Synthesis and Characterisation of Magnetoelectric Ceramic Composites based on M-type Strontium and Barium Hexagonal Ferrites and Barium Titanate
M.S.A. Medeiros, J.S. Amaral, R.C. Pullar
Magnetoelectric composite ceramics were prepared to study their phase compatibility, magnetic and piezoelectric/ferroelectric properties, and coupling between magnetic and ferroelectric properties. The synthesis of various BaFe12O19 and SrFe12O19 hexaferrites was undertaken with different sintering temperatures, and exploring four different methods: solid state reaction, coprecipitation, sol-gel and citrate (Pechini) routes. Ceramic composites of BaM and SrM with BaTiO3 (BT) as a ferroelectric/piezoelectric phase, were prepared with both uniaxial and isostatic pressing, and then sintered. The composites were characterised by XRD, SEM and VSM. Results showed that BaM and BT did not react in the composites, while SrM-BT composites possess SrM, BT and SrTiO3 phases.
Keywords
Magnetoelectric Composite Ceramics, Structural Behavior, SEM, Magnetic Properties, Hexagonal Ferrites
Published online 4/20/2018, 48 pages
DOI: https://dx.doi.org/10.21741/9781945291692-1
Part of the book on Magnetic Oxides and Composites
References
[1] W.C. Röntgen, Ueber die durch Bewegung eines im homogenen electrischen Felde befindlichen Dielectricums hervorgerufene electrodynamische Kraft, Annalen der Physik, 271(10) (1888) 264-270. https://doi.org/10.1002/andp.18882711003
[2] P. Curie, Symétrie d’un champ électrique d’un champ magnétique,Journal de Physique Théorique et Appliquée, 3 (1894) 393-415. https://doi.org/10.1051/jphystap:018940030039300
[3] P. Debye, Bemerkung zu einigen neuen Versuchen über einen magneto-elektrischen Richteffekt, Zeitschrift für Physik A Hadrons and Nuclei, 36(4) (1926) 300-301. https://doi.org/10.1007/BF01557844
[4] A. Perrier and A.J. Staring, Archives des Sciences Physiques et Naturelles, 4 (1922) 373-382.
[5] E.O. Kamenetskii, M. Sigalov, and R. Shavit, Tellegen particles and magnetoelectric metamaterials, Journal of Applied Physics, 105(1) (2009) 013537-15. https://doi.org/10.1063/1.3054298
[6] V.J. Folen, G.T. Rado, and E.W. Stalder, Anisotropy of the magnetoelectric effect in Cr2O3, Physical Review Letters, 6(11) (1961) 607-608. https://doi.org/10.1103/PhysRevLett.6.607
[7] I.E. Dzyaloshinskii, On the magneto-electrical effect in antiferromagnets, Journal of Experimental and Theoretical Physics, 10(3) (1960) 628-629.
[8] D.N. Astrov, The magnetoelectric effect in antiferromagnetics, Soviet Physics Journal of Experimental and Theoretical Physics, 11(3) (1960) 708-709.
[9] G.A. Smolenskii and I.E. Chupis, Segnetomagnetics, Uspekhi Fizicheskikh Nauk, 137(3) (1982) 415-448. https://doi.org/10.3367/UFNr.0137.198207b.0415
[10] Y.N. Venevtsev and V.V. Gagulin, Search, design and investigation of seignettomagnetic oxides,Ferroelectrics, 162(1)(1994) 23-31. https://doi.org/10.1080/00150199408245086
[11] H. Schmid, Multiferroic magnetoelectrics, Ferroelectrics, 162(1)(1994) 317-338. https://doi.org/10.1080/00150199408245120
[12] N.A. Hill, Why are there so few magnetic ferroelectrics?, The Journal of Physical Chemistry B, 104(29) (2000) 6694-6709. https://doi.org/10.1021/jp000114x
[13] C.W. Nan, Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases, Physical Review B, 50(9) (1994)6082-6088. https://doi.org/10.1103/PhysRevB.50.6082
[14] C.W. Nan, M. I. Bichurin, S. Dong , D. Viehland and G. Srinivasan, Multiferroic magnetoelectric composites: Historical perspective, status, and future directions, Journal of Applied Physics, 103(3)(2008) 031101-36. https://doi.org/10.1063/1.2836410
[15] J.V. Suchetelene, Product properties: a new application of composite materials, Eindhoven, 1972.
[16] J. Boomgaard and R.A.J. Born, A sintered magnetoelectric composite material BaTiO3-Ni(Co, Mn) Fe2O4, Journal of Materials Science, 13(7) (1978) 1538-1548. https://doi.org/10.1007/BF00553210
[17] R.E. Newnham, D.P. Skinner and L.E. Cross, Connectivity and piezoelectric-pyroelectric composites, Materials Research Bulletin, 13(5) (1978) 525-536. https://doi.org/10.1016/0025-5408(78)90161-7
[18] Jungho Ryu, Alfredo Vázquez Carazo1, Kenji Uchino and Hyoun-Ee Kim, Magnetoelectric properties in piezoelectric and magnetostrictive laminate composites, Japanese Journal of Applied Physics,40 (2001) 4948. https://doi.org/10.1143/JJAP.40.4948
[19] J. Van DenBoomgaard and R.A.J. Born, A sintered magnetoelectric composite material BaTiO3-Ni(Co, Mn)Fe2O4, Journal of Materials Science, 13(7) (1978)1538-1548. https://doi.org/10.1007/BF00553210
[20] J. Van Den Boomgaard, D.R. Terrell, R.A.J. Born, H.F.J.I. Giller, An in situ grown eutectic magnetoelectric composite material, Journal of Materials Science,9(10) (1974)1705-1709. https://doi.org/10.1007/BF00540770
[21] R.C. Pullar and A.K. Bhattacharya, The synthesis and characterization of the hexagonal Z ferrite, Sr3Co2Fe24O41, from a sol-gel precursor. Materials Research Bulletin, 36 (7–8) (2001) 1531-1538. https://doi.org/10.1016/S0025-5408(01)00596-7
[22] D. Karpinsky, E.K. Selezneva, I.K. Bdikin, F. Figueiras, K.E. Kamentsev, Y.K. Fetisov, R.C. Pullar, J. Krebbs, N.M. Alford and A.L. Kholkin, Development of novel multiferroic composites based on BaTiO3 and hexagonal ferrites. Proceedings of the Materials Research Society, 1161 (2009) 7-12. https://doi.org/10.1557/PROC-1161-I01-06
[23] D. Karpinsky, R.C. Pullar, Y.K. Fetisov, K.E. Kamentsev and A.L. Kholkin, Local probing of magnetoelectric coupling in multiferroic composites of BaFe12O19–BaTiO3. Journal of Applied Physics, 108(4) (2010) 042012-5. https://doi.org/10.1063/1.3474967
[24] R. C. Pullar, Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics, Progress in Materials Science, 57 (2012) 1191-1334. https://doi.org/10.1016/j.pmatsci.2012.04.001
[25] R.E. Newnham, Properties of Materials: Anisotropy, Symmetry, Structure, Oxford University Press, USA, 2005.
[26] Robert C. Pullar, Pedro Marques, João Amaral and João A. Labrincha, Magnetic wood-based biomorphic Sr3Co2Fe24O41 Z-type hexaferrite ecoceramics made from cork templates, Materials and Design, 82 (2015) 297-303. https://doi.org/10.1016/j.matdes.2015.03.047
[27] R.C. Pullar and R.M. Novais, Ecoceramics – cork-based biomimetic ceramic 3-DOM foams, cover article, Materials Today, 20 (2017) 45-46. https://doi.org/10.1016/j.mattod.2016.12.004
[28] J. Smit and H.P.J. Wijn, Ferrites, Wiley, New York, 1959.
[29] M. Pardavi-Horvath, Microwave applications of soft ferrites, Journal of Magnetism and Magnetic Materials, 215 (2000) 171-183. https://doi.org/10.1016/S0304-8853(00)00106-2
[30] E.P. Wohlfarth and K.H.J. Buschow, Ferromagnetic materials: a handbook on the properties of magnetically ordered substances, North-Holland Publishing Co.1982.
[31] M. Sugimoto, Ferromagnetic materials, North Holland Physics Publishing,Amsterdam,1980.
[32] R. Gerber, Z. Šimša and L. Jenšovský, A note on the magnetoplumbite crystal structure, Czechoslovak Journal of Physics, 44 (1994) 937-940. https://doi.org/10.1007/BF01715487
[33] V. Adelsköld, X-ray studies on magneto-plumbite, PbO.6Fe2O3, and other substances resembling ‘‘beta-alumina’’, Na2O.11Al2O3, Ark. Kemi Min. Geol. Series A-12. 29 (1938) 1-9.
[34] J.J. Went, G.W. Rathenau, E.W. Gorter and G.W. van Oosterhout, Hexagonal iron-oxide compounds as permanent-magnet materials.Physical Review, 86(3) (1952) 424-425. https://doi.org/10.1103/PhysRev.86.424.2
[35] R.A. McCurrie, Ferromagnetic materials: structure and properties 1994, Universidade de Michigan: Academic, 1994.
[36] International centre for diffraction data, USA, PDF no. 84-1531 (SrFe12O19), 84-757 (BaFe12O19), 84-2046 (PbFe12O19), Newton Square, PA.
[37] V.S. Puli, PTCR effect in La2O3 doped BaTiO3 ceramic sensors, in Physics, Auckland University of Technology, New Zealand, 2006.
[38] A.D. Lozano-Gorrín, Structural characterization of new perovskites, polycrystalline materials – theoretical and practical aspects, InTech2012.
[39] M.M. Vijatovic, J.D. Bobic and B.D. Stojanovic, History and challenges of barium titanate: Part I, Science of Sintering, 40(2) (2008) 155-165. https://doi.org/10.2298/SOS0802155V
[40] M.S. Tadayuki Imai, Koichiro Nakamura, Kazuo Fujiura, Crystal growth and electro-optic properties of KTa1−xNbxO3, NTT Technical Review, 2007.
[41] L. Liliam Viana, Síntese e caracterização de compósitos titanato de bário-ferrita de cobalto preparados a partir de método sol-gel, Universidade Federal de Minas Gerais, 2010.
[42] S.M. Aygun, Processing Science of Barium Titanate, North Carolina State University, North Carolina,2009.
[43] R. Valenzuela, Magnetic Ceramics, Cambridge University Press,2005.
[44] R.C. Pullar, I.K. Bdikin, and A.K. Bhattacharya, Magnetic properties of randomly oriented BaM, SrM, Co2Y, Co2Z and Co2W hexagonal ferrite fibres. Journal of the European Ceramic Society, 32(4) (2012) 905-913. https://doi.org/10.1016/j.jeurceramsoc.2011.10.047
[45] S. Sakka, Handbook of sol-gel science and technology, Characterization and properties of sol-gel materials and products, Kluwer Academic Publishers,2005.
[46] R.C. Pullar, M.D. Taylor and A.K. Bhattacharya, Novel aqueous sol-gel preparation and characterisation of barium M ferrite, BaFe12O19 fibres, Journal of Materials Science, 32 (1997) 349-352. https://doi.org/10.1023/A:1018593014378
[47] R.C. Pullar, S.G. Appleton and A.K. Bhattacharya, The manufacture, characterisation and microwave properties of aligned M ferrite fibres, Journal of Magnetism and Magnetic Materials, 186 (1998) 326-332. https://doi.org/10.1016/S0304-8853(98)00107-3
[48] R.C. Pullar, M.D. Taylor and A.K. Bhattacharya, A halide free route to the manufacture of microstructurally improved M ferrite (BaFe12O19 & SrFe12O19) fibres, Journal of theEuropean Ceramic Society, 22 (2002) 2039-2045.
[49] R.C. Pullar and A.K. Bhattacharya, Crystallisation of hexagonal M ferrites from a stoichiometric sol-gel precursor, without formation of the α-BaFe2O4 intermediate phase, Materials Letters, 57 (2002) 537-542. https://doi.org/10.1016/S0167-577X(02)00825-X
[50] M.P. Pechini, Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor, U.S. Patent 3,330,697,(1967).
[51] Robert C. Pullar, Chapter 7 in: Mesoscopic Phenomena in Multifunctional Materials, A. Saxena and A. Planes (Eds), Springer, Heidelberg, 2014, pp. 159-200.
[52] Hsing-I Hsiang, Chi-Shiung His, Chun-Chi Huang, Shen-Li Fu,Sintering behavior and dielectric properties of BaTiO3 ceramics with glass addition for internal capacitor of LTCC, Journal of Alloys and Compounds 459 (2008) 307-310. https://doi.org/10.1016/j.jallcom.2007.04.218