using polymer-supported hydrated iron (III) oxide nanoparticles: role of Donnan membrane effect, Environ. Sci. Technol., 39 (2005) 6508–6515. https://doi.org/10.1021/es050175e
[110] M. Jang, W. F. Chen, F. S. Cannon, Preloading Hydrous Ferric Oxide into Granular Activated Carbon for Arsenic Removal. Environ. Sci. Technol. 42 (2008) 3369–3374. https://doi.org/10.1021/es7025399
[111] B. M. Jovanovi, V. L. Vukašinovi-Peši, Đ. N. Veljović, L. V. Rajaković, Arsenic removal from water using low-cost adsorbents – a comparative study. J. Serb. Chem. Soc., 76 (2011) 1437–1452. https://doi.org/10.2298/JSC101029122J
[112] T. V. Nguyen, S. Vigneswaran, H. H. Ngo, J. Kandasamy, Arsenic removal by iron oxide coated sponge: experimental performance and mathematical models. J. Hazard. Mater. 182 (2010) 723–729. https://doi.org/10.1016/j.jhazmat.2010.06.094
[113] A. Gupta, M. Yunus, N. Sankararamakrishnan, Chitosan-and Iron–Chitosan-Coated Sand Filters: A Cost-Effective Approach for Enhanced Arsenic Removal, Ind. Eng. Chem. Res. 52(5) (2013) 2066-2072, and references cited therein. https://doi.org/10.1021/ie302428z