Biohydrogen and Bioethanol Production from Agro-Industrial Wastewater

$20.00

Biohydrogen and Bioethanol Production from
Agro-Industrial Wastewater

E.L.C. de Amorim, N.C. dos Santos Amorim, W.V. Macêdo, E.A. Batista

The co-digestion of cassava wastewater with swine residues was evaluated for hydrogen and methane production in separate phases. Four different dilution rates were used in the acidogenic phase. The highest hydrogen yield (HY) (1.13 mol H2/mol glucose) was achieved in the 25-50-25% dilution (percentage of swine, water and cassava wastewater). For the methanogenic phase, the effluent from the acidogenic process was used as substrate. Sururu shells (Mytella falcata) were used as support material and pH buffer to control the alkalinity of the reaction medium. The best yield obtained was 1.73 ± 0.13 mL CH4/gCOD in the hydraulic retention time (HRT) of 12 h.

Keywords
Co-digestion, Anaerobic Fluidized Bed Reactor, Anaerobic Fixed-bed Reactor, Sururu Shells

Published online 5/1/2018, 16 pages

DOI: https://dx.doi.org/10.21741/9781945291715-4

Part of the book on Organic Pollutants in Wastewater II

References
[1] B. Demirel, P. Scherer, O. Yenigun, T.T. Onay, Production of methane and hydrogen from biomass through conventional and high-rate anaerobic digestion processes, Crit. Rev. Environ. Sci. Tech. 40 (2010) 116-46. https://doi.org/10.1080/10643380802013415
[2] X.M. Guo, E. Trably, E. Latrille, H. Carrère, J-P. Steyer, Hydrogen production from agricultural waste by darkfermentation: A review. Int. J. Hydrogen Energ. 35 (2010) 10660-10673. https://doi.org/10.1016/j.ijhydene.2010.03.008
[3] R.K. Hubbard, R.R. Lowrance, Dairy cattle manure management. In: Agricultural utilization of municipal, animal and industrial wastes. USDA, Agricultural Research Service, Conservation Res. Rep. 44 (1998) 91-100.
[4] ABIPECS. Em 15 anos, Brasil se tornou o 4º maior produtor e exportadormundial de carne suína. Disponível em . Acesso em: 10 de fevereiro, 2014.
[5] B.M. Cappelletti, V. Reginatto, E.R. Amante, R.V. Antonio, Fermentative production of hydrogen from cassava processing wastewater by Clostridium acetobutylicum. Renew Energy. 36 (2011) 3367-3372. https://doi.org/10.1016/j.renene.2011.05.015
[6] W. Wang, L. Xie, G. Luo, Q. Zhou, Enhanced fermentativehydrogen production from cassava stillage by co-digestion: the effects of different co-substrates. Int. J. Hydrogen Energ. 38 (2013) 6980-6988. https://doi.org/10.1016/j.ijhydene.2013.04.004
[7] G. De Gioannis, A. Muntoni, A. Polettini, R. Pomi, A review of dark fermentative hydrogen production from biodegradable municipal waste fractions. Waste Management. 33 (2013) 1345-1361. https://doi.org/10.1016/j.wasman.2013.02.019
[8] M.A. Hernández, M.R. Susa, Y. Andres, Use of coffee mucilage as a new substrate for hydrogen production in anaerobic co-digestion with swine manure. Bioresource Technology. 168 (2014) 112-118. https://doi.org/10.1016/j.biortech.2014.02.101
[9] A. Marone, C. Varrone, F. Fiocchetti, B. Giussani, G. Izzo, L. Mentuccia, S. Rosa, A. Signorini. Optimization of substrate composition for biohydrogen production from buffalo slurryco-fermented with cheese whey and crude glycerol, using microbial mixed culture. Int. J. Hydrogen Energ. 40 (2015) 209-218. https://doi.org/10.1016/j.ijhydene.2014.11.008
[10] P.R.F. Rosa, S.C. Santos, I.K. Sakamoto, M.B.A. Varesche, E.L. Silva , The effects of seed sludge and hydraulic retention time on the production of hydrogen from a cassava processing wastewater and glucose mixture in an anaerobic fluidized bed reactor. Int. J. Hydrogen Energ. 39 (2014) 13318-13127. https://doi.org/10.1016/j.ijhydene.2014.06.152
[11] E.L.C. Amorim, A.R. Barros, M.H.R.Z. Damianovic, E.L.Silva, Anaerobic fluidized bed reactor with expanded clay as support for hydrogen production through dark fermentation of glucose. Int. J. Hydrogen Energ. 34 (2009) 783-790. https://doi.org/10.1016/j.ijhydene.2008.11.007
[12] S.I. Maintinguer, B.S. Fernandes, I.C.S. Duarte, N.C. Saavedra, M.A.T. Adorno, M.B. Varesche, Fermentative hydrogen production by microbial consortium. Int. J. Hydrogen Energ. 33 (2008) 4309-4317. https://doi.org/10.1016/j.ijhydene.2008.06.053
[13] APHA, Standard Methods for the examination for water and wastewater. 20th Ed. Washington, DC, American Public Health Association/American Water Works Association/Water Environmental Federation (1998).
[14] S.M. Dubois, K.A. Gilles, J.L. Hamilton, P.A. Rebers, F. Smith, Colorimetric methods for determination of sugar and related substance. Anal. Chem. 28 (1956) 350-356. https://doi.org/10.1021/ac60111a017
[15] C.C. Chen, C.Y. Lin, M.C. Lin. Acid-base enrichment enhances anaerobic hydrogen production process, Appl. Microbiol. Biotechnol. 58 (2002) 224-228. https://doi.org/10.1007/s002530100814
[16] P.H.G. Cardoso, Produção de hidrogênio a partir da manipueira em reator anaeróbio de leito fluidificado: Efeito do pH. Dissertação (Mestrado em Recursos Hídricos e Saneamento) – Universidade Federal de Alagoas, Maceió, 2013.
[17] E.C.L. Santos, Produção biológica de hidrogênio utilizando resíduo de suinocultura suplementado com sacarose. Dissertação (Mestrado em Recursos Hídricos e Saneamento) – Universidade Federal de Alagoas, 2014.
[18] S.C.A. Macário, Influência do inóculo na produção de hidrogênio a partir do soro de queijo em pó, da lactose isolada e do efluente da indústria de laticínios em reator anaeróbio de leito fluidificado. Dissertação (Mestrado em Recursos Hdricos e Saneamento) – Universidade Federal de Alagoas, 2016.
[19] C.M. Reis, E. L. Silva, Effect of upflow velocity and hydraulic retention time in anaerobic fluidized-bed reactors used for hydrogen production. Chem. Eng. J. 172 (2011) 28-36. https://doi.org/10.1016/j.cej.2011.05.009
[20] N.C.S Amorim, I. Alves, J.S. Martins, E.L.C. Amorim, Biohydrogen production from cassava wastewater in an anaerobic fluidized bed reactor. Braz. J. Chem. Eng. 31 (2014) 603-612. https://doi.org/10.1590/0104-6632.20140313s00002458
[21] G.M. Shida, A.R. Barros, C.M. Reis, E.L.C. Amorim, M.H.R.Z. Damianovic, E.L.Silva, Long-term stability of hydrogen and organic acids production in an anaerobic fluidized-bed reactor using heat treated anaerobic sludge inoculum. Int. J. Hydrogen Energ. 34 (2009) 3679–3688. https://doi.org/10.1016/j.ijhydene.2009.02.076
[22] C.M. Reis, E.L. Silva, Effect of upflow velocity and hydraulic retention time in anaerobic fluidized-bed reactors used for hydrogen production. Chem. Eng. J. 172 (2011) 28-36. https://doi.org/10.1016/j.cej.2011.05.009
[23] G. Peixoto, J.L.R. Pantoja-Filho, J.A.B. Agnelli, M. Barboza , M. Zaiat, Hydrogen and Methane Production, Energy Recovery, and Organic Matter Removal from Effluents in a Two-Stage Fermentative Process. Appl. Biochem. Biotech. 168 (2012) 651-671. https://doi.org/10.1007/s12010-012-9807-4
[24] N.C.S. Amorim,A.M. Olivera, K.R.Solomon,E.L.C. Amorim, Produção de hidrogênio e metano a partir da manipueira em fases separadas. 8° Congresso Internacional de Bioenergia. São Paulo (2013).
[25] A.R. Angonese, A.T. Campos, C.E. Zacarkim, M.S. Matsuo, F. Cunha, Eficiência Energética de Sistema de Produção de Suínos com Tratamento dos Resíduos em Biodigestor. Revista Brasileira de Engenharia Agrícola e Ambiental. Campina Grande. 10(3) (2006).
[26] G. Buitrón, G. Kumar, A. Martinez-Arce, G. Moreno, Hydrogen and methane production via a two-stage processes (H2-SBR + CH4-UASB) using tequila vinasses. Int. J. Hydrogen Energ. 39 (2014) 19249-19255. https://doi.org/10.1016/j.ijhydene.2014.04.139
[27] A.A.A. Faria, fermentação metanogênica mesofílica de Melaço e termofílica de vinhaça em reatores Uasb. Dissertação (Mestrado em Microbiologia Agropecuária) – Universidade Estadual Paulista, 2014.
[28] T. Onodera, S. Sase, P. Choeisai, W. Yoochatchaval, H. Sumino, T. Yamaguchi, Y. Ebie, K. Xu, N. Tomioka, K. Syutsubo, High-rate treatment of molasses wastewater by combination of an acidification reactor and a USSB reactor. Journal of Environmental Science and Health. Part A, Toxic/hazardous Substances & Environmental Engineering. 46 (2011) 1721-1731. https://doi.org/10.1080/10934529.2011.623975
[29] P. Kongjan, S. O-Thong, I. Angelidaki, Hydrogen and methane production from desugared molasses using a two-stage thermophilic anaerobic process. Engineering in Life Sciences. 13 (2013) 118–125. https://doi.org/10.1002/elsc.201100191
[30] H.B. Moller, S.G. Sommer, B.K. Ahring, Methane productivity of manure, straw and solid fractions of manure. Biomass Bioenerg. 26 (2004) 485-495. https://doi.org/10.1016/j.biombioe.2003.08.008