Wastewater Biological Treatment Technologies: An Eminent Hybrid Approach to Treat Textile Wastewater
R. Shoukat, S.J. Khan, Y. Jamal
Wastewater treatment has been practiced for a long time. However, in recent years the focus has shifted to treating textile wastewater because of the environmental degradation effects of the toxic industrial discharge. Many studies have been conducted on types of numerous technologies in treating textile wastewater with the aim of improving system efficiency and environmental sustainability. Among biological treatment technologies, hybrid anaerobic-aerobic membrane bioreactor (MBR) would be the best approach due to its cost effectiveness and efficient treatment processing. This chapter critically evaluates the potential of the hybrid wastewater treatment systems for textile wastewater and discusses various biological treatment systems with their strengths and limitations and possibility of hybrid technology adoption in developing countries.
Keywords
Textile Wastewater, Membrane Bioreactor, Biological Treatment, Hybrid Systems, Environmental Sustainability
Published online 5/1/2018, 27 pages
DOI: https://dx.doi.org/10.21741/9781945291715-8
Part of the book on Organic Pollutants in Wastewater II
References
[1] C.R. Holkar, A.J. Jadhav, D.V. Pinjari, N.M. Mahamuni, A.B. Pandit, A critical review on textile wastewater treatments: possible approaches, J. Environ. Manage. 182 (2016) 351-366. https://doi.org/10.1016/j.jenvman.2016.07.090
[2] R. Shamey, T. Hussein, Critical solutions in the dyeing of cotton textile materials, Text. Prog. 37 (2005) 1-84. https://doi.org/10.1533/tepr.2005.0001
[3] C.S. Rodrigues, L.M. Madeira, R.A. Boaventura, Synthetic textile dyeing wastewater treatment by integration of advanced oxidation and biological processes–Performance analysis with costs reduction, J. Environ. Chem. Eng. 2 (2014) 1027-1039. https://doi.org/10.1016/j.jece.2014.03.019
[4] M.S. Miah, Cost-effective treatment technology on textile industrial wastewater in Bangladesh, J. Chem. Eng. 27 (2013) 32-36. https://doi.org/10.3329/jce.v27i1.15855
[5] I. Bisschops, H. Spanjers, Literature review on textile wastewater characterisation. Environ. Technol. 24 (2003) 1399-411. https://doi.org/10.1080/09593330309385684
[6] M. Meneses, J.C. Pasqualino, F. Castells, Environmental assessment of urban wastewater reuse: treatment alternatives and applications, Chemosphere. 81 (2010) 266-272. https://doi.org/10.1016/j.chemosphere.2010.05.053
[7] M.W. Rosegrant, X. Cai, S.A. Cline, World water and food to 2025: dealing with scarcity. Int. Food Policy Res. Inst. (2002)
[8] G. Ciardelli, L. Corsi, M. Marcucci, Membrane separation for wastewater reuse in the textile industry, Resour. Conserv. Recycl. 31 (2001) 189-197. https://doi.org/10.1016/S0921-3449(00)00079-3
[9] A.K. Verma, R.R. Dash, P. Bhunia, A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters, J. Environ. Manage. 93 (2012) 154-168. https://doi.org/10.1016/j.jenvman.2011.09.012
[10] S. Ding, Z. Li, R. Wang, Overview of dyeing wastewater treatment technology, Water Resour. Prot. 26 (2010) 73-78.
[11] M.A. Shaikh, Water conservation in textile industry. Pakistan Textile Journal (2009) 48-51.
[12] B. Lesjean, E.H. Huisjes, Survey of the European MBR market: trends and perspectives, Desalination 231 (2008) 71-81. https://doi.org/10.1016/j.desal.2007.10.022
[13] H. Seif, M. Malak, Textile wastewater treatment. InSixth International Water Technology Conference, IWTC (2001) 608-614.
[14] V. Jegatheesan, B.K. Pramanik, J. Chen, D. Navaratna, C.Y. Chang, L. Shu, Treatment of textile wastewater with membrane bioreactor: a critical review, Bioresour. Technol. 204 (2016) 202-212. https://doi.org/10.1016/j.biortech.2016.01.006
[15] A.I. Ohioma, N.O. Luke, O. Amraibure, Studies on the pollution potential of wastewater from textile processing factories in Kaduna, Nigeria, J. Toxicol. Environ. Health Sci. 1 (2009) 034-037.
[16] M.K. Kazi, F. Eljack, N.A. Elsayed, M.M. El-Halwagi, Integration of energy and wastewater treatment alternatives with process facilities to manage industrial flares during normal and abnormal operations: Multiobjective extendible optimization framework, Ind. Eng. Chem. Res. 55 (2016) 2020-2034. https://doi.org/10.1021/acs.iecr.5b03938
[17] J.M. Dalu, J. Ndamba, Duckweed based wastewater stabilization ponds for wastewater treatment a low cost technology for small urban areas in Zimbabwe, Phys. Chem. Earth. 28 (2003) 1147-1160. https://doi.org/10.1016/j.pce.2003.08.036
[18] C.D. Chernicharo, Post-treatment options for the anaerobic treatment of domestic wastewater, Rev. Environ. Sci. Bio/Technol. 5 (2006) 73-92. https://doi.org/10.1007/s11157-005-5683-5
[19] E. Corcoran, Sick water?: the central role of wastewater management in sustainable development: a rapid response assessment, UNEP/Earthprint (2010)
[20] S. Dey, A. Islam, A review on textile wastewater characterization in Bangladesh, Resour. Environ. 5 (2015) 15-44.
[21] C. Visvanathan, R.B. Aim, K. Parameshwaran, Membrane separation bioreactors for wastewater treatment, Crit. Rev. Environ. Sci. Technol. 30 (2000) 1-48. https://doi.org/10.1080/10643380091184165
[22] P. Li, X. Wang, G. Allinson, X. Li, X. Xiong, Risk assessment of heavy metals in soil previously irrigated with industrial wastewater in Shenyang, China. J. Hazard. Mater. 161 (2009)516-521. https://doi.org/10.1016/j.jhazmat.2008.03.130
[23] Z. Wang, M. Xue, , K. Huang, Z. Liu, Textile dyeing wastewater treatment. In Advances in treating textile effluent. In Tech. (2011). https://doi.org/10.5772/22670
[24] Y. Luo, W. Guo, , H.H. Ngo, L.D. Nghiem, F.I. Hai, J. Zhang, S. Liang, X.C. Wang, A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment, Sci. Total Environ. 473 (2014) 619-641. https://doi.org/10.1016/j.scitotenv.2013.12.065
[25] K. Sarayu, S. Sandhya, Current technologies for biological treatment of textile wastewater–a review, Appl. Biochem. Biotechnol. 167 (2012) 645-661. https://doi.org/10.1007/s12010-012-9716-6
[26] T.A. Rangreez, Inamuddin, A.M. Asiri, B.G. Alhogbi, M. Naushad, Synthesis and ion-exchange properties of graphene th(IV) phosphate composite cation exchanger: Its applications in the selective separation of lead metal ions, Int. J. Environ. Res. Public Health. 14 (2017) 828. https://doi.org/10.3390/ijerph14070828
[27] G.G. Ying, R.S. Kookana, Triclosan in wastewaters and biosolids from Australian wastewater treatment plants, Environ. Int. 33 (2007) 199-205. https://doi.org/10.1016/j.envint.2006.09.008
[28] C. Silva, S. Quadros, P. Ramalho, H. Alegre, M.J. Rosa, , Translating removal efficiencies into operational performance indices of wastewater treatment plants, Water Res. 57 (2014) 202-214. https://doi.org/10.1016/j.watres.2014.03.025
[29] M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Dye and its removal from aqueous solution by adsorption: a review, Adv. Colloid Interface Sci. 209 (2014) 172-184. https://doi.org/10.1016/j.cis.2014.04.002
[30] T.L. Petzoldt, The effect of azo textile dyes on gross primary production and community respiration in an artificial environment (2014).
[31] M.T. Dao, H.A. Le, T.K.T. Nguyen, V.C.N. Nguyen, Effectiveness on color and COD of textile wastewater removing by biological material obtained from Cassia fistula seed, J. Viet. Env. 8 (2016) 121-128.
[32] A. Pandey, P. Singh, L. Iyengar, Bacterial decolorization and degradation of azo dyes, Int. Biodeterior. Biodegrad. 59 (2007) 73-84. https://doi.org/10.1016/j.ibiod.2006.08.006
[33] S. Şen, G.N. Demirer, Anaerobic treatment of real textile wastewater with a fluidized bed reactor, Water Res. 37 (2003) 1868-1878. https://doi.org/10.1016/S0043-1354(02)00577-8
[34] N. Çiçek, , J.P. Franco, M.T. Suidan, V. Urbain, J. Manem, Characterization and comparison of a membrane bioreactor and a conventional activated-sludge system in the treatment of wastewater containing high-molecular-weight compounds, Water Environ. Res. 71 (1999) 64-70. https://doi.org/10.2175/106143099X121481
[35] M.B. Ahmed, J.L. Zhou, H.H. Ngo, W. Guo, N.S. Thomaidis, J. Xu, Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: A critical review, J. Hazard. Mater. 323 (2017) 274-298. https://doi.org/10.1016/j.jhazmat.2016.04.045
[36] J. Radjenović, M. Petrović, D. Barceló, Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment, Water Res. 43 (2009) 831-841. https://doi.org/10.1016/j.watres.2008.11.043
[37] M. Inyang, R. Flowers, D. McAvoy, E. Dickenson, Biotransformation of trace organic compounds by activated sludge from a biological nutrient removal treatment system, Bioresour.Technol. 216 (2016) 778-784. https://doi.org/10.1016/j.biortech.2016.05.124
[38] A.D. Kotzapetros, P.A. Paraskevas, A.S. Stasinakis, Design of a modern automatic control system for the activated sludge process in wastewater treatment, Chin. J. Chem. Eng. 23 (2015) 1340-1349. https://doi.org/10.1016/j.cjche.2014.09.053
[39] T. El Moussaoui, Y. Jaouad, L. Mandi, B. Marrot, N. Ouazzani, Biomass behaviour in a conventional activated sludge system treating olive mill wastewate, Environ. Technol. (2017) 1-13.
[40] Y.K. Oh, Y.J. Kim, Y. Ahn, S.K. Song, S. Park, Color removal of real textile wastewater by sequential anaerobic and aerobic reactors, Biotechnol. Bioprocess Eng. 9 (2004) 419-422. https://doi.org/10.1007/BF02933068
[41] S. Judd, The MBR book: principles and applications of membrane bioreactors for water and wastewater treatment. Elsevier (2010)
[42] W. Yang, N. Cicek, J. Ilg, State-of-the-art of membrane bioreactors: Worldwide research and commercial applications in North America, J. Membr. Sci. 270 (2006) 201-211. https://doi.org/10.1016/j.memsci.2005.07.010
[43] Z. Hirani, J. Oppenheimer, J. DeCarolis, A. Kiser, B. Rittmann, Membrane bioreactor effluent water quality and technology–organics, nutrients and microconstituents removal, Proc. Water Environ. Fed. 10 (2010) 5880-5890. https://doi.org/10.2175/193864710798193987
[44] M. Kraume, U. Bracklow, M. Vocks, A. Drews, Nutrients removal in MBRs for municipal wastewater treatment, Water Sci. Technol. 51 (2005) 391-402.
[45] J. Oppenheimer, B. Rittmann, J. DeCarolis, Z. Hirani, A. Kiser, Investigation of membrane bioreactor effluent water quality and technology, Wate Reuse Research Foundation (2012)
[46] Y. Xiao, D.J. Roberts, A review of anaerobic treatment of saline wastewater, Environ. Technol. 31 (2010) 1025-1043. https://doi.org/10.1080/09593331003734202
[47] I. Martin, M. Pidou, A. Soares, S. Judd, Jefferson, B., Modelling the energy demands of aerobic and anaerobic membrane bioreactors for wastewater treatment, Environ. Technol. 32 (2011) 921-932. https://doi.org/10.1080/09593330.2011.565806
[48] P. Bérubé, Membrane bioreactors: Theory and applications to wastewater reuse, Sustainability Sci. Engn. 2 (2010) 255-292. https://doi.org/10.1016/S1871-2711(09)00209-8
[49] S.H. Baek, K.R. Pagilla, Aerobic and anaerobic membrane bioreactors for municipal wastewater treatment. Water Environ. Res. 78 (2006) 133-140. https://doi.org/10.2175/106143005X89599
[50] P. Le-Clech, Membrane bioreactors and their uses in wastewater treatments, Appl. Microbiol. Biotechnol. 88 (2010) 1253-1260. https://doi.org/10.1007/s00253-010-2885-8
[51] B. Verrecht, S. Judd, G. Guglielmi, C. Brepols, J.W. Mulder, An aeration energy model for an immersed membrane bioreactor, Water Res. 42 (2008) 4761-4770. https://doi.org/10.1016/j.watres.2008.09.013
[52] H. Ozgun, R.K. Dereli, M.E. Ersahin, C. Kinaci, H. Spanjers, J.B. van Lier, A review of anaerobic membrane bioreactors for municipal wastewater treatment: integration options, limitations and expectations, Sep. Purif. Technol. 118 (2013) 89-104. https://doi.org/10.1016/j.seppur.2013.06.036
[53] A. Sofia, W.J. Ng, S.L. Ong, Engineering design approaches for minimum fouling in submerged MBR, Desalination 160 (2004) 67-74. https://doi.org/10.1016/S0011-9164(04)90018-5
[54] M.W.D. Brannock, H. De Wever, Y. Wang, G. Leslie, Computational fluid dynamics simulations of MBRs: Inside submerged versus outside submerged membranes, Desalination 236 (2009) 244-251. https://doi.org/10.1016/j.desal.2007.10.073
[55] M.D. Seib, K.J. Berg, D.H. Zitomer, Low energy anaerobic membrane bioreactor for municipal wastewater treatment, J. Membr. Sci. 514 (2016) 450-457. https://doi.org/10.1016/j.memsci.2016.05.007
[56] A.Y. Hu, D.C. Stuckey, Treatment of dilute wastewaters using a novel submerged anaerobic membrane bioreactor, J. Environ. Eng. 132 (2006) 190-198. https://doi.org/10.1061/(ASCE)0733-9372(2006)132:2(190)
[57] B.Q. Liao, J.T. Kraemer, D.M. Bagley, Anaerobic membrane bioreactors: applications and research directions, Crit. Rev. Environ. Sci. Technol. 36 (2006) 489-530. https://doi.org/10.1080/10643380600678146
[58] I.S. Chang, P.L. Clech, B. Jefferson, S. Judd, Membrane fouling in membrane bioreactors for wastewater treatment, J. Environ. Eng. 128 (2002) 1018-1029. https://doi.org/10.1061/(ASCE)0733-9372(2002)128:11(1018)
[59] A. Saddoud, M. Ellouze, A. Dhouib, S. Sayadi, A comparative study on the anaerobic membrane bioreactor performance during the treatment of domestic wastewaters of various origins, Environ. Technol. 27 (2006) 991-999. https://doi.org/10.1080/09593332708618712
[60] M. Simonič, Perspectives of Textile Wastewater Treatment Using MBR: A review, Text. Light. Ind Sci. Tech. (2013).
[61] T. Jiang, S. Myngheer, D.J. De Pauw, H. Spanjers, I. Nopens, M.D. Kennedy, G. Amy, P.A. Vanrolleghem, Modelling the production and degradation of soluble microbial products (SMP) in membrane bioreactors (MBR), Water Res. 42 (2008) 4955-4964. https://doi.org/10.1016/j.watres.2008.09.037
[62] H.J. Lin, K. Xie, B. Mahendran, D.M. Bagley, K.T. Leung, S.N. Liss, B.Q. Liao, Sludge properties and their effects on membrane fouling in submerged anaerobic membrane bioreactors (SAnMBRs), Water Res. 43 (2009) 3827-3837. https://doi.org/10.1016/j.watres.2009.05.025
[63] S. McHugh, M. Carton, G. Collins, V. O’flaherty, S. McHugh, Reactor performance and microbial community dynamics during anaerobic biological treatment of wastewaters at 16–37 C, FEMS Microbiol. Ecol. 48 (2004) 369-378. https://doi.org/10.1016/S0168-6496(04)00080-7
[64] A.E. Maragkaki, M. Fountoulakis, A. Gypakis, A. Kyriakou, K. Lasaridi, T. Manios, Pilot-scale anaerobic co-digestion of sewage sludge with agro-industrial by-products for increased biogas production of existing digesters at wastewater treatment plants, Waste Manage. 59 (2017) 362-370. https://doi.org/10.1016/j.wasman.2016.10.043
[65] X. Lu, G. Zhen, A.L. Estrada, M. Chen, J. Ni, T. Hojo, K. Kubota, Y.Y. Li, Operation performance and granule characterization of upflow anaerobic sludge blanket (UASB) reactor treating wastewater with starch as the sole carbon source, Bioresour.Technol. 180 (2015) 264-273. https://doi.org/10.1016/j.biortech.2015.01.010
[66] A.B. Dos Santos, F.J. Cervantes, J.B. van Lier, Review paper on current technologies for decolourisation of textile wastewaters: perspectives for anaerobic biotechnology, Bioresour. Technol. 98 (2007) 2369-85. https://doi.org/10.1016/j.biortech.2006.11.013
[67] T. Robinson, G. McMullan, R. Marchant, P. Nigam, Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative, Bioresour. Technol. 77 (2001) 247-255. https://doi.org/10.1016/S0960-8524(00)00080-8
[68] M. Işık, D.T. Sponza, Anaerobic/aerobic treatment of a simulated textile wastewater, Sep. Purif. Technol. 60 (2008) 64-72. https://doi.org/10.1016/j.seppur.2007.07.043
[69] Y.J. Chan, M.F. Chong, C.L. Law, D.G. Hassell, A review on anaerobic–aerobic treatment of industrial and municipal wastewater, Chem. Eng. J. 155 (2009) 1-18. https://doi.org/10.1016/j.cej.2009.06.041
[70] Z. Yuan, H. Yang, , X. Zhi, J. Shen, Increased performance of continuous stirred tank reactor with calcium supplementation, Int. J. Hyd. Energ. 35 (2010) 2622-2626. https://doi.org/10.1016/j.ijhydene.2009.04.018
[71] E. Khelifi, H. Bouallagui, Y. Touhami, J.J. Godon, M. Hamdi, Bacterial monitoring by molecular tools of a continuous stirred tank reactor treating textile wastewater, Bioresour. Technol. 100 (2009) 629-633. https://doi.org/10.1016/j.biortech.2008.07.017
[72] T.T. Firozjaee, G.D. Najafpour, A. Asgari, M. Khavarpour, Biological treatment of phenolic wastewater in an anaerobic continuous stirred tank reactor, Chem. Ind. Chem. Eng. Q. 19 (2013) 173-179. https://doi.org/10.2298/CICEQ120216052F
[73] B. Gargouri, F. Karray, N. Mhiri, F. Aloui, S. Sayadi, Application of a continuously stirred tank bioreactor (CSTR) for bioremediation of hydrocarbon-rich industrial wastewater effluents, J. Hazard. Mater. 189 (2011) 427-434. https://doi.org/10.1016/j.jhazmat.2011.02.057
[74] S. Liu, Bioprocess Engineering: Kinetics, Sustainability and Reactor Design. Elsevier (2016)
[75] U. Marchaim, Biogas processes for sustainable development. Food & Agriculture Org. (1992).
[76] M. Kamali, T. Gameiro, M.E.V. Costa, I. Capela, Anaerobic digestion of pulp and paper mill wastes–An overview of the developments and improvement opportunities, Chem. Eng. J. 298 (2016) 162-182. https://doi.org/10.1016/j.cej.2016.03.119
[77] N.O. Yigit, N. Uzal, H. Koseoglu, I. Harman, H. Yukseler, U. Yetis, G. Civelekoglu, M. Kitis, Treatment of a denim producing textile industry wastewater using pilot-scale membrane bioreactor, Desalination 240 (2009) 143-150. https://doi.org/10.1016/j.desal.2007.11.071
[78] S. Hyder, A. Bari, Characterization and study of correlations among major pollution parameters in textile wastewater, Mehran Univ. Res. J. Eng. Technol. 30 (2011) 577-582.