Photocatalytic Degradation of Organic Pollutants by Zinc Oxide Composite
D. Jamwal, J.Y. Park, A. Kumar, G. Sharma, D. Rana, A. Katoch
Photocatalysis has been proved to be a promising approach for the degradation of organic pollutants. Oxide semiconductors have shown their recognition in the area of catalysis. Particularly, oxide semiconductor based composites have shown improved photodegradation of organic pollutants by modification of their electronic and structural properties than their single counterparts. ZnO has an advantage of being non-toxic, cost-effective and environmentally friendly to become an efficient photocatalyst that can be utilized for preparing different kinds of composites. This chapter summarizes the recent progress in the fabrication and photocatalytic efficiency of various types of ZnO composites for degradation of organic pollutants.
Keywords
Catalysis, Semiconductor, Composites, Organic Pollutants, Oxides
Published online 4/1/2018, 35 pages
DOI: https://dx.doi.org/10.21741/9781945291630-9
Part of Organic Pollutants in Wastewater I
References
[1] I.A. Balcioglu, Y. Inel, Photocatalytic degradation of organic contaminants in semiconductor suspensions added H2O2, J. Environ. Sci. Health., Part A 31(1996) 123-138.
[2] C.C. Tsao, J.E. Campbell, M. Mena-Carrasco, S.N. Spak, G.R. Carmichael Y. Chen, Increased estimates of air-pollution emissions from Brazilian sugar-cane ethanol, Nat. Clim. Change 2 (2011) 53-57. https://doi.org/10.1038/nclimate1325
[3] S. Ghasemi, S. Rahimnejad, S.R. Setayesh, S. Rohani, M.R. Gholami, Transition metal ions effect on the properties and photocatalytic activity of nanocrystalline TiO2 prepared in an ionic liquid, J. Hazard. Mater. 172 (2009)1573-1578. https://doi.org/10.1016/j.jhazmat.2009.08.029
[4] S.P. Kamble, S.P. Deosarkar, S.B. Sawant, J.A. Moulijn, V.G. Pangarkar, Photocatalytic degradation of 2,4-dichlorophenoxyacetic acid using concentrated solar radiation: Batch and continuous operation, Ind. Eng. Chem. Res. 43 (2004) 8178-8187. https://doi.org/10.1021/ie0494263
[5] S. Bull, K. Fletcher, A. Boobis, J. Batterrshill, Evidence for genotoxicity of pesticides in pesticide applicators, Mutagenesis 21 (2006) 93-103. https://doi.org/10.1093/mutage/gel011
[6] K.C. Kemp, H. Seema, M. Saleh, N.H. Le, K. Mahesh, V. Chandra, K.S. Kim, Environmental applications using graphene composites: Water remediation and gas adsorption, Nanoscale 5 (2013) 3149-3171. https://doi.org/10.1039/c3nr33708a
[7] H. Nakamura, Recent organic pollution and its biosensing methods, Anal. Methods 2 (2010) 430-444. https://doi.org/10.1039/b9ay00315k
[8] N.R. Khalid, E. Ahmed, Zhanglian Hong, M. Ahmad, Synthesis and photocatalytic properties of visible light responsive La/TiO2-graphene composites, Appl. Surf. Sci. 263 (2012) 254-259. https://doi.org/10.1016/j.apsusc.2012.09.039
[9] S. Wang, H. Sun, H.A Ng, M. Tade, Adsorptive remediation of environmental pollutants using novel graphene-based nanomaterials, Chem. Eng. J. 226 (2013) 336-347. https://doi.org/10.1016/j.cej.2013.04.070
[10] Z. Liu, W. Xu, J. Fang, X. Xu, S. Wu, X. Zhu, Z. Chen, Decoration of BiOI quantum size nanoparticles with reduced graphene oxide in enhanced visible-light-driven photocatalytic studies, Appl. Surf. Sci. 259 (2012) 441-447. https://doi.org/10.1016/j.apsusc.2012.07.063
[11] T. Thomas, N. Kottam, Combining “chimie douce” and green principles for the developing world: Improving industrial viability of photocatalytic water remediation, Chem. Eng. Sci. 102 (2013) 283-288. https://doi.org/10.1016/j.ces.2013.08.004
[12] G. Sharma, S. Bhogal, M. Naushad, Inamuddin, A. Kumar, F.J. Stadler, Microwave assisted fabrication of La/Cu/Zr/carbon dots trimetallic nanocomposites with their adsorptional vs photocatalytic efficiency for remediation of persistent organic pollutants, J. Photochem. Photobiol. A Chem. 347 (2017) 235–243. https://doi.org/10.1016/j.jphotochem.2017.07.001
[13] A. Kumar, M. Naushad, A. Rana, Inamuddin, Preeti, G. Sharma, A.A. Ghfar, F.J. Stadler, M.R. Khan, ZnSe-WO3 nano-hetero-assembly stacked on Gum ghatti for photo-degradative removal of Bisphenol A: Symbiose of adsorption and photocatalysis, Int. J. Biol. Macromol. 104 (2017) 1172–1184. https://doi.org/10.1016/j.ijbiomac.2017.06.116
[14] X.P. Gao, J.L. Bao, G.L. Pan, H.Y. Zhu, P.X. Huang, F. Wu,D. Y. Song, Preparation and Electrochemical Performance of Polycrystalline and Single Crystalline CuO Nanorods as Anode Materials for Li-Ion Battery, J. Phys. Chem. B 108 (2004) 5547-5551. https://doi.org/10.1021/jp037075k
[15] S.P. Kim, M.Y. Choi, H.C. Choi, Photocatalytic activity of SnO2 nanoparticles in methylene blue degradation, Mater. Res. Bull. 74 (2016) 85-89. https://doi.org/10.1016/j.materresbull.2015.10.024
[16] C.A. Bignozzi, S. Caramori, V. Cristino, R. Argazzi, L. Meda, A. Tacca, Nanostructured photoelectrodes based on WO3: applications to photooxidation of aqueous electrolytes, Chem. Soc. Rev. 42 (2013) 2228-2246. https://doi.org/10.1039/C2CS35373C
[17] M. Barroso, S.R. Pendlebury, A.J. Cowan, J.R. Durrant, Charge carrier trapping, recombination and transfer in hematite (α-Fe2O3) water splitting photoanodes, Chem. Sci. 4 (2013) 2724-2734. https://doi.org/10.1039/c3sc50496d
[18] Q. Yang, C. Hu, S. Wang, Y. Xi, K. Zhang, Tunable synthesis and thermoelectric property of Bi2S3 nanowires, J. Phys. Chem. C 117 (2013) 5515-5520. https://doi.org/10.1021/jp307742s
[19] R.M. Asmussen, M. Tian, A. Chen, A new approach to wastewater remediation based on bifunctional electrodes, Environ. Sci. Technol. 43 (2009) 5100-5105. https://doi.org/10.1021/es900582m
[20] R. Nagaraja, N. Kottam, C.R. Girija, B. M. Nagabhushana, Photocatalytic degradation of Rhodamine B dye under UV/solar light using ZnO nanopowder synthesized by solution combustion route. Powder Technol. 215-216 (2012) 91-97. https://doi.org/10.1016/j.powtec.2011.09.014
[21] L. Jing, W. Zhou, G. Tian, H. Fu, Surface tuning for oxide-based nanomaterials as efficient photocatalysts, Chem. Soc. Rev. 42 (2013) 9509-9549. https://doi.org/10.1039/c3cs60176e
[22] D.S. Bhatkhande, V.G Pangarkar, A.A.C.M. Beenackers, Photocatalytic degradation for environmental applications-A review, J. Chem. Technol. Biotechnol. 77 (2002) 102-116. https://doi.org/10.1002/jctb.532
[23] B.K. Kumar, T. Imae, J. Miras, J. Esquena, Synthesis and azo dye photodegradation activity of ZrS2-ZnO nanocomposites, Sep. Purif. Technol. 132 (2014) 281-288. https://doi.org/10.1016/j.seppur.2014.05.018
[24] J. Yu, S. Zhuang, X. Xu, W. Zhu, B. Feng, J. Hu, Photogenerated electron reservoir in hetero-p-n CuO-ZnO nanocomposite device for visible-light-driven photocatalytic reduction of aqueous Cr(VI), J. Mater. Chem. A 3 (2015) 1199-1207. https://doi.org/10.1039/C4TA04526B
[25] M. Alvaro, E. Carbonell, M. Espla, H. Garcia, Iron phthalocyanine supported on silica or encapsulated inside zeolite Y as solid photocatalysts for the degradation of phenol and sulfur heterocycles, Appl. Catal. B Environ. 57 (2005) 37-42. https://doi.org/10.1016/j.apcatb.2004.10.003
[26] A. Zhang, R. Zhang, N. Zhang, S. Hong, M. Zhang, Synthesis and characterization of TiO2-montmorillonite nanocomposites and their photocatalytic activity, Kinet. Catal. 51 (2010) 529-533. https://doi.org/10.1134/S0023158410040117
[27] N. Sapawe, A.A. Jalil, S. Triwahyono, S.H. Adam, N.F. Jaafar, M.A.H. Satar, Isomorphous substitution of Zr in the framework of aluminosilicate HY by an electrochemical method: Evaluation by methylene blue decolorization, Appl. Catal. B: Environ. 125 (2012) 311-323. https://doi.org/10.1016/j.apcatb.2012.05.042
[28] Q. Wang, Z. Li, J. Wang, P. Ye, Structure and photoluminescent properties of ZnO encapsulated in mesoporous silica SBA-15 fabricated by two-solvent strategy nanoscale, Res. Lett. 4 (2009) 646-654.
[29] X. Zhou, T. Shi, H. Zhou, Hydrothermal preparation of ZnO-reduced graphene oxide hybrid with high performance in photocatalytic degradation, Appl. Surf. Sci. 258 (2012) 6204-6211. https://doi.org/10.1016/j.apsusc.2012.02.131
[30] S. Rabieh, K. Nassimi, M. Bagheri, Synthesis of hierarchical ZnO-reduced graphene oxide nanocomposites with enhanced adsorption photocatalytic performance, Mater. Lett. 162 (2016) 28-31. https://doi.org/10.1016/j.matlet.2015.09.111
[31] A.M. Turek, I.E. Wachs, E.D. Canio, Acidic properties of alumina-supported metal oxide catalysts: An infrared spectroscopy study, J. Phys. Chem. 96 (1992) 5000-5007. https://doi.org/10.1021/j100191a050
[32] S. Kalathil, M.M. Khan, A.N. Banerjee, J. Lee, M.H. Cho, A simple biogenic route to rapid synthesis of Au@TiO2 nanocomposites by electrochemically active biofilms, J. Nanopart. Res. 14 (2012) 1051-1060. https://doi.org/10.1007/s11051-012-1051-x
[33] X. Zong, C. Sun, H, Yu, Z.G. Chen, Z. Xing, D. Ye, G. Q. (Max) Lu, X. Li, L. Wang, Activation of photocatalytic water oxidation on N-doped ZnO bundle-like nanoparticles under visible light, J. Phys. Chem. C 117 (2013) 4937-4942. https://doi.org/10.1021/jp311729b
[34] Q. Ding, Y.-E. Miao, T. Liu, Morphology and photocatalytic property of hierarchical polyimide/ZnO fibers prepared via a direct ion-exchange process, ACS Appl. Mater. Interfaces 5 (2013) 5617-5622. https://doi.org/10.1021/am4009488
[35] L. Saikia, D. Bhuyan, M. Saikia, B. Malakar, D.K. Dutta, P. Sengupta, Photocatalytic performance of ZnO nanomaterials for self-sensitized degradation of malachite green dye under solar light, Appl. Catal. A 490 (2015) 42-49. https://doi.org/10.1016/j.apcata.2014.10.053
[36] L. Fang, B. Zhang, W. Li, X. Li, T. Xin, Q. Zhang, Controllable synthesis of ZnO hierarchical architectures and their photocatalytic property, Superlattices Microstruct. 75 (2014) 324-333. https://doi.org/10.1016/j.spmi.2014.03.001
[37] K. Byrappa, A.K. Subramani, S. Ananda, K.M. Rai, M.H. Sunitha, B. Basavalingu, K. Soga, Impregnation of ZnO onto activated carbon under hydrothermal conditions and its photocatalytic properties, J. Mater. Sci. 41 (2006) 1355-1362. https://doi.org/10.1007/s10853-006-7341-x
[38] C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, A. Govindaraj, Graphene: The new two-dimensional nanomaterial, Angew. Chem. Int. Ed. 48 (2009) 7752-7777. https://doi.org/10.1007/s10853-006-7341-x
[39] J. Liu, H. Bai, Y. Wang, Z. Liu, X. Zhang, D.D. Sun, Self-assembling TiO2 nanorods on large graphene oxide sheets at a two-phase interface and their anti-recombination in photocatalytic applications, Adv. Funct. Mater. 20 (2010) 4175-4181. https://doi.org/10.1002/adfm.201001391
[40] C. Zhu, S. Guo, P. Wang, L. Xing, Y. Fang, Y. Zhai, S. Dong, One-pot, water-phase approach to high-quality graphene/TiO2 composite nanosheets, Chem. Commun. 46 (2010) 7148-7150. https://doi.org/10.1039/c0cc01459a
[41] S. Gayathri, P. Jayabal, M. Kottaisamy, V. Ramakrishnan, Synthesis of ZnO decorated graphene nanocomposite for enhanced photocatalytic properties, J. Appl. Phys. 115 (2014)173504-9. https://doi.org/10.1063/1.4874877
[42] S. An, B.N. Joshi, M.W. Lee, N.Y. Kim, S.S. Yoon, Electrospun graphene-ZnO nanofiber mats for photocatalysis applications, Appl. Surf. Sci. 294 (2014) 24- 28. https://doi.org/10.1016/j.apsusc.2013.12.159
[43] Y. Bu, Z. Chen, W. Li, B. Hou, Highly efficient photocatalytic performance of graphene-ZnO quasi-shell-core composite material, ACS Appl. Mater. Interfaces 5 (2013) 12361-12368. https://doi.org/10.1021/am403149g
[44] S. Thangavel, K. Krishnamoorthy, V. Krishnaswamy, N. Raju, S.J. Kim, G. Venugopal, Graphdiyne-ZnO nanohybrids as an advanced photocatalytic material, J. Phys. Chem. C 119 (2015) 22057-22065. https://doi.org/10.1021/acs.jpcc.5b06138
[45] W.-J. Ong, S.-Y. Voon, L.-L. Tan, B.T. Goh, S.-T. Yong, S.-P. Chai, Enhanced daylight-induced photocatalytic activity of solvent exfoliated graphene (SEG)/ZnO hybrid nanocomposites towards degradation of Reactive Black 5, Ind. Eng. Chem. Res. 53 (2014) 17333-17344. https://doi.org/10.1021/ie5027088
[46] D. Kale, P. Thakur, Highly efficient photocatalytic degradation and mineralization of 4-nitrophenol by graphene decorated ZnO, J Porous Mater. 22 (2015) 797-806. https://doi.org/10.1007/s10934-015-9953-5
[47] P. Roy, A.P. Periasamy, C-T. Liang, H-T. Chang, Synthesis of graphene-ZnO-Au nanocomposites for efficient photocatalytic reduction of nitrobenzene, Environ. Sci. Technol. 47 (2013) 6688-6695. https://doi.org/10.1021/es400422k
[48] S. Rabieh, K. Nassimi, M. Bagheri, Synthesis of hierarchical ZnO-reduced graphene oxide nanocomposites with enhanced adsorption photocatalytic Performance, Mater. Lett. 162 (2016) 28-31. https://doi.org/10.1016/j.matlet.2015.09.111
[49] B. Weng, M.-Q. Yang, N. Zhang Y.-J. Xu, Toward the enhanced photoactivity and photostability of ZnO nanospheres via intimate surface coating with reduced graphene oxide, J. Mater. Chem. A 2 (2014) 9380-9389. https://doi.org/10.1039/c4ta01077a
[50] E.H. Umukoro, M.G. Peleyeju, J.C. Ngila, O.A. Arotiba, Photocatalytic degradation of acid blue 74 in water using Ag-Ag2O-ZnO nanostructures anchored on graphene oxide, Solid State Sci. 51 (2016) 66-73. https://doi.org/10.1016/j.solidstatesciences.2015.11.015
[51] M. Ahmad, E. Ahmed, Z.L. Hong, J.F. Xu, N.R. Khalid, A. Elhissi, W. Ahmed, A facile one-step approach to synthesizing ZnO/graphene composites for enhanced degradation of methylene blue under visible light, Appl. Surf. Sci. 274 (2013) 273-281. https://doi.org/10.1016/j.apsusc.2013.03.035
[52] J. Wang, T. Tsuzuki, B. Tang, X. Hou, L. Sun, X. Wang, Reduced graphene oxide/ZnO composite: Reusable adsorbent for pollutant management, ACS Appl. Mater. Interfaces 4 (2012) 3084-3090. https://doi.org/10.1021/am300445f
[53] S. Ameen, M.S. Akhtar, H.-K. Seo, H.S. Shin, Advanced ZnO-graphene oxide nanohybrid and its photocatalytic Applications, Mater. Lett. 100 (2013) 261-265. https://doi.org/10.1016/j.matlet.2013.03.012
[54] A. Tayyebi, M. Outokesh, M. Tayebi, A. Shafikhani, S.S. Şengor, ZnO Quantum Dots-Graphene composites: Formation mechanism and enhanced photocatalytic activity for degradation of methyl orange dye, J. Alloys Compounds 663 (2016) 738-749. https://doi.org/10.1016/j.jallcom.2015.12.169
[55] R. Cai, J. Wu, L. Sun, Y. Liu, T. Fang, S. Zhu, S. Li, Y.Wang, L.Guo, C. Zhao, A. Wei, 3D graphene/ZnO composite with enhanced photocatalytic activity, Mater. Des. 90 (2016) 839-844. https://doi.org/10.1016/j.matdes.2015.11.020
[56] D. Amaranatha Reddy, R. Ma, T.K. Kim, Efficient photocatalytic degradation of methylene blue by heterostructured ZnO-RGO/RuO2 nanocomposite under the simulated sunlight irradiation, Ceram. Int. 41 (2015) 6999-7009. https://doi.org/10.1016/j.ceramint.2015.01.155
[57] N. Raghavan, S. Thangavel, G. Venugopal, Enhanced photocatalytic degradation of methylene blue by reduced graphene-oxide/titanium dioxide/zinc oxide ternary nanocomposites, materials science in semiconductor processing, Mater. Sci. Semicond. Process. 30 (2015) 321-329. https://doi.org/10.1016/j.mssp.2014.09.019
[58] J. Qin, R. Li, C. Lu, Y. Jiang, H. Tang, X. Yang, Ag/ZnO/graphene oxide heterostructure for the removal of rhodamine B by the synergistic adsorption-degradation effects, Ceram. Int. 41 (2015) 4231-4237. https://doi.org/10.1016/j.ceramint.2014.11.046
[59] M. Ahmad, E. Ahmed, Z.L. Hong, N.R. Khalid, W. Ahmed, A. Elhissi, Graphene-Ag/ZnO nanocomposites as high-performance photocatalysts under visible light irradiation, J. Alloys Compd. 577 (2013) 717-727. https://doi.org/10.1016/j.jallcom.2013.06.137
[60] W.J. Lee, M.L. Ju, S.T. Kochuveedu, T.H. Han, Y.J. Hu, M. Park, Biomineralized N-doped CNT/TiO2 core/shell nanowires for visible light photocatalysis, ACS Nano 6 (2011) 935-943. https://doi.org/10.1021/nn204504h
[61] G. Yu, T.T. Ma, S.W. Liu, Enhanced photocatalytic activity of mesoporous TiO2 aggregates by embedding carbon nanotubes as anelectron-transfer channel, Phys. Chem. Chem. Phys. 13 (2011) 3491-3501. https://doi.org/10.1039/C0CP01139H
[62] G. Zhu, H. Wang, G. Yang, L. Chen, P. Guo, L. Zhang, A facile synthesis of ZnO/CNTs hierarchical microsphere composites with enhanced photocatalytic degradation of methylene blue, RSC Adv. 5 (2015) 72476-72481. https://doi.org/10.1039/C5RA11873E
[63] M. Ahmad, E. Ahmed, Z.L. Hong, W. Ahmed, A. Elhissi, N. R. Khalid, Degradation of Rhodamine B using ZnO/CNTs composites photocatalysts, Ultrason. Sonochem. 21 (2014) 761-773. https://doi.org/10.1016/j.ultsonch.2013.08.014
[64] N. Roozban, S. Abbasi, M. Ghazizadeh, Statistical analysis of the photocatalytic activity of decorated multi-walled carbon nanotubes with ZnO nanoparticles, J. Mater. Sci.: Mater. Electron. 28 (2017) 6047-6055. https://doi.org/10.1007/s10854-016-6280-9
[65] C.S. Chen, T.G. Liu, L.W. Lin, X.D. Xie, X.H. Chen, Q.C. Liu, B. Liang, W.W. Yu, C.Y. Qiu, Multi-walled carbon nanotube-supported metal-doped ZnO nanoparticles and their photocatalytic property, J. Nanopart Res. 15 (2013)1295. https://doi.org/10.1007/s11051-012-1295-5
[66] P. Liu, Y. Guo, Q. Xu, F. Wang, Y. Li, K. Shao, Enhanced thephotocatalytic performance of ZnO/multi-walled carbon nanotube nanocomposites for dye degradation, Ceram. Int. 40 (2014) 5629-5633. https://doi.org/10.1016/j.ceramint.2013.10.157
[67] Y. Yan, T. Chang, P. Wei, S.-Z. Kang J. Mu, Photocatalytic activity of nanocomposites of ZnO and multi-walled carbon nanotubes for dye degradation, J. Dispersion Sci. Technol. 30 (2009)198-203. https://doi.org/10.1080/01932690802498310
[68] M. Ahmad, E. Ahmed, Z.L. Hong, X.L. Jiao, T. Abbas, N.R. Khalid, Enhancement in visible-light-responsive photocatalytic activity by embedding Cu-doped ZnO nanoparticles on multi-walled carbon nanotubes, Appl. Surf. Sci. 285 (2013) 702-712. https://doi.org/10.1016/j.apsusc.2013.08.114
[69] P. Liu, L. Zhang, Adsorption of dyes from aqueous solutions or suspensions with clay nano-adsorbents. Sep. Purif. Technol. 58 (2007) 32-39. https://doi.org/10.1016/j.seppur.2007.07.007
[70] X. Meng, Z. Qian, H. Wang, X. Gao, S. Zhang, E.M. Yang, Sol-gel immobilization of SiO2/TiO2 on hydrophobic clay and its removal of methyl orange from water, J. Sol. Gel. Sci. Technol. 46 (2008) 195-200. https://doi.org/10.1007/s10971-008-1677-4
[71] G. Zhu, S. Qiu, J. Yu, Y. Sakamoto, F. Xiao, R. Xu, O. Terasaki, Synthesis and characterization of high-quality zeolite LTA and FAU single nanocrystals, Chem. Mater. 10 (1998) 1483-1486. https://doi.org/10.1021/cm980061k
[72] A. Nezamzadeh-Ejhieh, M. Khorsandi, A comparison between the heterogeneous photodecolorization of an azo dye using Ni/P zeolite and NiS/P zeolite catalysts, Iranian J. Catal. 1 (2011) 99-104.
[73] N. Mohaghegh, M. Tasviri, E. Rahimi, M.R. Gholami, Nanosized ZnO composites: Preparation, characterization and application as photocatalysts for degradation of AB92 azo dye, Mater. Sci. Semicond. Process. 21(2014)167-179. https://doi.org/10.1016/j.mssp.2013.12.023
[74] J.C. Joo, C.H. Ahn, D.G. Jang, Y.H. Yoon, J.K. Kim, L. Campos, H. Ahn, Photocatalytic degradation of trichloroethylene in aqueous phase using nano-ZNO/Laponite composites, J. Hazard. Mater. 263 (2013) 569-574. https://doi.org/10.1016/j.jhazmat.2013.10.017
[75] F.C. Doria, A.C. Borges, J.K. Kim, A. Nathan, J.C. Joo, L.C. Campos, Removal of metaldehyde through photocatalytic reactions using nano-sized zinc oxide composites, Water Air Soil Pollut. 224 (2013) 1434. https://doi.org/10.1007/s11270-013-1434-3
[76] J.K. Kim, J, Alajmy, A.C. Borges, J.C. Joo, H. Ahn, L.C. Campos, Degradation of humic acid by aphotocatalytic reaction using nano-sized ZnO/laponite composite (NZLC), Water, Air, Soil Pollut. 224 (2013)1749. https://doi.org/10.1007/s11270-013-1749-0
[77] N. Sapawe, A.A. Jalil, S. Triwahyono, One-pot electro-synthesis of ZrO2–ZnO/HY nanocomposite for photocatalytic decolorization of various dye-contaminants, Chem. Eng. J. 225 (2013) 254-265. https://doi.org/10.1016/j.cej.2013.03.121
[78] L. Shi-Qian, Z. Pei-Jiang, Z. Wan-shun, C. Sheng, P. Hong, Effective photocatalytic decolorization of methylene blue utilizing ZnO/rectorite nanocomposite under simulated solar irradiation, J. Alloys Compd. 616 (2014) 227-234. https://doi.org/10.1016/j.jallcom.2013.10.079
[79] J. Esmaili-Hafshejani A. Nezamzadeh-Ejhieh, Increased photocatalytic activity of Zn(II)/Cu(II) oxides and sulfides by coupling and supporting them onto clinoptilolite nanoparticles in the degradation of benzophenone aqueous solution J. Hazard. Mater. 316 (2016) 194-203. https://doi.org/10.1016/j.jhazmat.2016.05.006
[80] A. Nezamzadeh-Ejhieh, F. Khodabakhshi-Chermahini, Incorporated ZnO onto nano clinoptilolite particles as the active centers in the photodegradation of phenylhydrazine, J. Ind. Eng. Chem. 20 (2014) 695-704. https://doi.org/10.1016/j.jiec.2013.05.035
[81] A. Nezamzadeh-Ejhieh, S. Khorsandi, Photocatalytic degradation of 4-nitrophenol with ZnO supported nano-clinoptilolite zeolite J. Ind. Eng. Chem. 20 (2014) 937-946. https://doi.org/10.1016/j.jiec.2013.06.026
[82] X. Li, H. Yang, Pd hybridizing ZnO/kaolinite nanocomposites: Synthesis, microstructure, and enhanced photocatalytic property, Appl. Clay Sci. 100 (2014) 43-49. https://doi.org/10.1016/j.clay.2014.05.007
[83] I. Fatimah, S. Wang, D. Wulandari, ZnO/montmorillonite for photocatalytic and photochemical degradation of methylene blue, Appl. Clay Sci. 53 (2011) 553-560. https://doi.org/10.1016/j.clay.2011.05.001
[84] N.N. Zu, H.G. Yang, Z.W. Dai, Different processes responsible for blue pumped, ultraviolet and violet luminescence in high-concentrated Er3+:YAG and low concentrated Er3+:YAP crystals, Physica B: Condens. Matter. 403 (2008) 174-177. https://doi.org/10.1016/j.physb.2007.08.097
[85] J. Wang, Y.P. Xie, Z.H. Zhang, J. Li, X. Chen, L.Q. Zhang, R. Xu, X.D. Zhang, Photocatalytic degradation of organic dyes with Er3+:YAlO3/ZnO composite under solar light, Sol. Energy Mater. Sol. Cells 93 (2009) 355-361. https://doi.org/10.1016/j.solmat.2008.11.017
[86] F. Shi, J.S. Wang, D.S. Zhang, G.S. Qin, W.P. Qin, Greatly enhanced size-tunable ultraviolet upconversion luminescence of monodisperse beta-NaYF4:Yb,Tm nanocrystals, J. Mater. Chem. 21 (2011) 13413-13421. https://doi.org/10.1039/c1jm11480h
[87] C.H. Li, F. Wang, J.A. Zhu, J.C. Yu, NaYF4 Yb, Tm/CdS composite as a novel near-infrared-driven photocatalyst, Appl. Catal. B 100 (2010) 433-439. https://doi.org/10.1016/j.apcatb.2010.08.017
[88] W.P. Qin, D.S. Zhang, D. Zhao, L.L. Wang, K.Z. Zheng, Near-infrared photocatalysis based on YF3:Yb3+, Tm3+/TiO2 core/shell nanoparticles, Chem. Commun. 46 (2010) 2304-2306. https://doi.org/10.1039/b924052g
[89] L. Yin, Y. Li, J. Wang, Y. Zhai, J. Wang, Y. Kong, B. Wang, X. Zhang, Preparation of Er3+:Y3Al5O12/TiO2-ZnO composite and application of solar energy in photocatalytic degradation of organic dyes, Environ. Prog. Sustain. Energ. 32 (2013) 697-704. https://doi.org/10.1002/ep.11688
[90] X. Guo, W. Song, C. Chen, W. Di, W. Qin, Near-infrared photocatalysis of β-NaYF4:Yb3+,Tm3+@ZnO composites, Phys. Chem. Chem. Phys. 15 (2013) 14681-14688. https://doi.org/10.1039/c3cp52248b
[91] J. Gao, R. Jiang, J. Wang, P. Kang, B. Wang, Y. Li, K. Li, X. Zhang, The investigation of sonocatalytic activity of Er3+:YAlO3/TiO2-ZnO composite in azo dyes degradation, Ultrason. Sonochem. 18 (2011) 541-548. https://doi.org/10.1016/j.ultsonch.2010.09.012
[92] C. Lu,Y. Chen, H. Zhang, L. Tang, S. Wei, Y. Song, J. Wang, Preparation of Er3+:YAlO3/Fe- and Co-doped-ZnO coated composites and their visible-light photocatalytic activity in degradation of some organic Dyes, Res. Chem. Intermed. 42 (2016) 4651-4668. https://doi.org/10.1007/s11164-015-2306-9
[93] L.N. Yin, Y. Li, J. Wang, Y.M. Kong, Y. Zhai, B.X. Wang, K. Lia, X.D. Zhang, The improvement of solar photocatalytic activity of ZnO by doping with Er3+:Y3Al5O12 during dye degradation, Russ. J. Phys. Chem. A 86 (2012) 2049-2056. https://doi.org/10.1134/S0036024412130262
[94] Y. Chen, C. Lu, L. Tang, Y. Song, S. Wei, Y. Rong, Z. Zhang, J. Wang, Photocatalytic degradation of organic dyes by Er3+:YAlO3/Co- and Fe-Doped ZnO Coated Composites under Solar Irradiation,Russ. J. Phys. Chem. A 90 (2016) 2654-2664.
[95] F. Achouri, S. Corbel, L. Balan, K. Mozet, E. Girot, G. Medjahdi, M.B. Said, A. Ghrabi, R. Schneider, Porous Mn-doped ZnO nanoparticles for enhanced solar and visible light photocatalysis, Mater. Des. 101 (2016) 309-316. https://doi.org/10.1016/j.matdes.2016.04.015
[96] R. Saleh, N.F. Djaja, UV light photocatalytic degradation of organic dyes with Fe-doped ZnO nanoparticles, Superlattices Microstruct. 74 (2014) 217-233. https://doi.org/10.1016/j.spmi.2014.06.013
[97] N.M. Jacob, G. Madras, N. Kottam, T. Thomas, Multivalent Cu-Doped ZnO nanoparticles with full solar spectrum absorbance and enhanced photoactivity, Ind. Eng. Chem. Res. 53 (2014) 5895-5904. https://doi.org/10.1021/ie404378z
[98] A. Phuruangrat, S. Madahin, O. Yayapao, S. Thongtem, T. Thongtem, Photocatalytic degradation of organic dyes by UV light, catalyzed by nanostructured Cd-doped ZnO synthesized by a sonochemical method, Res Chem Intermed. 41 (2015) 9757-9772. https://doi.org/10.1007/s11164-015-1963-z
[99] C. Yu, K. Yang, Y. Xie, Q. Fan, J.C. Yu, Q. Shuaand, C. Wang, Novel hollow Pt-ZnO nanocomposite microspheres with hierarchical structure and enhanced photocatalytic activity and stability, Nanoscale 5 (2013) 2142-2151. https://doi.org/10.1039/c2nr33595f
[100] M. Ahmad, E. Ahmed, Z.L. Hong, Z. Iqbal, N.R. Khalid, T. Abbas, I. Ahmad, A.M. Elhissi, W.Ahmed, Structural, optical and photocatalytic properties of hafnium doped zinc oxide nanophotocatalyst, Ceram. Int. 39 (2013) 8693-8700. https://doi.org/10.1016/j.ceramint.2013.04.051
[101] S.A. Ansari, M.M. Khan, M.O. Ansari, J. Lee, M.H. Cho, Biogenic synthesis, photocatalytic, and photoelectrochemical performance of Ag-ZnO nanocomposite, J. Phys. Chem. C 117 (2013) 27023-27030. https://doi.org/10.1021/jp410063p
[102] P. Fageria, S. Gangopadhyayb, S. Pande, Synthesis of ZnO/Au and ZnO/Ag nanoparticles and their photocatalytic application using UV and visible light, RSC Adv. 4 (2014) 24962- 24972. https://doi.org/10.1039/C4RA03158J
[103] S. Ekambaram, Y. Iikubo, A. Kudo, Combustion synthesis and photocatalytic properties of transition metal-incorporated ZnO, J. Alloy. Compd. 433 (2007) 237-240. https://doi.org/10.1016/j.jallcom.2006.06.045
[104] R. Wang, J.H. Xin, Y. Yang, H.Liu, L. Xu, J. Hu, The Characteristics and photocatalytic activities of silver doped ZnO nanocrystallites, Appl. Surf. Sci. 227 (2004) 312-317. https://doi.org/10.1016/j.apsusc.2003.12.012
[105] M.K. Seery, R. George, P. Floris, S.C. Pillai, Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis, J. Photochem. Photobiol. A 189 (2007) 258-263. https://doi.org/10.1016/j.jphotochem.2007.02.010
[106] J.-J. Wu, C.-H. Tseng, Photocatalytic properties of nc-Au/ZnO nanorod composites, Appl. Catal. B 66 (2006) 51-57. https://doi.org/10.1016/j.apcatb.2006.02.013
[107] O.A. Yıldırım, H.E. Unalan, C. Durucan, Highly efficient room temperature synthesis of silver-doped zinc oxide (ZnO:Ag) nanoparticles: Structural, optical, and photocatalytic properties, J. Am. Ceram. Soc. 96 (2013) 766-773. https://doi.org/10.1111/jace.12218
[108] N.M. Jacob, G. Madras, N. Kottam, T. Thomas, Multivalent Cu-doped ZnO nanoparticles with full solar spectrum absorbance and enhanced photoactivity, Ind. Eng. Chem. Res. 53 (2014) 5895-5904. https://doi.org/10.1021/ie404378z
[109] Priyanka, V.C. Srivastava, Photocatalytic oxidation of dye bearing wastewater by iron doped zinc oxide, Ind. Eng. Chem. Res. 52 (2013)17790-17799. https://doi.org/10.1021/ie401973r
[110] Y. Chen, D. Zeng, K. Zhang, A. Lu, L. Wang, D.-L. Peng, Au-ZnO hybrid nanoflowers, nanomultipods, and nanopyramids: One-pot reaction synthesis and photocatalytic properties, Nanoscale 6 (2014) 874-881. https://doi.org/10.1039/C3NR04558G
[111] F. Achouri, S. Corbel, L. Balan, K. Mozet, E. Girot, G. Medjahdi, M.B. Said, A. Ghrabi, R. Schneider, Porous Mn-doped ZnO nanoparticles for enhanced solar and visible light photocatalysis, Mater. Des. 101 (2016) 309-316. https://doi.org/10.1016/j.matdes.2016.04.015
[112] R. Saleh, N.F. Djaja, UV light photocatalytic degradation of organic dyes with Fe-doped ZnO nanoparticles, Superlattices Microstruct. 74 (2014) 217-233. https://doi.org/10.1016/j.spmi.2014.06.013
[113] S. Yi, J, Cui, S. Li, L, Zhang, D. Wang, Y. Lin, Enhanced visible-light photocatalytic activity of Fe/ZnO for rhodamine B degradation and its photogenerated charge transfer properties, Applied Surface Science 319 (2014) 230-236. https://doi.org/10.1016/j.apsusc.2014.06.151
[114] A. Phuruangrat, S. Madahin, O. Yayapao, S. Thongtem, T. Thongtem, Photocatalytic degradation of organic dyes by UV light, catalyzed by nanostructured Cd-doped ZnO synthesized by a sonochemical method, Res Chem Intermed. 41 (2015) 9757-9772. https://doi.org/10.1007/s11164-015-1963-z
[115] S.A. Ansari, M.M. Khan, M.O. Ansari, J. Lee, M.H. Cho, Biogenic synthesis, photocatalytic, and photoelectrochemical performance of Ag-ZnO Nanocomposite, J. Phys. Chem. C 117 (2013) 27023-27030. https://doi.org/10.1021/jp410063p
[116] S. Balachandran, S.G. Praveen, R. Velmuruganc, M. Swaminathan, Facile fabrication of highly efficient, reusable heterostructured Ag-ZnO-CdO and its twin applications of dye degradation under natural sunlight and self-cleaning, RSC Adv. 4 (2014) 4353- 4362. https://doi.org/10.1039/C3RA45381B
[117] C. Yu, K. Yang, Y. Xie, Q. Fan, J.C. Yu, Q. Shuaand, C. Wanga, Novel hollow Pt-ZnO nanocomposite microspheres with hierarchical structure and enhanced photocatalytic activity and stability, Nanoscale 5 (2013) 2142- 2151. https://doi.org/10.1039/c2nr33595f
[118] A. Khataee, S. Saadi, B. Vahid, S.W. Joo, B.-K. Min, Sonocatalytic degradation of Acid Blue 92 using sonochemically prepared samarium doped zinc oxide nanostructures, Ultrason. Sonochem. 29 ( 2016) 27-38. https://doi.org/10.1016/j.ultsonch.2015.07.026
[119] A. Khataee, R.D.C. Soltani, A. Karimi, S.W. Joo, Sonocatalytic degradation of a textile dye over Gd-doped ZnO nanoparticles synthesized through sonochemical process, Ultrason. Sonochem. 23 (2015) 219-230. https://doi.org/10.1016/j.ultsonch.2014.08.023
[120] A. Khataee, R.D.C. Soltani, Y. Hanifehpour, M. Safarpour, H.G. Ranjbar, S.W. Joo, Synthesis and characterization of dysprosium-doped ZnO nanoparticles for photocatalysis of a textile dye under visible light irradiation, Ind. Eng. Chem. Res. 53 (2014) 1924-1932. https://doi.org/10.1021/ie402743u
[121] P.V. Korake, R.S. Dhabbe, A.N. Kadam, Y.B. Gaikwad, K.M. Garadkar, Highly active lanthanum doped ZnO nanorods for photodegradation of metasystox, J. Photochem. Photobiol. B 130 (2014) 11-19. https://doi.org/10.1016/j.jphotobiol.2013.10.012
[122] J.-C. Sin, S.-M. Lam, K.-T. Lee, A.R. Mohamed, Preparation of rare-earth-doped ZnO hierarchical micro/nanospheres and their enhanced photocatalytic activity under visible light irradiation, Ceram. Int. 40 (2014) 5431-5440. https://doi.org/10.1016/j.ceramint.2013.10.128
[123] C.-J. Chang, C.-Y. Lin, M.-H. Hsu, Enhanced photocatalytic activity of Ce-doped ZnO nanorods under UV and visible light, J. Taiwan Inst. Chem. Eng. 45 (2014) 1954-1963. https://doi.org/10.1016/j.jtice.2014.03.008
[124] W. Yu, J. Zhang, T. Peng, New insight into the enhanced photocatalytic activity of N-, C- and S-doped ZnO photocatalysts, Appl. Catal. B 181 (2016) 220-227. https://doi.org/10.1016/j.apcatb.2015.07.031
[125] X. Zhang, J. Qin, R. Hao, L. Wang, X. Shen, R. Yu, S. Limpanart, M. Ma, R. Liu, Carbon-doped ZnO nanostructures: Facile synthesis and visible light photocatalytic applications, J. Phys. Chem. C, 119 (2015) 20544-20554. https://doi.org/10.1021/acs.jpcc.5b07116
[126] D. Zhang, J.Y. Gong, J.J. Ma, G.Q. Hana, Z.W. Tong, A facile method for synthesis of N-doped ZnO mesoporous nanospheres and enhanced photocatalytic activity, Dalton Trans. 42 (2013) 16556-16561. https://doi.org/10.1039/c3dt52039k
[127] W.-K. Jo, N. Clament Sagaya Selvam, Enhanced the thevisible light-driven photocatalytic performance of ZnO-g-C3N4 coupled with graphene oxide as a novel ternary nanocomposite, J. Hazard. Mater. 299 (2015) 462-470. https://doi.org/10.1016/j.jhazmat.2015.07.042
[128] J. Li, M. Zhou, Z. Ye, H. Wang, C. Ma, P. Huo, Y. Yan, Enhanced photocatalytic activity of g-C3N4-ZnO/HNTs composite heterostructure photocatalysts for degradation of tetracycline under visible light irradiation, RSC Adv. 5 (2015) 91177-91189. https://doi.org/10.1039/C5RA17360D
[129] F. Dong, Z. Zhao, T. Xiong, Z. Ni, W. Zhang, Y. Sun, W.K. Ho, ACS Appl. Mater. Interface 5 (2013) 11392-11401. https://doi.org/10.1021/am403653a
[130] S. Kumar, A. Baruah, S. Tonda, B. Kumar, V. Shanker, B. Sreedharc, Cost-effective and eco-friendly synthesis of novel and stable N-doped ZnO/g-C3N4 core-shell nanoplates with excellent visible-light responsive photocatalysis, Nanoscale 6 (2014) 4830-4842. https://doi.org/10.1039/c3nr05271k