Tuning the Magnetic Properties of M-type Hexaferrites
S.H. Mahmood, I. Bsoul
In this chapter, common experimental techniques and preparation conditions adopted for the synthesis of M-type hexaferrites and their influence on the magnetic properties are briefly reviewed. The effects of various strategies of cationic substitutions on the properties of the hexaferrites are addressed. Further, our synthesis and findings on Co-Ti substituted hexaferrites are presented. It was found that Co-Ti substitution results in improving the saturation magnetization, and reducing the coercivity down to values favorable for high- density magnetic recording. Also, evidence of inter-particle interactions in the particulate samples was observed.
Keywords
Synthesis of Hexaferrites, M-type Hexaferrite, Structural Properties, Magnetic Properties
Published online 4/20/2018, 52 pages
DOI: https://dx.doi.org/10.21741/9781945291692-2
Part of the book on Magnetic Oxides and Composites
References
[1] https://www.magneticsmagazine.com/main/news/permanent-magnet-market-will-reach-28-70-billion-in-2019/.
[2] R.C. Pullar, Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics, Progress in Materials Science, 57 (2012) 1191-1334. https://doi.org/10.1016/j.pmatsci.2012.04.001
[3] Ü. Özgür, Y. Alivov, H. Morkoç, Microwave ferrites, part 1: fundamental properties, Journal of Materials Science: Materials in Electronics, 20 (2009) 789-834. https://doi.org/10.1007/s10854-009-9923-2
[4] K.J. Strnat, Modern permanent magnets for applications in electro-technology, Proceedings of the IEEE, 78 (1990) 923-946. https://doi.org/10.1109/5.56908
[5] V.G. Harris, A. Geiler, Y. Chen, S.D. Yoon, M. Wu, A. Yang, Z. Chen, P. He, P.V. Parimi, X. Zuo, Recent advances in processing and applications of microwave ferrites, Journal of Magnetism and Magnetic Materials, 321 (2009) 2035-2047. https://doi.org/10.1016/j.jmmm.2009.01.004
[6] J. Smit, H.P.J. Wijn, Ferrites, Wiley, New York, 1959.
[7] S. Chikazumi, Physics of Ferromagnetism 2e, Oxford University Press 2009.
[8] S.H. Mahmood, A.N. Aloqaily, Y. Maswadeh, A. Awadallah, I. Bsoul, M. Awawdeh, H.K. Juwhari, Effects of heat treatment on the phase evolution, structural, and magnetic properties of Mo-Zn doped M-type hexaferrites, Solid State Phenomena, 232 (2015) 65-92. https://doi.org/10.4028/www.scientific.net/SSP.232.65
[9] S.H. Mahmood, M.D. Zaqsaw, O.E. Mohsen, A. Awadallah, I. Bsoul, M. Awawdeh, Q.I. Mohaidat, Modification of the magnetic properties of Co2Y hexaferrites by divalent and trivalent metal substitutions, Solid State Phenomena, 241 (2016) 93-125. https://doi.org/10.4028/www.scientific.net/SSP.241.93
[10] G. Albanese, Recent advances in hexagonal ferrites by the use of nuclear spectroscopic methods, Le Journal de Physique Colloques, 38 (1977) 85-94. https://doi.org/10.1051/jphyscol:1977117
[11] R. Chantrell, K. O’Grady, Magnetic characterization of recording media, Journal of Physics D: Applied Physics, 25 (1992) 1. https://doi.org/10.1088/0022-3727/25/1/001
[12] H. Fu, H.R. Zhai, H.C. Zhang, B.X. Gu, J.Y. Li, Magnetic properties on Mn substituted barium ferrite, Journal of Magnetism and Magnetic Materials, 54-57 (1986) 905-906. https://doi.org/10.1016/0304-8853(86)90307-0
[13] I.Y. Gershov, Barium ferrite permanent magnets, Soviet Powder Metallurgy and Metal Ceramics, 1 (1964) 386-393. https://doi.org/10.1007/BF00774124
[14] D. Lisjak, M. Drofenik, Synthesis and characterization of A–Sn-substituted (A= Zn, Ni, Co) BaM–hexaferrite powders and ceramics, Journal of the European Ceramic Society, 24 (2004) 1841-1845. https://doi.org/10.1016/S0955-2219(03)00445-X
[15] S. Mahmood, A. Aloqaily, Y. Maswadeh, A. Awadallah, I. Bsoul, H. Juwhari, Structural and Magnetic Properties of Mo-Zn Substituted (BaFe12-4xMoxZn3xO19) M-Type Hexaferrites, Material Science Research India, 11 (2014) 09-20.
[16] G. Turilli, F. Licci, S. Rinaldi, A. Deriu, Mn2+, Ti4+ substituted barium ferrite, Journal of Magnetism and Magnetic Materials, 59 (1986) 127-131. https://doi.org/10.1016/0304-8853(86)90019-3
[17] A. Awadallah, S.H. Mahmood, Y. Maswadeh, I. Bsoul, M. Awawdeh, Q.I. Mohaidat, H. Juwhari, Structural, magnetic, and Mossbauer spectroscopy of Cu substituted M-type hexaferrites, Materials Research Bulletin, 74 (2016) 192-201. https://doi.org/10.1016/j.materresbull.2015.10.034
[18] O.T. Ozkan, H. Erkalfa, The effect of B2O3 addition on the direct sintering of barium hexaferrite, Journal of the European Ceramic Society, 14 (1994) 351-358. https://doi.org/10.1016/0955-2219(94)90072-8
[19] P. Hernandez-Gomez, J.M. Munoz, C. Torres, C. de Francisco, O. Alejos, Influence of stoichiometry on the magnetic disaccommodation in barium M-type hexaferrites, Journal of Physics D: Applied Physics, 36 (2003) 1062-1070. https://doi.org/10.1088/0022-3727/36/9/303
[20] Y. Maswadeh, S.H. Mahmood, A. Awadallah, A.N. Aloqaily, Synthesis and structural characterization of nonstoichiometric barium hexaferrite materials with Fe: Ba ratio of 11.5–16.16, IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2015, pp. 012019.
[21] Y.-M. Kang, Y.-H. Kwon, M.-H. Kim, D.-Y. Lee, Enhancement of magnetic properties in Mn–Zn substituted M-type Sr-hexaferrites, Journal of Magnetism and Magnetic Materials, 382 (2015) 10-14. https://doi.org/10.1016/j.jmmm.2015.01.048
[22] Y. Maswadeh, Structural analysis of hexaferrite materials, Physics, The University of Jordan, 2014.
[23] P. Garcia-Casillas, A. Beesley, D. Bueno, J. Matutes-Aquino, C. Martinez, Remanence properties of barium hexaferrite, Journal of alloys and compounds, 369 (2004) 185-189. https://doi.org/10.1016/j.jallcom.2003.09.100
[24] D. Lisjak, M. Drofenik, The mechanism of the low-temperature formation of barium hexaferrite, Journal of the European Ceramic Society, 27 (2007) 4515-4520. https://doi.org/10.1016/j.jeurceramsoc.2007.02.202
[25] J.-P. Wang, L. Ying, M.-L. Zhang, Y.-j. QIAO, X. Tian, Comparison of the Sol-gel Method with the Coprecipitation Technique for Preparation of Hexagonal Barium Ferrite, Chemical Research in Chinese Universities, 24 (2008) 525-528. https://doi.org/10.1016/S1005-9040(08)60110-5
[26] V. Harikrishnan, P. Saravanan, R.E. Vizhi, D.R. Babu, V. Vinod, P. Kejzlar, M. Cerník, Effect of annealing temperature on the structural and magnetic properties of CTAB-capped SrFe12O19 platelets, Journal of Magnetism and Magnetic Materials, 401 (2016) 775-783. https://doi.org/10.1016/j.jmmm.2015.10.122
[27] H.B. von Basel, K.A. Hempel, Static magnetic properties of pressure-sintered barium ferrite, Journal of Magnetism and Magnetic Materials, 38 (1983) 316-318. https://doi.org/10.1016/0304-8853(83)90373-6
[28] S.E. Jacobo, C. Domingo-Pascual, R. Rodrigez-Clemente, M.A. Blesa, Synthesis of ultrafine particles of barium ferrite by chemical coprecipitation, Journal of Materials Science, 33 (1997) 1025-1028. https://doi.org/10.1023/A:1018582423406
[29] M. Rashad, I. Ibrahim, A novel approach for synthesis of M-type hexaferrites nanopowders via the co-precipitation method, Journal of Materials Science: Materials in Electronics, 22 (2011) 1796-1803. https://doi.org/10.1007/s10854-011-0365-2
[30] A. Davoodi, B. Hashemi, Investigation of the effective parameters on the synthesis of strontium hexaferrite nanoparticles by chemical coprecipitation method, Journal of Alloys and Compounds, 512 (2012) 179-184. https://doi.org/10.1016/j.jallcom.2011.09.059
[31] S.R. Janasi, D. Rodrigues, F.J. Landgraf, M. Emura, Magnetic properties of coprecipitated barium ferrite powders as a function of synthesis conditions, Magnetics, IEEE Transactions on, 36 (2000) 3327-3329. https://doi.org/10.1109/INTMAG.2000.872434
[32] J. Matutes-Aquino, S. Diaz-Castanón, M. Mirabal-Garcia, S. Palomares-Sánchez, Synthesis by coprecipitation and study of barium hexaferrite powders, Scripta Materialia, 42 (2000) 295-299. https://doi.org/10.1016/S1359-6462(99)00350-4
[33] P. Shepherd, K.K. Mallick, R.J. Green, Magnetic and structural properties of M-type barium hexaferrite prepared by co-precipitation, Journal of Magnetism and Magnetic Materials, 311 (2007) 683-692. https://doi.org/10.1016/j.jmmm.2006.08.046
[34] Z. Mosleh, P. Kameli, A. Poorbaferani, M. Ranjbar, H. Salamati, Structural, magnetic and microwave absorption properties of Ce-doped barium hexaferrite, Journal of Magnetism and Magnetic Materials, 397 (2016) 101-107. https://doi.org/10.1016/j.jmmm.2015.08.078
[35] M. Jamalian, An investigation of structural, magnetic and microwave properties of strontium hexaferrite nanoparticles prepared by a sol–gel process with doping SN and Tb, Journal of Magnetism and Magnetic Materials, 378 (2015) 217-220. https://doi.org/10.1016/j.jmmm.2014.11.047
[36] W. Zhong, W. Ding, N. Zhang, J. Hong, Q. Yan, Y. Du, Key step in synthesis of ultrafine BaFe12O19 by sol-gel technique, Journal of Magnetism and Magnetic Materials, 168 (1997) 196-202. https://doi.org/10.1016/S0304-8853(96)00664-6
[37] R.C. Alange, P.P. Khirade, S.D. Birajdar, A.V. Humbe, K.M. Jadhav, Structural, magnetic and dielectric properties of Al-Cr co-substituted M-type barium hexaferrite nanoparticles, Journal of Molecular Structure, 1106 (2016) 460-467. https://doi.org/10.1016/j.molstruc.2015.11.004
[38] Y. Hong, C. Ho, H.Y. Hsu, C. Liu, Synthesis of nanocrystalline Ba(MnTi)xFe12-2xO19 powders by the sol–gel combustion method in citrate acid–metal nitrates system (x = 0, 0.5, 1.0, 1.5, 2.0), Journal of Magnetism and Magnetic Materials, 279 (2004) 401-410. https://doi.org/10.1016/j.jmmm.2004.02.008
[39] S.H. Mahmood, F.S. Jaradat, A.F. Lehlooh, A. Hammoudeh, Structural properties and hyperfine interactions in Co-Zn Y-type hexaferrites prepared by sol-gel method, Ceramics International, 40 (2014) 5231-5236. https://doi.org/10.1016/j.ceramint.2013.10.092
[40] W. Abbas, I. Ahmad, M. Kanwal, G. Murtaza, I. Ali, M.A. Khan, M.N. Akhtar, M. Ahmad, Structural and magnetic behavior of Pr-substituted M-type hexagonal ferrites synthesized by sol–gel autocombustion for a variety of applications, Journal of Magnetism and Magnetic Materials, 374 (2015) 187-191. https://doi.org/10.1016/j.jmmm.2014.08.029
[41] Simon Thompson, Neil J. Shirtcliffe, Eoin S. O’Keefe, Steve Appleton, C.C. Perry, Synthesis of SrCoxTixFe(12-2x)O19 through sol-gel auto-ignition and its characterisation, Journal of Magnetism and Magnetic Materials, 297 (2005) 100-1007. https://doi.org/10.1016/j.jmmm.2004.10.102
[42] Y. Meng, M. He, Q. Zeng, D. Jiao, S. Shukla, R. Ramanujan, Z. Liu, Synthesis of barium ferrite ultrafine powders by a sol–gel combustion method using glycine gels, Journal of Alloys and Compounds, 583 (2014) 220-225. https://doi.org/10.1016/j.jallcom.2013.08.156
[43] D. Bahadur, S. Rajakumar, A. Kumar, Influence of fuel ratios on auto combustion synthesis of barium ferrite nano particles, Journal of Chemical Sciences, 118 (2006) 15-21. https://doi.org/10.1007/BF02708761
[44] V. Sankaranarayanan, Q. Pankhurst, D. Dickson, C. Johnson, Ultrafine particles of barium ferrite from a citrate precursor, Journal of Magnetism and Magnetic Materials, 120 (1993) 73-75. https://doi.org/10.1016/0304-8853(93)91290-N
[45] V. Sankaranarayanan, D. Khan, Mechanism of the formation of nanoscale M-type barium hexaferrite in the citrate precursor method, Journal of Magnetism and Magnetic Materials, 153 (1996) 337-346. https://doi.org/10.1016/0304-8853(95)00537-4
[46] V. Sankaranarayanan, Q. Pankhurst, D. Dickson, C. Johnson, An investigation of particle size effects in ultrafine barium ferrite, Journal of Magnetism and Magnetic Materials, 125 (1993) 199-208. https://doi.org/10.1016/0304-8853(93)90838-S
[47] X. Liu, J. Wang, L.-M. Gan, S.-C. Ng, Improving the magnetic properties of hydrothermally synthesized barium ferrite, Journal of Magnetism and Magnetic Materials, 195 (1999) 452-459. https://doi.org/10.1016/S0304-8853(99)00123-7
[48] A. Ataie, I. Harris, C. Ponton, Magnetic properties of hydrothermally synthesized strontium hexaferrite as a function of synthesis conditions, Journal of Materials Science, 30 (1995) 1429-1433. https://doi.org/10.1007/BF00375243
[49] D. Primc, D. Makovec, D. Lisjak, M. Drofenik, Hydrothermal synthesis of ultrafine barium hexaferrite nanoparticles and the preparation of their stable suspensions, Nanotechnology, 20 (2009) 315605. https://doi.org/10.1088/0957-4484/20/31/315605
[50] M. Drofenik, I. Ban, D. Makovec, A. Žnidaršic, Z. Jaglicic, D. Hanžel, D. Lisjak, The hydrothermal synthesis of super-paramagnetic barium hexaferrite particles, Materials Chemistry and Physics, 127 (2011) 415-419. https://doi.org/10.1016/j.matchemphys.2011.02.037
[51] R.H. Arendt, The molten salt synthesis of single domain BaFe12O19 and SrFe12O19 crystals, Journal of Solid State Chemistry, 8 (1973) 339-347. https://doi.org/10.1016/S0022-4596(73)80031-3
[52] T.-S. Chin, S. Hsu, M. Deng, Barium ferrite particulates prepared by a salt-melt method, Journal of Magnetism and Magnetic Materials, 120 (1993) 64-68. https://doi.org/10.1016/0304-8853(93)91288-I
[53] Y. Liu, M.G. Drew, Y. Liu, J. Wang, M. Zhang, Preparation, characterization and magnetic properties of the doped barium hexaferrites BaFe12- 2xCox/2Znx/2SnxO19, x = 0.0–2.0, Journal of Magnetism and Magnetic Materials, 322 (2010) 814-818. https://doi.org/10.1016/j.jmmm.2009.11.009
[54] O. Kubo, T. Ido, H. Yokoyama, Properties of Ba ferrite particles for perpendicular magnetic recording media, Magnetics, IEEE Transactions on, 18 (1982) 1122-1124. https://doi.org/10.1109/TMAG.1982.1062007
[55] O. Kubo, T. Ido, T. Nomura, K. Inomata, Method for manufacturing magnetic powder for high density magnetic recording, Google Patents, 1982.
[56] B. Shirk, W. Buessem, Magnetic properties of barium ferrite formed by crystallization of a glass, Journal of the American Ceramic Society, 53 (1970) 192-196. https://doi.org/10.1111/j.1151-2916.1970.tb12069.x
[57] D. Jung, S. Hong, J. Cho, Y. Kang, Nano-sized barium titanate powders with tetragonal crystal structure prepared by flame spray pyrolysis, Journal of the European Ceramic Society, 28 (2008) 109-115. https://doi.org/10.1016/j.jeurceramsoc.2007.05.018
[58] J.S. Cho, D.S. Jung, S.K. Hong, Y.C. Kang, Characteristics of nano-sized pb-based glass powders by high temperature spray pyrolysis method, Journal of the Ceramic Society of Japan, 116 (2008) 600-604. https://doi.org/10.2109/jcersj2.116.600
[59] D.-H. Kim, Y.-K. Lee, K.-M. Kim, K.-N. Kim, S.-Y. Choi, I.-B. Shim, Synthesis of Ba-ferrite microspheres doped with Sr for thermoseeds in hyperthermia, Journal of Materials Science, 39 (2004) 6847-6850. https://doi.org/10.1023/B:JMSC.0000045617.92955.12
[60] M.H. Kim, D.S. Jung, Y.C. Kang, J.H. Choi, Nanosized barium ferrite powders prepared by spray pyrolysis from citric acid solution, Ceramics International, 35 (2009) 1933-1937. https://doi.org/10.1016/j.ceramint.2008.10.016
[61] U. Topal, Improvement of the remanence properties and the weakening of interparticle interactions in BaFe12O19 particles by B2O3 addition, Physica B: Condensed Matter, 407 (2012) 2058-2062. https://doi.org/10.1016/j.physb.2012.02.004
[62] U. Topal, Towards Further Improvements of the Magnetization Parameters of B2O3-Doped BaFe12O19 Particles: Etching with Hydrochloric Acid, Journal of Superconductivity and Novel Magnetism, 25 (2012) 1485-1488. https://doi.org/10.1007/s10948-012-1486-4
[63] A. Awadallah, S.H. Mahmood, Y. Maswadeh, I. Bsoul, A. Aloqaily, Structural and magnetic properties of Vanadium Doped M-Type Barium Hexaferrite (BaFe12-xVxO19), IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2015, pp. 012006. https://doi.org/10.1088/1757-899X/92/1/012006
[64] Q. Mohsen, Barium hexaferrite synthesis by oxalate precursor route, Journal of Alloys and Compounds, 500 (2010) 125-128. https://doi.org/10.1016/j.jallcom.2010.03.230
[65] T. Gonzalez-Carreno, M. Morales, C. Serna, Barium ferrite nanoparticles prepared directly by aerosol pyrolysis, Materials Letters, 43 (2000) 97-101. https://doi.org/10.1016/S0167-577X(99)00238-4
[66] U. Topal, H. Ozkan, H. Sozeri, Synthesis and characterization of nanocrystalline BaFe12O19 obtained at 850 C by using ammonium nitrate melt, Journal of Magnetism and Magnetic Materials, 284 (2004) 416-422. https://doi.org/10.1016/j.jmmm.2004.07.009
[67] U. Topal, H. Ozkan, L. Dorosinskii, Finding optimal Fe/Ba ratio to obtain single phase BaFe12O19 prepared by ammonium nitrate melt technique, Journal of Alloys and Compounds, 428 (2007) 17-21. https://doi.org/10.1016/j.jallcom.2006.03.047
[68] S. El-Sayed, T. Meaz, M. Amer, H. El Shersaby, Magnetic behavior and dielectric properties of aluminum substituted M-type barium hexaferrite, Physica B: Condensed Matter, 426 (2013) 137-143. https://doi.org/10.1016/j.physb.2013.06.026
[69] V.V. Soman, V. Nanoti, D. Kulkarni, Dielectric and magnetic properties of Mg–Ti substituted barium hexaferrite, Ceramics International, 39 (2013) 5713-5723. https://doi.org/10.1016/j.ceramint.2012.12.089
[70] H. Sözeri, Effect of pelletization on magnetic properties of BaFe12O19, Journal of Alloys and Compounds, 486 (2009) 809-814. https://doi.org/10.1016/j.jallcom.2009.07.072
[71] I. Bsoul, S. Mahmood, Structural and magnetic properties of BaFe12-xAlxO19 prepared by milling and calcination, Jordan Journal of Physics, 2 (2009) 171-179.
[72] I. Bsoul, S. Mahmood, Magnetic and structural properties of BaFe12-xGaxO19 nanoparticles, Journal of Alloys and Compounds, 489 (2010) 110-114. https://doi.org/10.1016/j.jallcom.2009.09.024
[73] I. Bsoul, S. Mahmood, A.-F. Lehlooh, Structural and magnetic properties of BaFe12-2xTixRuxO19, Journal of Alloys and Compounds, 498 (2010) 157-161. https://doi.org/10.1016/j.jallcom.2010.03.142
[74] H.-F. Yu, BaFe12O19 powder with high magnetization prepared by acetone-aided coprecipitation, Journal of Magnetism and Magnetic Materials, 341 (2013) 79-85. https://doi.org/10.1016/j.jmmm.2013.04.030
[75] Y. Liu, M.G. Drew, Y. Liu, Preparation and magnetic properties of barium ferrites substituted with manganese, cobalt, and tin, Journal of Magnetism and Magnetic Materials, 323 (2011) 945-953. https://doi.org/10.1016/j.jmmm.2010.11.075
[76] E. Pashkova, E. Solovyova, I. Kotenko, T. Kolodiazhnyi, A. Belous, Effect of preparation conditions on fractal structure and phase transformations in the synthesis of nanoscale M-type barium hexaferrite, Journal of Magnetism and Magnetic Materials, 323 (2011) 2497-2503. https://doi.org/10.1016/j.jmmm.2011.05.026
[77] G. Litsardakis, I. Manolakis, C. Serletis, K. Efthimiadis, High coercivity Gd-substituted Ba hexaferrites, prepared by chemical coprecipitation, Journal of Applied Physics, 103 (2008) 07E501.
[78] W. Roos, H. Haak, C. Voigt, K. Hempel, Microwave absorption and static magnetic properties of coprecipitated barium ferrite, Le Journal de Physique Colloques, 38 (1977) C1-35-C31-37.
[79] S. Kanagesan, M. Hashim, S. Jesurani, T. Kalaivani, I. Ismail, Influence of Zn–Nb on the Magnetic Properties of Barium Hexaferrite, Journal of Superconductivity and Novel Magnetism, 27 (2014) 811-815. https://doi.org/10.1007/s10948-013-2357-3
[80] T. Kaur, A. Srivastava, Effect of pH on Magnetic Properties of Doped Barium Hexaferrite, International Journal of Research in Mechanical Engineering & Technology, 3 (2013) 171-173.
[81] F. Khademi, A. Poorbafrani, P. Kameli, H. Salamati, Structural, magnetic and microwave properties of Eu-doped barium hexaferrite powders, Journal of Superconductivity and Novel Magnetism, 25 (2012) 525-531. https://doi.org/10.1007/s10948-011-1323-1
[82] Y. Li, Q. Wang, H. Yang, Synthesis, characterization and magnetic properties on nanocrystalline BaFe12O19 ferrite, Current Applied Physics, 9 (2009) 1375-1380. https://doi.org/10.1016/j.cap.2009.03.002
[83] C. Sürig, D. Bonnenberg, K. Hempel, P. Karduck, H. Klaar, C. Sauer, Effects of Variations in Stoichiometry on M-Type Hexaferrites, Le Journal de Physique IV, 7 (1997) C1-315-C311-316.
[84] V.C. Chavan, S.E. Shirsath, M.L. Mane, R.H. Kadam, S.S. More, Transformation of hexagonal to mixed spinel crystal structure and magnetic properties of Co2+ substituted BaFe12O19, Journal of Magnetism and Magnetic Materials, 398 (2016) 32-37. https://doi.org/10.1016/j.jmmm.2015.09.002
[85] R.K. Mudsainiyan, A.K. Jassal, M. Gupta, S.K. Chawla, Study on structural and magnetic properties of nanosized M-type Ba-hexaferrites synthesized by urea assisted citrate precursor route, Journal of Alloys and Compounds, 645 (2015) 421-428. https://doi.org/10.1016/j.jallcom.2015.04.218
[86] H. Sözeri, Z. Durmus, A. Baykal, E. Uysal, Preparation of high quality, single domain BaFe12O19 particles by the citrate sol–gel combustion route with an initial Fe/Ba molar ratio of 4, Materials Science and Engineering: B, 177 (2012) 949-955. https://doi.org/10.1016/j.mseb.2012.04.023
[87] V.N. Dhage, M. Mane, M. Babrekar, C. Kale, K. Jadhav, Influence of chromium substitution on structural and magnetic properties of BaFe12O19 powder prepared by sol–gel auto combustion method, Journal of Alloys and Compounds, 509 (2011) 4394-4398. https://doi.org/10.1016/j.jallcom.2011.01.040
[88] M. Han, Y. Ou, W. Chen, L. Deng, Magnetic properties of Ba-M-type hexagonal ferrites prepared by the sol–gel method with and without polyethylene glycol added, Journal of Alloys and Compounds, 474 (2009) 185-189. https://doi.org/10.1016/j.jallcom.2008.06.047
[89] T. Yamauchi, Y. Tsukahara, T. Sakata, H. Mori, T. Chikata, S. Katoh, Y. Wada, Barium ferrite powders prepared by microwave-induced hydrothermal reaction and magnetic property, Journal of Magnetism and Magnetic Materials, 321 (2009) 8-11. https://doi.org/10.1016/j.jmmm.2008.07.005
[90] S. Dursun, R. Topkaya, N. Akdogan, S. Alkoy, Comparison of the structural and magnetic properties of submicron barium hexaferrite powders prepared by molten salt and solid state calcination routes, Ceramics International, 38 (2012) 3801-3806. https://doi.org/10.1016/j.ceramint.2012.01.028
[91] G. Albanese, A. Deriu, Magnetic properties of Al, Ga, Sc, In substituted barium ferrites: a comparative analysis, Ceramics International, 5 (1979) 3-10. https://doi.org/10.1016/0390-5519(79)90002-4
[92] M.H. Shams, A.S. Rozatian, M.H. Yousefi, J. Valícek, V. Šepelák, Effect of Mg2+ and Ti4+ dopants on the structural, magnetic and high-frequency ferromagnetic properties of barium hexaferrite, Journal of Magnetism and Magnetic Materials, 399 (2016) 10-18. https://doi.org/10.1016/j.jmmm.2015.08.099
[93] R. Pullar, A. Bhattacharya, The magnetic properties of aligned M hexa-ferrite fibres, Journal of Magnetism and Magnetic Materials, 300 (2006) 490-499. https://doi.org/10.1016/j.jmmm.2005.06.001
[94] A. Alsmadi, I. Bsoul, S. Mahmood, G. Alnawashi, F. Al-Dweri, Y. Maswadeh, U. Welp, Magnetic study of M-type Ru-Ti doped strontium hexaferrite nanocrystalline particles, Journal of Alloys and Compounds, 648 (2015) 419-427. https://doi.org/10.1016/j.jallcom.2015.06.274
[95] R. Palomino, A.B. Miró, F. Tenorio, F.S. De Jesús, C.C. Escobedo, S. Ammar, Sonochemical assisted synthesis of SrFe12O19 nanoparticles, Ultrasonics Sonochemistry, 29 (2016) 470-475. https://doi.org/10.1016/j.ultsonch.2015.10.023
[96] A. Bolarín-Miró, F. Sánchez-De Jesús, C.A. Cortes-Escobedo, S. Diaz-De La Torre, R. Valenzuela, Synthesis of M-type SrFe12O19 by mechanosynthesis assisted by spark plasma sintering, Journal of Alloys and Compounds, 643 (2015) S226-S230. https://doi.org/10.1016/j.jallcom.2014.11.124
[97] S. Singhal, T. Namgyal, J. Singh, K. Chandra, S. Bansal, A comparative study on the magnetic properties of MFe12O19 and MAlFe11O19 (M= Sr, Ba and Pb) hexaferrites with different morphologies, Ceramics International, 37 (2011) 1833-1837. https://doi.org/10.1016/j.ceramint.2011.02.001
[98] A. Guerrero-Serrano, T. Pérez-Juache, M. Mirabal-García, J. Matutes-Aquino, S. Palomares-Sánchez, Effect of barium on the properties of lead hexaferrite, Journal of Superconductivity and Novel Magnetism, 24 (2011) 2307-2312. https://doi.org/10.1007/s10948-011-1181-x
[99] M.N. Ashiq, R.B. Qureshi, M.A. Malana, M.F. Ehsan, Synthesis, structural, magnetic and dielectric properties of zirconium copper doped M-type calcium strontium hexaferrites, Journal of Alloys and Compounds, 617 (2014) 437-443. https://doi.org/10.1016/j.jallcom.2014.08.015
[100] P. Popa, E. Rezlescu, C. Doroftei, N. Rezlescu, Influence of calcium on properties of strontium and barium ferrites for magnetic media prepared by combustion, J. Optoelectronics Advance Materials, 7 (2005) 1553-1556.
[101] Ashima, S. Sanghi, A. Agarwal, Reetu, Rietveld refinement, electrical properties and magnetic characteristics of Ca–Sr substituted barium hexaferrites, Journal of Alloys and Compounds, 513 (2012) 436-444. https://doi.org/10.1016/j.jallcom.2011.10.071
[102] X. Gao, Y. Du, X. Liu, P. Xu, X. Han, Synthesis and characterization of Co–Sn substituted barium ferrite particles by a reverse microemulsion technique, Materials Research Bulletin, 46 (2011) 643-648. https://doi.org/10.1016/j.materresbull.2011.02.002
[103] C.-J. Li, B. Wang, J.-N. Wang, Magnetic and microwave absorbing properties of electrospun Ba(1- x)LaxFe12O19 nanofibers, Journal of Magnetism and Magnetic Materials, 324 (2012) 1305-1311. https://doi.org/10.1016/j.jmmm.2011.11.016
[104] Y.-M. Kang, High saturation magnetization in La–Ce–Zn–doped M-type Sr-hexaferrites, Ceramics International, 41 (2015) 4354-4359. https://doi.org/10.1016/j.ceramint.2014.11.125
[105] L. Peng, L. Li, R. Wang, Y. Hu, X. Tu, X. Zhong, Microwave sintered Sr1-xLaxFe12- xCoxO19 (x = 0–0.5) ferrites for use in low temperature co-fired ceramics technology, Journal of Alloys and Compounds, 656 (2016) 290-294. https://doi.org/10.1016/j.jallcom.2015.08.263
[106] S. Ounnunkad, Improving magnetic properties of barium hexaferrites by La or Pr substitution, Solid State Communications, 138 (2006) 472-475. https://doi.org/10.1016/j.ssc.2006.03.020
[107] M. Awawdeh, I. Bsoul, S.H. Mahmood, Magnetic properties and Mössbauer spectroscopy on Ga, Al, and Cr substituted hexaferrites, Journal of Alloys and Compounds, 585 (2014) 465-473. https://doi.org/10.1016/j.jallcom.2013.09.174
[108] S. Wang, J. Ding, Y. Shi, Y. Chen, High coercivity in mechanically alloyed BaFe10Al2O19, Journal of Magnetism and Magnetic Materials, 219 (2000) 206-212. https://doi.org/10.1016/S0304-8853(00)00450-9
[109] I. Ali, M. Islam, M. Awan, M. Ahmad, Effects of Ga–Cr substitution on structural and magnetic properties of hexaferrite (BaFe12O19) synthesized by sol–gel auto-combustion route, Journal of Alloys and Compounds, 547 (2013) 118-125. https://doi.org/10.1016/j.jallcom.2012.08.122
[110] Joonghoe Dho, E.K. Lee, N.H.H. J.Y. Park, Effects of the grain boundary on the coercivity of barium ferrite BaFe12O19, Journal of Magnetism and Magnetic Materials, 285 (2005) 164-168. https://doi.org/10.1016/j.jmmm.2004.07.033
[111] J. Dahal, L. Wang, S. Mishra, V. Nguyen, J. Liu, Synthesis and magnetic properties of SrFe12-x-yAlxCoyO19 nanocomposites prepared via autocombustion technique, Journal of Alloys and Compounds, 595 (2014) 213-220. https://doi.org/10.1016/j.jallcom.2013.12.186
[112] B. Rai, S. Mishra, V. Nguyen, J. Liu, Synthesis and characterization of high coercivity rare-earth ion doped Sr0.9RE0.1Fe10Al2O19 (RE: Y, La, Ce, Pr, Nd, Sm, and Gd), Journal of Alloys and Compounds, 550 (2013) 198-203. https://doi.org/10.1016/j.jallcom.2012.09.021
[113] P. Kazin, L. Trusov, D. Zaitsev, Y.D. Tretyakov, M. Jansen, Formation of submicron-sized SrFe12- xAlxO19 with very high coercivity, Journal of Magnetism and Magnetic Materials, 320 (2008) 1068-1072. https://doi.org/10.1016/j.jmmm.2007.10.020
[114] D. Chen, Y. Liu, Y. Li, K. Yang, H. Zhang, Microstructure and magnetic properties of Al-doped barium ferrite with sodium citrate as chelate agent, Journal of Magnetism and Magnetic Materials, 337 (2013) 65-69. https://doi.org/10.1016/j.jmmm.2013.02.036
[115] A.A. Nourbakhsh, M. Noorbakhsh, M. Nourbakhsh, M. Shaygan, K.J. Mackenzie, The effect of nano sized SrFe12O19 additions on the magnetic properties of chromium-doped strontium-hexaferrite ceramics, Journal of Materials Science: Materials in Electronics, 22 (2011) 1297-1302. https://doi.org/10.1007/s10854-011-0303-3
[116] S. Ounnunkad, P. Winotai, Properties of Cr-substituted M-type barium ferrites prepared by nitrate–citrate gel-autocombustion process, Journal of Magnetism and Magnetic Materials, 301 (2006) 292-300. https://doi.org/10.1016/j.jmmm.2005.07.003
[117] S. Katlakunta, S.S. Meena, S. Srinath, M. Bououdina, R. Sandhya, K. Praveena, Improved magnetic properties of Cr3+ doped SrFe12O19 synthesized via microwave hydrothermal route, Materials Research Bulletin, 63 (2015) 58-66. https://doi.org/10.1016/j.materresbull.2014.11.043
[118] V.P. Singh, G. Kumar, R. Kotnala, J. Shah, S. Sharma, K. Daya, K.M. Batoo, M. Singh, Remarkable magnetization with ultra-low loss BaGdxFe12-xO19 nanohexaferrites for applications up to C-band, Journal of Magnetism and Magnetic Materials, 378 (2015) 478-484. https://doi.org/10.1016/j.jmmm.2014.11.071
[119] R. Pawar, S. Desai, Q. Tamboli, S.E. Shirsath, S. Patange, Ce3+ incorporated structural and magnetic properties of M type barium hexaferrites, Journal of Magnetism and Magnetic Materials, 378 (2015) 59-63. https://doi.org/10.1016/j.jmmm.2014.10.166
[120] P. Long, H. Yue-Bin, G. Cheng, L. Le-Zhong, W. Rui, H. Yun, T. Xiao-Qiang, Preparation and magnetic properties of SrFe12O19 ferrites suitable for use in self-biased LTCC circulators, Chinese Physics Letters, 32 (2015) 017502. https://doi.org/10.1088/0256-307X/32/1/017502
[121] G. Bate, Magnetic recording materials since 1975, Journal of Magnetism and Magnetic materials, 100 (1991) 413-424. https://doi.org/10.1016/0304-8853(91)90831-T
[122] G. Bate, Recording materials, in: P. E, Wohlfarth (Ed.) Ferromagnetic materials, North-Holland Publishing Company, New York, 1980, pp. 381-508.
[123] D. Han, Z. Yang, H. Zeng, X. Zhou, A. Morrish, Cation site preference and magnetic properties of Co-Sn-substituted Ba ferrite particles, Journal of Magnetism and Magnetic Materials, 137 (1994) 191-196. https://doi.org/10.1016/0304-8853(94)90205-4
[124] A. Gonzalez-Angeles, G. Mendoza-Suarez, A. Gruskova, I. Toth, V. Jancárik, M. Papanova, J. Escalante-Garci´, Magnetic studies of NiSn-substituted barium hexaferrites processed by attrition milling, Journal of Magnetism and Magnetic Materials, 270 (2004) 77-83. https://doi.org/10.1016/j.jmmm.2003.08.001
[125] A. González-Angeles, G. Mendoza-Suárez, A. Grusková, J. Sláma, J. Lipka, M. Papánová, Magnetic structure of Sn2+Ru4+-substituted barium hexaferrites prepared by mechanical alloying, Materials Letters, 59 (2005) 1815-1819. https://doi.org/10.1016/j.matlet.2005.01.072
[126] A. González-Angeles, G. Mendoza-Suarez, A. Grusková, M. Papanova, J. Slama, Magnetic studies of Zn–Ti-substituted barium hexaferrites prepared by mechanical milling, Materials Letters, 59 (2005) 26-31. https://doi.org/10.1016/j.matlet.2004.09.012
[127] A. González-Angeles, G. Mendoza-Suarez, A. Grusková, J. Lipka, M. Papanova, J. Slama, Effect of (Ni, Zn) Ru mixtures on magnetic properties of barium hexaferrites yielded by high-energy milling, Journal of Magnetism and Magnetic Materials, 285 (2005) 450-455. https://doi.org/10.1016/j.jmmm.2004.08.015
[128] I. Bsoul, S.H. Mahmood, A.F. Lehlooh, A. Al-Jamel, Structural and magnetic properties of SrFe12-2 xTixRuxO19, Journal of Alloys and Compounds, 551 (2013) 490-495. https://doi.org/10.1016/j.jallcom.2012.11.062
[129] G.H. Dushaq, S.H. Mahmood, I. Bsoul, H.K. Juwhari, B. Lahlouh, M.A. AlDamen, Effects of molybdenum concentration and valence state on the structural and magnetic properties of BaFe11.6MoxZn0.4-xO19 hexaferrites, Acta Metallurgica Sinica (English Letters), 26 (2013) 509-516. https://doi.org/10.1007/s40195-013-0075-2
[130] S.H. Mahmood, G.H. Dushaq, I. Bsoul, M. Awawdeh, H.K. Juwhari, B.I. Lahlouh, M.A. AlDamen, Magnetic Properties and Hyperfine Interactions in M-Type BaFe12-2xMoxZnxO19 Hexaferrites, Journal of Applied Mathematics and Physics, 2 (2014) 77-87. https://doi.org/10.4236/jamp.2014.25011
[131] H. Vincent, E. Brando, B. Sugg, Cationic Distribution in Relation to the Magnetic Properties of New M-Hexaferrites with Planar Magnetic Anisotropy BaFe12-2xIrxMexO19 (Me= Co, Zn, x˜ 0.85 and x˜ 0.50), Journal of Solid State Chemistry, 120 (1995) 17-22. https://doi.org/10.1006/jssc.1995.1369
[132] B. Sugg, H. Vincent, Magnetic properties of new M-type hexaferrites BaFe12-2xIrxCoxO19, Journal of Magnetism and Magnetic Materials, 139 (1995) 364-370. https://doi.org/10.1016/0304-8853(95)90016-0
[133] M.V. Rane, D. Bahadur, S. Mandal, M. Patni, Characterization of BaFe12-2xCoxZrxO19 (0= x= 0.5) synthesised by citrate gel precursor route, Journal of Magnetism and Magnetic Materials, 153 (1996) L1-L4. https://doi.org/10.1016/0304-8853(95)00305-3
[134] S. Sugimoto, K. Okayama, S.-i. Kondo, H. Ota, M. Kimura, Y. Yoshida, H. Nakamura, D. Book, T. Kagotani, M. Homma, Barium M-type ferrite as an electromagnetic microwave absorber in the GHz range, Materials Transactions, JIM, 39 (1998) 1080-1083.
[135] H. Fang, Z. Yang, C. Ong, Y. Li, C. Wang, Preparation and magnetic properties of (Zn–Sn) substituted barium hexaferrite nanoparticles for magnetic recording, Journal of Magnetism and Magnetic Materials, 187 (1998) 129-135. https://doi.org/10.1016/S0304-8853(98)00139-5
[136] P. Wartewig, M. Krause, P. Esquinazi, S. Rösler, R. Sonntag, Magnetic properties of Zn-and Ti-substituted barium hexaferrite, Journal of Magnetism and Magnetic Materials, 192 (1999) 83-99. https://doi.org/10.1016/S0304-8853(98)00382-5
[137] F. Wei, H. Fang, C. Ong, C. Wang, Z. Yang, Magnetic properties of BaFe12- 2xZnxZrxO19 particles, Journal of Applied Physics, 87 (2000) 8636-8639. https://doi.org/10.1063/1.373589
[138] G. Mendoza-Suarez, L. Rivas-Vazquez, J. Corral-Huacuz, A. Fuentes, J. Escalante-Garci´, Magnetic properties and microstructure of BaFe11.6-2xTixMxO19 (M= Co, Zn, Sn) compounds, Physica B: Condensed Matter, 339 (2003) 110-118. https://doi.org/10.1016/j.physb.2003.08.120
[139] A.M. Alsmadi, I. Bsoul, S.H. Mahmood, G. Alnawashi, K. Prokeš, K. Siemensmeyer, B. Klemke, H. Nakotte, Magnetic study of M-type doped barium hexaferrite nanocrystalline particles, Journal of Applied Physics, 114 (2013) 243910. https://doi.org/10.1063/1.4858383
[140] Z. Yang, C. Wang, X. Li, H. Zeng, (Zn, Ni, Ti) substituted barium ferrite particles with improved temperature coefficient of coercivity, Materials Science and Engineering: B, 90 (2002) 142-145. https://doi.org/10.1016/S0921-5107(01)00925-4
[141] S. Pignard, H. Vincent, E. Flavin, F. Boust, Magnetic and electromagnetic properties of RuZn and RuCo substituted BaFe12O19, Journal of Magnetism and Magnetic Materials, 260 (2003) 437-446. https://doi.org/10.1016/S0304-8853(02)01387-2
[142] S. Nilpairach, W. Udomkichdaecha, I. Tang, Coercivity of the co-precipitated prepared hexaferrites, BaFe12-2xCoxSnxO19, Journal of the Korean Physical Society, 48 (2006) 939-945.
[143] O. Kubo, E. Ogawa, Barium ferrite particles for high density magnetic recording, Journal of Magnetism and Magnetic Materials, 134 (1994) 376-381. https://doi.org/10.1016/0304-8853(94)00147-2
[144] X. Batlle, X. Obradors, J. Rodriguez-Carvajal, M. Pernet, M. Cabanas, M. Vallet, Cation distribution and intrinsic magnetic properties of Co-Ti-doped M-type barium ferrite, Journal of Applied Physics, 70 (1991) 1614-1623. https://doi.org/10.1063/1.349526
[145] X. Zhou, A. Morrish, Z. Li, Y. Hong, Site preference for Co2+ and Ti4+ in Co-Ti substituted barium ferrite, IEEE Transactions on Magnetics, 27 (1991) 4654-4656. https://doi.org/10.1109/20.278906
[146] A. Gruskova, J. Slama, M. Michalikova, J. Lipka, I. Toth, P. Kaboš, Preparation of substituted barium ferrite powders, Journal of Magnetism and Magnetic Materials, 101 (1991) 227-229. https://doi.org/10.1016/0304-8853(91)90738-V
[147] A. Morrish, X. Zhou, Z. Yang, H.-X. Zeng, Substituted barium ferrites; sources of anisotropy, Hyperfine Interactions, 90 (1994) 365-369. https://doi.org/10.1007/BF02069140
[148] Z. Šimša, S. Lego, R. Gerber, E. Pollert, Cation distribution in Co-Ti-substituted barium hexaferrites: a consistent model, Journal of Magnetism and Magnetic Materials, 140 (1995) 2103-2104. https://doi.org/10.1016/0304-8853(94)01393-4
[149] G. Bottoni, Magnetization stability and interactions in particulate recording media, Materials Chemistry and Physics, 42 (1995) 45-50. https://doi.org/10.1016/0254-0584(95)01551-5
[150] K. Kakizaki, N. Hiratsuka, T. Namikawa, Fine structure of acicular BaCoxTixFe12- 2xO19 particles and their magnetic properties, Journal of Magnetism and Magnetic Materials, 176 (1997) 36-40. https://doi.org/10.1016/S0304-8853(97)00634-3
[151] Y. Li, R. Liu, Z. Zhang, C. Xiong, Synthesis and characterization of nanocrystalline BaFe9.6Co0.8Ti0.8M0.8O19 particles, Materials Chemistry and Physics, 64 (2000) 256-259. https://doi.org/10.1016/S0254-0584(99)00218-7
[152] G. Mendoza-Suarez, J. Corral-Huacuz, M. Contreras-Garci´a, H. Juarez-Medina, Magnetic properties of BaFe11.6–2xCoxTixO19 particles produced by sol–gel and spray-drying, Journal of Magnetism and Magnetic Materials, 234 (2001) 73-79. https://doi.org/10.1016/S0304-8853(01)00286-4
[153] M. Kuznetsov, Q. Pankhurst, I. Parkin, Novel SHS routes to CoTi-doped M-type ferrites, Journal of Materials Science: Materials in Electronics, 12 (2001) 533-536. https://doi.org/10.1023/A:1012405610723
[154] A. Gruskova, J. Slama, R. Dosoudil, D. Kevicka, V. Jancárik, I. Toth, Influence of Co–Ti substitution on coercivity in Ba ferrites, Journal of Magnetism and Magnetic Materials, 242 (2002) 423-425. https://doi.org/10.1016/S0304-8853(01)01139-8
[155] S. Y. An, I.-B. Shim, C.S. Kim, Mössbauer and magnetic properties of Co–Ti substituted barium hexaferrite nanoparticles, Journal of Applied Physics, 91 (2002) 8465-8467. https://doi.org/10.1063/1.1452203
[156] C. Wang, L. Li, J. Zhou, X. Qi, Z. Yue, High-frequency magnetic properties of Co-Ti substituted barium ferrites prepared by modified chemical coprecipitation method, Journal of Materials Science: Materials in Electronics, 13 (2002) 713-716. https://doi.org/10.1023/A:1021560920450
[157] C. Wang, X. Qi, L. Li, J. Zhou, X. Wang, Z. Yue, High-frequency magnetic properties of low-temperature sintered Co-Ti substituted barium ferrites, Materials Science and Engineering: B, 99 (2003) 270-273. https://doi.org/10.1016/S0921-5107(02)00521-4
[158] Z. Haijun, L. Zhichao, M. Chenliang, Y. Xi, Z. Liangying, W. Mingzhong, Preparation and microwave properties of Co-and Ti-doped barium ferrite by citrate sol–gel process, Materials Chemistry and Physics, 80 (2003) 129-134. https://doi.org/10.1016/S0254-0584(02)00457-1
[159] R. Lima, M.S. Pinho, M.L. Gregori, R.R. Nunes, T. Ogasawara, Effect of double substituted m-barium hexaferrites on microwave absorption properties, Materials Science-Poland, 22 (2004) 245-252.
[160] J. Rodriguez-Carvajal, FULLPROF 98. Program for Rietveld Pattern Matching Analysis of Powder Patterns, unspublished results, Grenoble, 1998.(b) Rodriguez-Carvajal, J, Physica B, 55 (1993) 192.
[161] X. Obradors, X. Solans, A. Collomb, D. Samaras, J. Rodriguez, M. Pernet, M. Font-Altaba, Crystal structure of strontium hexaferrite SrFe12O19, Journal of Solid State Chemistry, 72 (1988) 218-224. https://doi.org/10.1016/0022-4596(88)90025-4
[162] O. Kalogirou, G. Haack, B. Röhl, W. Gunßer, Mössbauer study of a modified M-type Ba (Sr)-ferrite prepared by ion exchange, Solid State Ionics, 63 (1993) 528-533. https://doi.org/10.1016/0167-2738(93)90156-W
[163] G. B. Teh, Y.C. Wong, R.D. Tilley, Effect of annealing temperature on the structural, photoluminescence and magnetic properties of sol–gel derived Magnetoplumbite-type (M-type) hexagonal strontium ferrite, Journal of Magnetism and Magnetic Materials, 323 (2011) 2318-2322. https://doi.org/10.1016/j.jmmm.2011.04.014
[164] B. E. Warren, X-ray Diffraction, Addison-Wesley, Reading, Massachsetts, 1969.
[165] S. Masoudpanah, S.S. Ebrahimi, Fe/Sr ratio and calcination temperature effects on processing of nanostructured strontium hexaferrite thin films by a sol–gel method, Research on Chemical Intermediates, 37 (2011) 259-266. https://doi.org/10.1007/s11164-011-0286-y
[166] B. D. Cullity, C.D. Graham, Introduction to magnetic materials, John Wiley & Sons, 2011.
[167] S. H. Mahmood, A. Awadallah, Y. Maswadeh, I. Bsoul, Structural and magnetic properties of Cu-V substituted M-type barium hexaferrites, IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2015, pp. 012008. https://doi.org/10.1088/1757-899X/92/1/012008
[168] Q. Pankhurst, Anisotropy field measurement in barium ferrite powders by applied field Mossbauer spectroscopy, Journal of Physics: Condensed Matter, 3 (1991) 1323. https://doi.org/10.1088/0953-8984/3/10/010
[169] H. Pfeiffer, W. Schüppel, Investigation of magnetic properties of barium ferrite powders by remanence curves, Physica Status Solidi (a), 119 (1990) 259-269. https://doi.org/10.1002/pssa.2211190131
[170] S. H. Mahmood, I. Bsoul, Hopkinson peak and superparamagnetic effects in BaFe12-xGaxO19 nanoparticles, EPJ Web of Conferences, 29 (2012) 00039.
[171] P. Kelly, K. O’Grady, P. Mayo, R. Chantrell, Switching mechanisms in cobalt-phosphorus thin films, IEEE Transactions on Magnetics, 25 (1989) 3881-3883. https://doi.org/10.1109/20.42466