Probing Defects by Positron Annihilation Spectroscopy

$20.00

Probing Defects by Positron Annihilation Spectroscopy

Mahuya Chakrabarti, Dirtha Sanyal

Positron annihilation technique is a well-known nuclear solid state probe to characterize structural defects in a material/nano material. Since the nano size materials often suffer from vacancy type or surface structural defects, they are interesting materials for the nanotechnology/nano-bio platform. The defects and the chemical nature of the defects can be probed by the positron annihilation techniques which are applicable to biochemical scaffold as they often deal with surface chemical reactions in the biological perspectives. The positron annihilation lifetime (PAL) spectroscopy, Doppler broadening (DB) spectroscopy and the coincidence Doppler broadening (CDB) spectroscopy are the three useful positron annihilation techniques employed in different materials to characterize structural defects and that to understand the material itself in terms of its molecular organization. In the present article we will discuss the basics of the above three positron annihilation techniques and then by employing these techniques an important conclusion will be discussed in the field of wide band gap semiconductor oxide material, namely the “defect induced ferromagnetism”. The growth and engineering of metallic oxide nano particles are useful in medicinal applications. Ferromagnetic property is important in the application of nanoparticles in diverse fields like biomedicine, where intensive research is currently being conducted, at least on one diagnostic application of magnetic nanoparticles as magnetic resonance imaging contrast agents.

Keywords
Positron Annihilation Technique, Defects, Semiconductors, Bio-applications

Published online 7/1/2018, 22 pages

DOI: https://dx.doi.org/10.21741/9781945291739-6

Part of the book on Nanomaterials in Bio-Medical Applications

References
[1] P. Hautojarvi, C. Corbel, Positron Spectroscopy of Solids, A. Dupasquier, A. P. Mills Jr., (Eds.), IOS Press, Ohmsha, Amsterdam, 1995.
[2] R. Krause-Rehberg and H. S. Leipner (Eds.), Positron Annihilation in Semiconductors, Springer Verlag, Berlin, 1999. https://doi.org/10.1007/978-3-662-03893-2
[3] D.M. Schrader andY.C. Jean , Positron and Positronium Chemistry, Studies in Physical and Theoretical Chemistry, vol57, Elsevier, Amsterdam, 1988.
[4] K. Routray, D. Sanyal and D. Behera, Dielectric, magnetic, ferroelectric, and Mossbauer properties of bismuth substituted nanosized cobalt ferrites through glycine nitrate synthesis method, J. of Appl. Phys. 122 (2017) 224104. https://doi.org/10.1063/1.5005169
[5] Bichitra Nandi Ganguly, Sreetama Dutta , Soma Roy, Jens Röder , Karl Johnston, Manfred Martin, ISOLDE-Collaboration, Investigation on structural aspects of ZnO nano-crystal using radio-active ion beam and PAC , Nuclear Instruments and Methods in Physics Research B 362 (2015) 103–109. https://doi.org/10.1016/j.nimb.2015.08.098
[6] Bichitra Nandi Ganguly, Nagendra Nath Mondal, Maitreyee Nandy, Frank Roesch, Some Physical Aspects of Positron Annihilation Tomography: a critical review; Journal of Radioanalytical and Nuclear Chemistry 279 (2009) 685-698. https://doi.org/10.1007/s10967-007-7256-2
[7] P. Hautojarvi (Eds.), Positron in Solids, Springer-Verlag, Berlin, 1979. https://doi.org/10.1007/978-3-642-81316-0
[8] W. Brandt and A. Dupasquier (Eds.), Positron Solid State Physics, North-Holland, Amsterdam, 1983.
[9] R. S. Brusa, A. Dupasquier, R. Gfisenti, S. Liu, S. Oss and, A. Zecca, Deep disorder in neon-implanted copper single crystals detected by variable-energy positrons. J. Phys.: Condens. Matter 1 (1989), 5411-5420. https://doi.org/10.1088/0953-8984/1/32/010
[10] T. Yamazaki, R. Suzuki, T. Ohdaira, T. Mikado and Y. Kobayashi, Production and application of pulsed slow positron beam using an electron linac, Radiation Physics and Chemistry 49 (1997) 651-659. https://doi.org/10.1016/S0969-806X(97)00015-7
[11] C. Hugenschmidt, G. Kogel, K. Schreckenbach, P Sperr, M. Springer, B. Straßer, W.Triftshäuser, High intense positron beam at the new Munich research reactor FRM-II Appl. Sur. Sci. 149 (1999) 7-10. https://doi.org/10.1016/S0169-4332(99)00163-4
[12] D. Sanyal, D. Banerjee, Udayan De, probing (Bi0.92Pb0.17)2Sr1.91Ca2.03Cu3.06O10+δ superconductors from 30 to 300 K by positron-lifetime measurements, Phys. Rev. B 58 (1998) 15226-15230. https://doi.org/10.1103/PhysRevB.58.15226
[13] A. Sarkar, M. Chakrabarti, S. K. Roy, D. Bhowmick and D. Sanyal, Positron annihilation lifetime and photoluminescence studies on single crystalline ZnO. J of Phys. Cond. Matt. 23 (2011), 155801. https://doi.org/10.1088/0953-8984/23/15/155801
[14] P. Kirkegaard, N. J. Pedersen and M. Eldrup, Report of Riso National Lab, (Riso-M-2740), 1989.
[15] W. Brandt, in Positron Annihilation, edited by A. T. Stewart and L. O. Roellig (Academic, New York, 1967), p. 155. https://doi.org/10.1016/B978-0-12-395497-8.50014-X
[16] J. Arponen and E. Pajanne, Angular correlation in positron annihilation. Journal of Physics F: Metal Physics 9 (1979), 2359-2376. https://doi.org/10.1088/0305-4608/9/12/009
[17] K.G. Lynn, A.N. Goland, Observation of high momentum tails of positron-annihilation lineshapes, Solid State Commun 18 (1976) 1549-1552. https://doi.org/10.1016/0038-1098(76)90390-2
[18] D. Sanyal, M. Chakrabati, T. K. Roy and A. Chakrabarti, The origin of ferromagnetism and defect-magnetization correlation in nanocrystalline ZnO. Phys. Letts. A 371(2007),482-485. https://doi.org/10.1016/j.physleta.2007.06.050
[19] S Dutta, S Chattopadhyay, A Sarkar, M Chakrabarti, D Sanyal and D Jana, Grain size dependence of optical properties and positron annihilation parameters in Bi2O3 powder, Prog. Mater. Sci. 54 (2009), 89-136. https://doi.org/10.1016/j.pmatsci.2008.07.002
[20] N. Kumar, D. Sanyal, and A. Sundaresan, Defect induced ferromagnetism in MgO nanoparticles studied by optical and positron annihilation spectroscopy Chem. Phys. Lett. 477 (2009), 360-364. https://doi.org/10.1016/j.cplett.2009.07.037
[21] M. Chakrabarti, S. Dutta, S. Chattapadhyay, A. Sarkar, D. Sanyal and A. Chakrabarti, Grain size dependence of optical properties and positron annihilation parameters in Bi2O3 powder, Nanotechnology 15 (2004), 1792-1796. https://doi.org/10.1088/0957-4484/15/12/017
[22] D. Sanyal, D. Banerjee, R. Bhattacharya, S. K. Patra, S. P. Chaudhuri, B. Nandi Ganguly and U. De, Study of transition metal ion doped mullite by positron annihilation techniques J. Mat. Sci. 31 (1996), 3447-3451. https://doi.org/10.1007/BF00360747
[23] A. Sarkar, M. Chakrabarti, S. K. Roy, D. Bhowmick and D. Sanyal, Positron annihilation lifetime and photoluminescence studies on single crystalline ZnO, J of Phys. Cond. Matt. 23 (2011), 155801. https://doi.org/10.1088/0953-8984/23/15/155801
[24] A. Sarkar, M. Chakrabarti, D. Sanyal, D. Bhowmick, S. Dechoudhury, A. Chakrabarti T. Rakshit and S. K. Ray, Photoluminescence and positron annihilation spectroscopic investigation on a H(+) irradiated ZnO single crystal. J. Phys.: Condens. Matter 24 (2012), 325503 (9 pages).
[25] R.V.K. Mangalam, M. Chakrabrati, D. Sanyal, A. Chakrabarti, and A. Sundaresan, Identifying defects in multiferroic nanocrystalline BaTiO3 by positron annihilation techniques. J of Phys. Cond. Matt. 21 (2009), 445902-445906. https://doi.org/10.1088/0953-8984/21/44/445902
[26] U. De, D. Sanyal, S. Chaudhuri, P. M. G. Nambissan, Th. Wolf and H. Wuhl, Probing single-crystalline YBa2Cu3O7 across the superconducting transition temperature by positron annihilation measurements. Phys. Rev. B 62 (2000) 14519-14523. https://doi.org/10.1103/PhysRevB.62.14519
[27] S. N. Guin, D. Sanyal and K. Biswas, The effect of order–disorder phase transitions and band gap evolution on the thermoelectric properties of AgCuS nanocrystals. Chem. Sci. 7 (2016), 534-543. https://doi.org/10.1039/C5SC02966J
[28] S. N. Guin, S. Banerjee, D. Sanyal, S. K. Pati, and K. Biswas, Origin of the Order–Disorder Transition and the Associated Anomalous Change of Thermopower in AgBiS2 Nanocrystals: A Combined Experimental and Theoretical Study Inorganic Chem. 55 (2016),6323-6331.
[29] J. Dhar, S. Sil, A. Dey, P. P. Ray and D. Sanyal, Positron Annihilation Spectroscopic Investigation on the Origin of Temperature-Dependent Electrical Response in Methylammonium Lead Iodide Perovskite. J of Phys. Chem. Lett. 8 (2017), 1745-1751. https://doi.org/10.1021/acs.jpclett.7b00446
[30] U Myler and P J Simpson, Survey of elemental specificity in positron annihilation peak shapes Phys. Rev. B 56 (1997), 14303-14309. https://doi.org/10.1103/PhysRevB.56.14303
[31] P. Asoka-Kumar, M. Alatalo, V.J. Ghosh, A.C. Kruseman, B. Nielsen, K.G. Lynn, Increased Elemental Specificity of Positron Annihilation Spectra. Phys. Rev. Lett. 77 (1996), 2097-2100. https://doi.org/10.1103/PhysRevLett.77.2097
[32] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. Von Molnar, M. L. Roukes, A. Y. Chtchelkanova and D. M. Treger, Spintronics: a spin-based electronics vision for the future. Science 294 (2001) 1488-1495. https://doi.org/10.1126/science.1065389
[33] P. Sharma, A. Gupta, K. V. Rao, F. J. Owens, R. Sharma, R. Ahuja, J. M. Osorio Guillen, B. Johansson and G. A. Gehring Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO Nat. Mater. 2 (2003), 673-677. https://doi.org/10.1038/nmat984
[34] D. C. Kundaliya, S. B. Ogale, S. E. Loflanf, S. Dhar, C. J. Metting, S. R. Shinde, Z. Ma, B. Varughese, K. V. Ramanujachary, L. Salamanca –Riba and T. Venkatesan, On the origin of high-temperature ferromagnetism in the low-temperature-processed Mn-Zn-O system. Nat. Mater. 3 (2004), 709-714. https://doi.org/10.1038/nmat1221
[35] J. Zhang, R. Skomski and D. J. Sellmyer, Sample preparation and annealing effects on the ferromagnetism in Mn-doped ZnO J. of Appl. Phys. 97 (2005), 10D303.
[36] Sreetama Dutta , Sourav Sarkar and Bichitra Nandi Ganguly, Positron Annihilation Study of ZnO Nanoparticles Grown Under Folic Acid Template, J. Material Sci. Eng. 3(2014), 1000134.
[37] Sreetama Dutta and Bichitra N Ganguly, Characterization of ZnO nano particles grown in presence of Folic Acid template, J. Nanobiotechnology 10:29 (2012)10 pages.
[38] A. Sundaresan , R. Bhargavi, N. Rangarajan, U. Siddesh, C. N. R. Rao, Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides. Phys. Rev. B 74 (2006), 161306 (R). 4 pages.
[39] S. J. Han, J. W. Song, C. H. Yang, S. H. Park, J. H. Park, Y. H. Jeong and K. W. Rhie, A key to room-temperature ferromagnetism in Fe-doped ZnO: Cu, Appl. Phys. Lett. 81 (2002), 4212. https://doi.org/10.1063/1.1525885
[40] S. Dutta, M. Chakrabarti, D. Jana, D. Sanyal and A. Sarkar, Defect dynamics in annealed ZnO by positron annihilation spectroscopy, J. Appl. Phys. 98 (2005) 053513. https://doi.org/10.1063/1.2035308
[41] F. Tuomisto, A. Mycielski and K. Grasza, Vacancy defects in (Zn, Mn)O, Superlattices and Microstructures 42 (2007) 218-221. https://doi.org/10.1016/j.spmi.2007.04.071
[42] D. Sanyal, T. K. Roy, M. Chakrabarti, S. Dechoudhury, D. Bhowmick and A. Chakrabarti, Defect studies in annealed ZnO by positron annihilation spectroscopy, J. Phys., Condens. Matter 20 (2008), 045217. https://doi.org/10.1088/0953-8984/20/04/045217
[43] A. Sarkar, H. Luitel, N. Gogurla and D Sanyal, Positron annihilation spectroscopic characterization of defects in wide band gap oxide semiconductors Mat. Sc. Exp. 4 (2017), 35909.
[44] D. C. Iza, D. Muñoz-Rojas , Q. Jia, B. Swartzentruber and J. L. Macmanus-Driscoll, Tuning of defects in ZnO nanorod arrays used in bulk heterojunction solar Cells, Nanoscale Res. Lett. 7 (2012), 655-662. https://doi.org/10.1186/1556-276X-7-655
[45] A. Janotti and C. G. Van de Walle, Native point defects in ZnO. Phys. Rev. B 76 (2007), 165202 (22pages)
[46] H. Luitel,A. Sarkar, M. Chakrabarti, S. Chattopadhyay, K. Asokan and D. Sanyal Positron annihilation lifetime characterization of oxygen ion irradiated rutile TiO2 , Nuclear Instru.& Methods B 379 (2016), 215-218. https://doi.org/10.1016/j.nimb.2016.04.014
[47] A. Sarkar, D. Sanyal, P. Nath, M. Chakrabarti, S. Pal, S. Chattopadhyay, D. Jana and K. Asokan, Defect driven ferromagnetism in SnO2: a combined study using density functional theory and positron annihilation spectroscopy RSC Advances 5 (2015), 1148-1152. https://doi.org/10.1039/C4RA11658E
[48] J. W. Rasmussen, E. Martinez, P. Louka, D. G. Wingett, Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications, Expert Opin Drug Deliv 7 (2010), 1063-1077. https://doi.org/10.1517/17425247.2010.502560
[49] Ihab M. Obaidat, Borhan A. Albiss and Yousef Haik, Magnetic Nanoparticles: Surface Effects and Properties Related to Biomedicine Applications, Int J Mol Sci.14 (2013) 21266–21305. https://doi.org/10.3390/ijms141121266