Photocatalytic Decomposition of Organic Dyes
D. Rana, A. Soni, G. Sharma, A. Kumar, D. Jamwal, A. Katoch
In ecological and environmental protection, photocatalytic degradation of toxic organic dyes is a challenging task. Oxide-semiconductor is a special category of materials with a nanostructure that has obtained more attention in recent times owing to their fascinating properties and an extensive choice of applications in photocatalysis. This chapter includes a critical review of oxide-semiconductor nanomaterials towards photocatalytic wastewater purification. The structural aspects, nanostructure formation process and the various parameters affecting catalytic activity, photocatalytic applications of ZnO, TiO2, Fe3O4, and CeO2 based catalysts for efficient photocatalytic degradation of organic dyes are reviewed. It also includes a brief discussion on the mechanism of photocatalysis. In this regard, various oxide-semiconductor and their composite nanostructures for degradation of various organic dyes are sketched.
Keywords
Organic Dyes, Photocatalysis, Oxide-Semiconductor, Nanomaterials
Published online 4/1/2018, 32 pages
DOI: https://dx.doi.org/10.21741/9781945291630-8
Part of Organic Pollutants in Wastewater I
References
[1] A.A. Adeyemo, I.O. Adeoye, O.S. Bello, Metal-organic frameworks as adsorbents for dye adsorption: Overview, prospects and future challenges, Toxicol. Environ. Chem. 94 (2012) 1846-1863. https://doi.org/10.1080/02772248.2012.744023
[2] G. Liu, X. Li, J. Zhao, H. Hidaka, N. Serpone, Photooxidation pathway of sulforhodamine-B. Dependence on the adsorption mode on TiO2 exposed to visible light radiation, Environ. Sci. Technol. 34 (2000) 3982-3990. https://doi.org/10.1021/es001064c
[3] N.S. Arul, D. Mangalaraj, T.W. Kim, P.C. Chen, N. Ponpandian, P. Meena, Y. Masuda, Synthesis of CeO2 nanorods with improved photocatalytic activity: Comparison between precipitation and hydrothermal process, J. Mater. Sci. Mater. Electron. 24 (2013) 1644-1650. https://doi.org/10.1007/s10854-012-0989-x
[4] Kumar, M. Naushad, A. Rana, Inamuddin, Preeti, G. Sharma, A.A. Ghfar, F.J. Stadler, M.R. Khan, ZnSe-WO3 nano-hetero-assembly stacked on Gum ghatti for photo-degradative removal of Bisphenol A: Symbiose of adsorption and photocatalysis, Int. J. Biol. Macromol. 104 (2017) 1172–1184. https://doi.org/10.1016/j.ijbiomac.2017.06.116
[5] G. Sharma, S. Bhogal, M. Naushad, Inamuddin, A. Kumar, F.J. Stadler, Microwave assisted fabrication of La/Cu/Zr/carbon dots trimetallic nanocomposites with their adsorptional vs photocatalytic efficiency for remediation of persistent organic pollutants, J. Photochem. Photobiol. A Chem. 347 (2017) 235–243. https://doi.org/10.1016/j.jphotochem.2017.07.001
[6] Y. Li, X. Dong, J. Li. Synthesis and characterization of super paramagnetic composite photocatalyst Titania/silica/nickel ferrite, Particuology 9 (2011) 475-479. https://doi.org/10.1016/j.partic.2011.04.005
[7] Y. Wang, J. Zhang, X. Liu, S. Gao, B. Huang, Y. Dai, Y. Xu. Synthesis and characterization of activated carbon-coated SiO2/TiO2−x Cx nanoporous composites with high adsorption capability and visible light photocatalytic activity, Mater. Chem. Phys. 135 (2012) 579-586. https://doi.org/10.1016/j.matchemphys.2012.05.029
[8] M.A. Nasalevich, M van der Veen, F Kapteijn, J.Gascon, Metal–organic frameworks as heterogeneous photocatalysts: Advantages and challenges, Cryst. Eng. Comm. 16 (2014) 4919-4926. https://doi.org/10.1039/C4CE00032C
[9] S. Sarkar, R. Das, H. Choi, C. Bhattacharjee, Involvement of process parameters and various modes of application of TiO2 nanoparticles in heterogeneous photocatalysis of pharmaceutical wastes–a short review, RSC Adv. 4 (2014) 57250-57266. https://doi.org/10.1039/C4RA09582K
[10] Some Aromatic Amines, Organic Dyes, and Related Exposures, Monographs on the evaluation of the carcinogenic risk of chemicals to humans, World health organization, International agency for research on cancer (IARC), Lyon, France 99 (2008) Retrieved from: https://monographs.iarc.fr/ENG/Monographs/vol99/mono99.pdf .
[11] S.H.S. Chan, T.Y. Wu, J.C. Juan, C.Y. Teh, Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes (AOPs) for treatment of dye waste-water, J. Chem. Technol. Biotechnol. 86 (2011) 1130–1158. https://doi.org/10.1002/jctb.2636
[12] M. Dai, H.X. Li, J.P. Lang, New approaches to the degradation of organic dyes, and nitro-andchloroaromatics using coordination polymers as photocatalysts, Cryst. Eng. Comm. 17 (2015) 4741-4753. https://doi.org/10.1039/C5CE00619H
[13] T.S. Natarajan, M. Thomas, K. Natarajan, H.C. Bajaj, R.J. Tayade, Study on UV-LED/TiO2 process for degradation of Rhodamine B dye, Chem. Eng. J. 169 (2011) 126-134. https://doi.org/10.1016/j.cej.2011.02.066
[14] I. Dror, D. Baram, B. Berkowitz. Use of nanosized catalysts for transformation of chloro-organic pollutants, Environ. Sci. Technol. 39 (2005) 1283-1290. https://doi.org/10.1021/es0490222
[15] M. Dai, W.Y. Yan, Z.G. Ren, H.F. Wang, W.J. Gong, F.L. Li, J.P. Lang, Zinc (II) coordination polymers of tetrakis (4-pyridyl) cyclobutane and various dicarboxylates: Syntheses, structures and luminescent properties, Cryst. Eng. Comm. 14 (2012) 6230-6240. https://doi.org/10.1039/c2ce25482d
[16] D. Liu, H.F. Wang, B.F. Abrahams, J.P. Lang, Single-crystal-to-single-crystal transformation of a two-dimensional coordination polymer through highly selective [2+2] photodimerization of a conjugated dialkene, Chem. Commun. 50 (2014) 3173-3175. https://doi.org/10.1039/c3cc49749f
[17] Y.T. Liang, B.K. Vijayan, K.A. Gray, M.C. Hersam, Minimizing graphene defects enhances titania nanocomposite-based photocatalytic reduction of CO2 for improved solar fuel production, Nano. Lett. 11 (2011) 2865-2870. https://doi.org/10.1021/nl2012906
[18] M. Farrokhi, S.C. Hosseini, J.K. Yang, M. Shirzad-Siboni, Application of ZnO-Fe3O4nanocomposite on the removal of azo dye from aqueous solutions: kinetics and equilibrium studies,Water, Air, Soil Pollut. 225 (2014) 2113. https://doi.org/10.1007/s11270-014-2113-8
[19] B.Q. Song, C. Qin, Y.T. Zhang, X.S. Wu, K.Z. Shao, Z.M. Su, The copper (I) metal azolate framework showing unusual coordination mode for the 1, 2, 4-triazole derivative and photocatalytic activity, Dalton Trans. 44 (2015) 3954-3958. https://doi.org/10.1039/C4DT03933E
[20] J. Yang, J. Yu, J. Fan, D. Sun, W. Tang, X. Yang, Biotemplated preparation of CdS nanoparticles/bacterial cellulose hybrid nanofibers for photocatalysis application, J. Hazard Mater. 189 (2011) 377-383. https://doi.org/10.1016/j.jhazmat.2011.02.048
[21] X. Xu, L. Hu, N. Gao, S. Liu, S. Wageh, A.A. Al‐Ghamdi, X. Fang. Controlled growth from ZnS nanoparticles to ZnS-CdS nanoparticle hybrids with enhanced Photoactivity, Adv. Funct. Mater. 25 (2015) 445-454. https://doi.org/10.1002/adfm.201403065
[22] F. Pang, X. Liu, M. He, J. Ge, Ag3PO4 colloidal nanocrystal clusters with controllable shape and superior photocatalytic activity, Nano. Res. 8 (2015) 106-116. https://doi.org/10.1007/s12274-014-0580-2
[23] V. Vaiano, O. Sacco, D. Sannino, P. Ciambelli, Photocatalytic removal of spiramycin from wastewater under visible light with N-doped TiO2photocatalysts, Chem. Eng J. 261 (2015) 3-8. https://doi.org/10.1016/j.cej.2014.02.071
[24] J. Lu, M. Liu, S. Zhou, X. Zhou, Y. Yang, Electrospinning fabrication of ZnWO4 nanofibers and photocatalytic performance for organic dyes, Dyes Pigm. 136 (2017) 1-7. https://doi.org/10.1016/j.dyepig.2016.08.008
[25] T.V.M. Sreekanth, G.R. Dillip, Y.R. Lee, Picrasmaquassioides mediated cerium oxide nanostructures and their post-annealing treatment on the microstructural, morphological and enhanced catalytic performance, Ceram Int. 42 (2016) 6610-6618. https://doi.org/10.1016/j.ceramint.2015.12.171
[26] M.H. Khedr, K.A. Halim, N.K. Soliman, Synthesis and photocatalytic activity of nano-sized iron oxides, Mater. Lett. 63 (2009) 598-601. https://doi.org/10.1016/j.matlet.2008.11.050
[27] Y.S. Zhao, C. Sun, J.Q. Sun, R. Zhou, Kinetic modeling and efficiency of sulfate radical-based oxidation to remove p-nitroaniline from wastewater by persulfate/Fe 3O4 nanoparticles process, Sep. Purif. Technol. 142 (2015) 182-188. https://doi.org/10.1016/j.seppur.2014.12.035
[28] S. Kitagawa, R. Kitaura, S.I. Noro, Functional porous coordination polymers, Angew. Chem. Int. Ed. 43 (2004) 2334-2375. https://doi.org/10.1002/anie.200300610
[29] Moulton, M.J. Zaworotko, From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids, Chem. Rev. 101 (2001) 1629-1658. https://doi.org/10.1021/cr9900432
[30] N.T. Khoa, S.W. Kim, D. Van Thuan, D.H. Yoo, E.J. Kim, S.H. Hahn, Hydrothermally controlled ZnO nanosheet self-assembled hollow spheres/hierarchical aggregates and their photocatalytic activities, Cryst. Eng. Comm. 16 (2014) 1344-1350. https://doi.org/10.1039/C3CE41763H
[31] L. Wang, Z. Lou, T. Fei, T. Zhang, Templating synthesis of ZnO hollow nanospheres loaded with Au nanoparticles and their enhanced gas sensing properties, J. Mater. Chem. 22 (2012) 4767-4771. https://doi.org/10.1039/c2jm15342d
[32] T. Thilagavathi, D. Geetha, Nano ZnO structures synthesized in presence of anionic and cationic surfactant under hydrothermal process, Appl. Nanosci. 4 (2014)127-132. https://doi.org/10.1007/s13204-012-0183-8
[33] Karunakaran, S. SakthiRaadha, P. Gomathisankar, P. Vinayagamoorthy, The enhanced photocatalytic and bactericidal activities of carbon microsphere-assisted solvothermally synthesized cocoon-shaped Sn4+ doped ZnO nanoparticles, Dalton Trans. 42 (2013) 13855-13865. https://doi.org/10.1039/c3dt51058a
[34] S. Gao, H. Zhang, X. Wang, R. Deng, D. Sun, G. Zheng, ZnO-based hollow microspheres: Biopolymer-assisted assemblies from ZnO nanorods, J. Phys. Chem. B 110 (2006) 15847-15852. https://doi.org/10.1021/jp062850s
[35] S. Ma, R. Li, C. Lv, W. Xu, X. Gou, Facile synthesis of ZnO nanorod arrays and hierarchical nanostructures for photocatalysis and gas sensor applications, J. Hazard Mater. 192 (2011) 730-740. https://doi.org/10.1016/j.jhazmat.2011.05.082
[36] X. Chen, F. Zhang, Q. Wang, X. Han, X. Li, J. Liu, F. Qu, The synthesis of ZnO/SnO2 porous nanofibers for dye adsorption and degradation, Dalton Trans. 44 (2015) 3034-3042. https://doi.org/10.1039/C4DT03382E
[37] K. Vidhya, M. Saravanan, G. Bhoopathi, V.P. Devarajan. S. Subanya, Structural and optical characterization of pure and starch-capped ZnO quantum dots and their photocatalytic activity, Appl. Nanosci. 5 (2015) 235-243. https://doi.org/10.1007/s13204-014-0312-7
[38] A. Sadollahkhani, O. Nur, M. Willander, I. Kazeminezhad, V. Khranovskyy, M.O. Eriksson, R. Yakimova, P. O. Holtz, Adetailed optical investigation of ZnO@ZnScore-shell nanoparticles and their photocatalytic activity at different pH values, Ceram. Int. 41 (2015) 7174-7184. https://doi.org/10.1016/j.ceramint.2015.02.040
[39] M. Ahmad, E. Ahmed, Z.L. Hong, J.F. Xu, N.R. Khalid, A. Elhissi, W. Ahmed, A facile one-step approach to synthesizing ZnO/graphene composites for enhanced degradation of methylene blue under visible light, Appl. Surf. Sci. 274 (2013) 273-281. https://doi.org/10.1016/j.apsusc.2013.03.035
[40] R. Saravanan, E. Sacari, F. Gracia, M.M. Khan, E. Mosquera, V.K. Gupta, Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes, J. Mol. Liq. 221 (2016) 1029-1033. https://doi.org/10.1016/j.molliq.2016.06.074
[41] J. Liu, Z.Y. Hu, Y. Peng, H.W. Huang, Y. Li, M. Wu, B.L. Su, 2D ZnO mesoporous single-crystal nanosheets with exposed {0001} polar facets for the depollution of cationic dye molecules by highly selective adsorption and photocatalytic decomposition, Appl. Catal. B 181 (2016) 138-145. https://doi.org/10.1016/j.apcatb.2015.07.054
[42] S. Chaudhary, Y. Kaur, A. Umar, G.R. Chaudhary, 1-Butyl-3-methylimidazolium tetrafluoroborate functionalized ZnO nanoparticles for removal of toxic organic dyes, J. Mol. Liq. 220 (2016) 1013-1021. https://doi.org/10.1016/j.molliq.2016.05.011
[43] M.C. Das, H. Xu, Z. Wang, G. Srinivas, W. Zhou, Y.F. Yue, B. Chen, A Zn4 O-containing doubly interpenetrated porous metal–organic framework for photocatalytic decomposition of methyl orange, Chem. Commun. 47 (2011) 11715-11717. https://doi.org/10.1039/c1cc12802g
[44] T. Karnan, S.A.S. Selvakumar, Biosynthesis of ZnO nanoparticles using rambutan (Nepheliumlappaceuml.) peel extract and their photocatalytic activity on methyl orange dye, J. Mol. Struct. 1125 (2016) 358-365. https://doi.org/10.1016/j.molstruc.2016.07.029
[45] R. Saravanan, S. Karthikeyan, V.K. Gupta, G. Sekaran, V. Narayanan, A. Stephen, Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination, Mater Sci. Eng. C 33 (2013) 91-98. https://doi.org/10.1016/j.msec.2012.08.011
[46] V.C. Bhusal, Photolytic degradation of organic dyes using photocatayst nanoparticles for waste water treatments, Int. J. Sci. Res. 5 (2016).
[47] M.E. Hassan, J. Chen, G. Liu, D. Zhu, J. Cai, Enhanced photocatalytic degradation of methyl orange dye under the daylight irradiation over CN-TiO2 modified with OMS-2, Mat. 7 (2014) 8024-8036. https://doi.org/10.3390/ma7128024
[48] A.N. El-Shazly, M.M. Rashad, E.A. Abdel-Aal, I.A. Ibrahim, M.F. El-Shahat, A.E. Shalan, Nanostructured ZnO photocatalysts prepared via surfactant assisted Co-precipitation method achieving enhanced photocatalytic activity for the degradation of methylene blue dyes, J. Chem. Eng. 4 (2016) 3177-3184. https://doi.org/10.1016/j.jece.2016.06.018
[49] L. Saikia, D. Bhuyan, M. Saikia, B. Malakar, D.K. Dutta, P. Sengupta ,Photocatalytic performance of ZnO nanomaterials for self-sensitized degradation of malachite green dye under solar light, Appl. Catal. A: General 490 (2015) 42-49. https://doi.org/10.1016/j.apcata.2014.10.053
[50] L. Fu, Z. Fu, Plectranthusamboinicus leaf extract–assisted biosynthesis of ZnO nanoparticles and their photocatalytic activity, Ceram. Int. 41(2015) 2492-2496. https://doi.org/10.1016/j.ceramint.2014.10.069
[51] Y. Miao, H. Zhang, S. Yuan, Z. Jiao X. Zhu, Preparation of flower-like ZnO architectures assembled with nanosheets for enhanced photocatalytic activity, J. Colloid Interface Sci. 462 (2016) 9-18. https://doi.org/10.1016/j.jcis.2015.09.064
[52] A. Sugunan, V.K. Guduru, A. Uheida, M.S. Toprak, M. Muhammed, Radially oriented ZnO nanowires on flexible poly‐l‐lactide nanofibers for continuous‐flow photocatalytic water purification, J. Am. Ceram. Soc. 93 (2010) 3740-3744. https://doi.org/10.1111/j.1551-2916.2010.03986.x
[53] K.M. Lee, C.W. Lai, K.S. Ngai, J.C. Juan, Recent developments of zinc oxide based photocatalyst in water treatment technology: a review, Water Res. 88 (2016) 428-448. https://doi.org/10.1016/j.watres.2015.09.045
[54] M.M. Hossain, B.C. Ku, J.R. Hahn, Synthesis of an efficient white-light photocatalyst composite of graphene and ZnO nanoparticles: application to methylene blue dye decomposition, Appl. Surf. Sci. 354 (2015) 55-65. https://doi.org/10.1016/j.apsusc.2015.01.191
[55] R. Kumar, G. Kumar, A. Umar, ZnO nano-mushrooms for photocatalytic degradation of methyl orange, Mater. Lett. 97 (2013) 100-103. https://doi.org/10.1016/j.matlet.2013.01.044
[56] C.H. Ao, S.C. Lee, Enhancement effect of TiO2 immobilized on activated carbon filter for the photodegradation of pollutants at typical indoor air level, Appl. Catal. B: Environ. 44 (2003) 191-205. https://doi.org/10.1016/S0926-3373(03)00054-7
[57] C.P. Athanasekou, S. Morales-Torres, V. Likodimos, G.E. Romanos, L.M Pastrana-Martinez, P. Falaras, A.M. Silva, Prototype composite membranes of partially reduced graphene oxide/TiO2 for photocatalytic ultrafiltration water treatment under visible light, Appl. Catal. B: Environ. 158 (2014) 361-372. https://doi.org/10.1016/j.apcatb.2014.04.012
[58] M.F.J. Dijkstra, A. Michorius, H. Buwalda, H.J. Panneman, J.G.M. Winkelman, A.A.C.M. Beenackers, Comparison of the efficiency of immobilized and suspended systems in photocatalytic degradation. Catal. Today 66 (2001) 487-494. https://doi.org/10.1016/S0920-5861(01)00257-7
[59] P. Fu, Y. Luan, X. Dai, Preparation of activated carbon fibers supported TiO2 photocatalyst and evaluation of its photocatalytic reactivity, J. Mol. Catal: Chem. 221 (2004) 81-88. https://doi.org/10.1016/j.molcata.2004.06.018
[60] F. Dong, S. Guo, H. Wang, X. Li, Z. Wu, Enhancement of the visible light photocatalytic activity of C-doped TiO2nanomaterials prepared by a green synthetic approach, J. Phys. Chem. C 115 (2011) 13285-13292. https://doi.org/10.1021/jp111916q
[61] X. Wu, S. Yin, Q. Dong, C. Guo, H. Li, T. Kimura, T. Sato, Synthesis of high visible light active carbon doped TiO2 photocatalyst by a facile calcination assisted solvothermal method, Appl. Catal. B: Environ. 142 (2013) 450-457. https://doi.org/10.1016/j.apcatb.2013.05.052
[62] R.C. Suciu, E. Indre, T.D. Silipas, S. Dreve, M.C. Rosu, V. Popescu, TiO2 thin films prepared by sol-gel method, J. Phys. 182 (2009) 1-4.
[63] J.C. Zhao, C.C. Chen, W.H. Ma, Photocatalytic degradation of organic pollutants under visible light irradiation, Top. Catal. 35 (2005) 269-278. https://doi.org/10.1007/s11244-005-3834-0
[64] G. Williams, B. Seger, P. V. Kamat, TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide, ACS Nano. 2 (2008) 1487-1491. https://doi.org/10.1021/nn800251f
[65] T. Xia, W. Zhang, Z. Wang, Y. Zhang, X. Song, J. Murowchick, V. Battaglia, G. Liu, X. Chen, Amorphous carbon-coated TiO2 nanocrystals for improved lithium-ion battery and photocatalytic performance, Nano Energy 6 (2014) 109-118. https://doi.org/10.1016/j.nanoen.2014.03.012
[66] A. Arabzadeh, A. Salimi, One dimensional CdS nanowire@TiO2 nanoparticles core-shell as high performance photocatalyst for fast degradation of dye pollutants under visible and sunlight irradiation, J. Colloid Interface Sci. 479 (2016) 43-54. https://doi.org/10.1016/j.jcis.2016.06.036
[67] X. Yang, J. Qin, Y. Jiang, R. Li, Y. Li, H. Tang, Bifunctional TiO2/Ag3PO4/graphene composites with superior visible light photocatalytic performance and synergistic inactivation of bacteria, RSC Adv. 4 (2014) 18627-18636. https://doi.org/10.1039/C4RA01559B
[68] Q. Xiang, J. Yu, B. Cheng, H.C. Ong, Microwave‐hydrothermal preparation and visible‐light photoactivity of plasmonic photocatalyst Ag‐TiO2 nanocomposite hollow spheres, Chem. Asian J. 5 (2010) 1466-1474. https://doi.org/10.1002/asia.200900695
[69] Zhang, F. Zeng, Structural, photochemical and photocatalytic properties of zirconium oxide doped TiO2 nanocrystallites, Appl. Surf. Sci. 257 (2010) 867-871. https://doi.org/10.1016/j.apsusc.2010.07.083
[70] Q. Zhang, D.Q. Lima, I. Lee, F. Zaera, M. Chi, Y. Yin, A highly active titanium dioxide based visible‐light photocatalyst with nonmetal doping and plasmonic metal decoration, Angew. Chem. Int. Ed. 50 (2011) 7088-7092. https://doi.org/10.1002/anie.201101969
[71] M.R. Eskandarian, M. Fazli, M.H. Rasoulifard, H. Choi, Decomposition of organic chemicals by zeolite-TiO2 nanocomposite supported onto low density polyethylene film under UV-LED powered by solar radiation, Appl. Catal. B: Environ. 183 (2016) 407-416. https://doi.org/10.1016/j.apcatb.2015.11.004
[72] S. Sood, A. Umar, S.K. Mehta, S.K. Kansal, Highly effective Fe-doped TiO2 nanoparticles photocatalysts for visible-light driven photocatalytic degradation of toxic organic compounds, J. Colloid Interface Sci. 450 (2015) 213-223. https://doi.org/10.1016/j.jcis.2015.03.018
[73] K.R. Reddy, M. Hassan, V.G. Gomes, Hybrid nanostructures based on titanium dioxide for enhanced photocatalysis, Appl. Catal. A: General. 489 (2015) 1-16. https://doi.org/10.1016/j.apcata.2014.10.001
[74] V. Vaiano, O. Sacco, D. Sannino, P. Ciambelli, S. Longo, V. Venditto, G. Guerra, N‐doped TiO2/s‐PS aerogels for photocatalytic degradation of organic dyes in wastewater under visible light irradiation, J. Chem. Technol. Biotechnol. 89 (2014) 1175-1181. https://doi.org/10.1002/jctb.4372
[75] I. Barton, V. Matejec, J. Matousek, Photocatalytic activity of nanostructured TiO2 coating on glass slides and optical fibers for methylene blue or methyl orange decomposition under different light excitation, J. Photochem. Photobiol. A. Chem. 317 (2016) 72-80. https://doi.org/10.1016/j.jphotochem.2015.11.009
[76] S. Masoumi, G. Nabiyouni, D. Ghanbari, Photo-degradation of azo dyes: Photo catalyst and magnetic investigation of CuFe2O4–TiO2 nanoparticles and nanocomposites, J. Mater. Sci. Mater. Engg. 27 (2016) 9962-9975. https://doi.org/10.1007/s10854-016-5067-3
[77] P.S. Sauda, B. Pant, M. Park, S.H. Chae, S.J. Park, M.E. Newehy, S.S.A. Deyab, H.Y. Kim, Preparation and photocatalytic activity of fly ash incorporated TiO2 nanofibres for effective removal of organic pollutants, Ceram. Int. 41 (2015) 1771-1777. https://doi.org/10.1016/j.ceramint.2014.09.123
[78] S.A. Bakar, G. Byzynski, C. Ribeiro, Synergistic effect on the photocatalytic activity of N-doped TiO2 nanorods synthesised by novel route with exposed (110) facet, J. Alloys Compd. 666 (2016) 38-49. https://doi.org/10.1016/j.jallcom.2016.01.112
[79] K. Santhi, P. Manikandan, C. Rani, S. Karuppuchamy, Synthesis of nanocrystalline titanium dioxide for photodegradation treatment of remazol brown dye, Appl. Nanosci. 5 (2015) 373-378. https://doi.org/10.1007/s13204-014-0327-0
[80] T. Luttrell, S. Halpegamage, J. Tao, A. Kramer, E. Sutter, M. Batzill, Why is anatase a better photocatalyst than rutile? Model studies on epitaxial TiO2 films Sci. Rep. 4 (2014) 40-43.
[81] M. Yamaura, R.L. Camilo, L.C. Sampaio, M.A. Macedo, M. Nakamura, H.E. Toma, Preparation and characterization of (3-aminopropyl) triethoxysilane-coated magnetite nanoparticles, J. Magn. Magn. Mater. 279 (2004) 210–217. https://doi.org/10.1016/j.jmmm.2004.01.094
[82] I. Shakir, M. Shahid, D.J. Kang, MoO3 and Cu 0.33 MoO3 nanorods for unprecedented UV/Visible light photocatalysis, Chem. Commun. 46 (2010) 4324-4326. https://doi.org/10.1039/c000003e
[83] S.G. Zhang, Y. Zhang, Y. Wang, S.M. Liu, Y.Q. Deng, Sonochemical formation of iron oxide nanoparticles in ionic liquids for magnetic liquid marble, Phys. Chem. Chem. Phys. 14 (2012) 5132-5138. https://doi.org/10.1039/c2cp23675c
[84] W. Li, Y. Deng, Z. Wu, X. Qian, J. Yang, Y. Wang, D. Gu, F. Zhang, B. Tu, D. Zhao, Hydrothermal etching assisted crystallization: a facile route to functional yolk-shell titanate microspheres with ultrathin nanosheets-assembled double shells, J. Am. Chem. Soc. 133 (2011) 15830-15833. https://doi.org/10.1021/ja2055287
[85] H. Wang, L. Sun, Y. Li, X. Fei, M. Sun, C. Zhang, Y. Li, Q. Yang, Layer-by-layer assembled Fe3O4@C@CdTe core/shell microspheres as separable luminescent probe for sensitive sensing of Cu2+ ions, Langmuir 27 (2011) 11609-11615. https://doi.org/10.1021/la202295b
[86] Y. Li, Y. Hu, H. Jiang, X. Hou, C. Li, Phase-segregation induced growth of core–shell α-Fe2O3/SnO2heterostructures for lithium-ion battery, Cryst. Eng. Comm. 15 (2013) 6715-6721. https://doi.org/10.1039/c3ce40737c
[87] X.L. Cheng, J.S. Jiang, C.Y. Jin, C.C. Lin, Y. Zeng, Q.H. Zhang, Cauliflower-like α-Fe2O3microstructures: Toluene–water interface-assisted synthesis, characterization, and applications in wastewater treatment and visible-light photocatalysis, Chem. Eng. J. 236 (2014) 139-148. https://doi.org/10.1016/j.cej.2013.09.089
[88] S. Guo, G. Zhang, Y. Guo, C.Y. Jimmy, Graphene oxide-Fe2O3 hybrid material as highly efficient heterogeneous catalyst for degradation of organic contaminants, Carbon 60 (2013) 437-444. https://doi.org/10.1016/j.carbon.2013.04.058
[89] Y. Jiao, Y. Liu, F. Qu, A. Umar, X. Wu, Visible-light-driven photocatalytic properties of simply synthesized α-Iron (III) oxide nanourchins, J. Colloid Interface Sci. 451 (2015) 93-100. https://doi.org/10.1016/j.jcis.2015.03.055
[90] Chen, F. Yan, Q. Chen, Y. Wang, L. Han, Z. Chen, S. Fang, Fabrication of Fe3O4@ SiO2@ TiO2 nanoparticles supported by graphene oxide sheets for the repeated adsorption and photocatalytic degradation of rhodamine B under UV irradiation, Dalton Trans. 43 (2014) 13537-13544. https://doi.org/10.1039/C4DT01702A
[91] Li, L. Mao, Magnetically separable Fe3O4–Ag3PO4 sub-micrometre composite: Facile synthesis, high visible light-driven photocatalytic efficiency and good recyclability, RSC Adv. 2 (2012) 5108-5111. https://doi.org/10.1039/c2ra20504a
[92] M. Amir, U. Kurtan, A. Baykal, Rapid color degradation of organic dyes by Fe3O4@His@Ag recyclable magnetic nanocatalyst, J. Ind. Eng. Chem. Res. 27 (2015) 347-353. https://doi.org/10.1016/j.jiec.2015.01.013
[93] P. Cai, S. M. Zhou, D.K. Ma, S.N. Liu, W. Chen, S.M. Huang, Fe2O3-modified porous BiVO4 nanoplates with enhanced photocatalytic activity, Nano. Lett. 7 (2015) 183-193. https://doi.org/10.1007/s40820-015-0033-9
[94] J. Feng, X. Hu, P.L. Yue, H.Y. Zhu, G.Q. Lu, Degradation of azo-dye orange II by a photoassisted Fenton reaction using a novel composite of iron oxide and silicate nanoparticles as a catalyst, Ind. Eng. Chem. Res. 42 (2003) 2058-2066. https://doi.org/10.1021/ie0207010
[95] Z. Jia, J. Liu, Q. Wang, S. Li, Q. Qi, R. Zhu, Synthesis of 3D hierarchical porous iron oxides for adsorption of Congo red from dye wastewater J. Alloys Compd. 622 (2015) 587-595. https://doi.org/10.1016/j.jallcom.2014.10.125
[96] S. Kumar, B. Kumar, A. Baruah, V. Shanker, Synthesis of magnetically separable and recyclable g-C3N4-Fe3O4 hybrid nanocomposites with enhanced photocatalytic performance under visible-light irradiation, J. Phys. Chem. C 117 (2013) 26135-26143. https://doi.org/10.1021/jp409651g
[97] Liang, S. Zhou, Y. Chen, F. Zhou, C. Yan, Diatomite coated with Fe2O3 as an efficient heterogeneous catalyst for degradation of organic pollutant, J. Taiwan Inst. Chem. Eng. 49 (2015) 105-112. https://doi.org/10.1016/j.jtice.2014.11.002
[98] Y.F. Lin, C.Y. Chang, Magnetic mesoporous iron oxide/carbon aerogel photocatalysts with adsorption ability for organic dye removal, RSC Adv. 4 (2014) 28628-28631. https://doi.org/10.1039/c4ra03436h
[99] M.A. Mahadik, S.S. Shinde, V.S. Mohite, S.S. Kumbhar, A.V. Moholkar, K.Y. Rajpure, C.H. Bhosale, Visible light catalysis of rhodamine B using nanostructured Fe2O3, TiO2 and TiO2/Fe 2O3 thin films, J. Photochem. Photobiol. B 133 (2014) 90-98. https://doi.org/10.1016/j.jphotobiol.2014.01.017
[100] S. Nazim, T. Kousar, M. Shahid, M.A. Khan, G. Nasar, M. Sher, M.F. Warsi, New graphene-CoxZn(1−x)Fe2O4 nano-heterostructures: Magnetically separable visible light photocatalytic materials, Ceram. Int. 42 (2016) 7647-7654. https://doi.org/10.1016/j.ceramint.2016.01.177
[101] A. Abbasi, D. Ghanbari, M.S. Niasari, M. Hamadanian, Photo-degradation of methylene blue: Photocatalyst and magnetic investigation of Fe2O3–TiO2 nanoparticles and nanocomposites, J. Mater. Sci. Mater. Electron. 27 (2016) 4800-4809. https://doi.org/10.1007/s10854-016-4361-4
[102] P. Sharma, R. Kumar, S. Chauhan, D. Singh, M.S. Chauhan Facile growth and characterization of α-Fe2O3 nanoparticles for photocatalytic degradation of methyl orange, J. Nanosci. Nanotechnol. 14 (2014) 6153-6157. https://doi.org/10.1166/jnn.2014.8734
[103] X.C. Song, X. Wang, Y.F. Zheng, R. Ma, H.Y. Yin, Synthesis and electrocatalytic activities of Co3O4 nanocubes, J. Nanopart. Res. 13 (2011) 1319-1324. https://doi.org/10.1007/s11051-010-0127-8
[104] A.A. Tireli, F.C.F. Marcos, L.F. Oliveira, I. Rosario Guimaraes, M.C. Guerreiro, J.P. Silva Influence of magnetic field on the adsorption of organic compound by clays modified with iron. Appl. Clay Sci. 97 (2014), 1-7. https://doi.org/10.1016/j.clay.2014.05.014
[105] A. Umar, M.S. Akhtar, G.N. Dar, S. Baskoutas, Low-temperature synthesis of α-Fe2O3 hexagonal nanoparticles for environmental remediation and smart sensor applications, Talanta 116 (2013) 1060-1066. https://doi.org/10.1016/j.talanta.2013.08.026
[106] Y. Zhang, J. Gu, M. Murugananthan, Y. Zhang, Development of novel Fe2O3/NiTiO3 heterojunction nanofibers material with enhanced visible-light photocatalytic performance, J. Alloys Compd. 630 (2015) 110-116. https://doi.org/10.1016/j.jallcom.2014.12.193
[107] X. Zheng, Y. Jiao, F. Chai, F. Qu, A. Umar, X. Wu, Template-free growth of well-crystalline α-Fe2O3 nanopeanuts with enhanced visible-light driven photocatalytic properties, J. Colloid Interface Sci. 457 (2015) 345-352. https://doi.org/10.1016/j.jcis.2015.07.023
[108] M.J. Godinho, R.F. Gonçalves, L.S. Santos, J.A. Varela, E. Longo, E.R. Leite, Room temperature co-precipitation of nanocrystalline CeO2 and Ce 0.8 Gd 0.2 O 1.9−δ powder, Mater. Lett. 61 (2007) 1904-1907. https://doi.org/10.1016/j.matlet.2006.07.152
[109] C. Sun, J. Sun, G. Xiao, H. Zhang, X. Qiu, H. Li, L. Chen, Mesoscale organization of nearly monodisperse flowerlike ceria microspheres, J. Phys. Chem. B. 110 (2006) 13445-13452. https://doi.org/10.1021/jp062179r
[110] S. Maensiri, C. Masingboon, P. Laokul, W. Jareonboon, V. Promarak, P.L. Anderson, S. Seraph in, Egg white synthesis and photoluminescence of plate like clusters of CeO2 nanoparticles, Cryst. Growth Des. 7 (2007) 950-955. https://doi.org/10.1021/cg0608864
[111] Z. Liu, Q. Liu, Y. Huang, Y. Ma, S. Yin, X. Zhang, Y. Chen, Organic photovoltaic devices based on a novel acceptor material: graphene, Adv. Mater. 20 (2008) 3924-3930. https://doi.org/10.1002/adma.200800366
[112] J. Wang, D.N. Tafen, J.P. Lewis, Z. Hong, A. Manivannan, M. Zhi, N. Wu, Origin of photocatalytic activity of nitrogen-doped TiO2 nanobelts, J. Am. Chem. Soc. 131 (2009) 12290-12297. https://doi.org/10.1021/ja903781h
[113] K.S. Lin, S. Chowdhury, Synthesis, characterization, and application of 1-D cerium oxide nanomaterials: a review, Int. J. Mol. Sci. 11 (2010) 3226-3251. https://doi.org/10.3390/ijms11093226
[114] T. Xu, L. Zhang, H. Cheng, Y. Zhu, Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study, Appl. Catal. B Environ. 101 (2011) 382-387. https://doi.org/10.1016/j.apcatb.2010.10.007
[115] D. Channei, B. Inceesungvorn, N. Wetchakun, S. Ukritnukun, A. Nattestad, J. Chen, S. Phanichphant, Photocatalytic degradation of methyl orange by CeO2 and Fe–doped CeO2 films under visible light irradiation, Sci. Rep. 4 (2014) 5757. https://doi.org/10.1038/srep05757
[116] Y. Zhang, R. Shi, P. Yang, X. Song, Y. Zhu, Q. Ma, Fabrication of electronspun porous CeO2 nanofibers with large surface area for pollutants removal, Ceram. Int. 42 (2016) 14028-14035. https://doi.org/10.1016/j.ceramint.2016.06.009
[117] Balavi, S. Samadanian-Isfahani, M. Mehrabani-Zeinabad, M. Edrissi, Preparation and optimization of CeO2 nanoparticles and its application in photocatalytic degradation of reactive orange 16 dye, Powder Technol. 249 (2013) 549-555. https://doi.org/10.1016/j.powtec.2013.09.021
[118] Kaspar, P. Fornasiero, N. Hickey, Automotive catalytic converters: current status and some perspectives, Catal. Today 77 (2003) 419-449. https://doi.org/10.1016/S0920-5861(02)00384-X
[119] H. Ma, M. Wang, R. Yang, W. Wang, J. Zhao, Z. Shen, S. Yao, Radiation degradation of congo red in aqueous solution, Chemosphere 68 (2007) 1098-1104. https://doi.org/10.1016/j.chemosphere.2007.01.067
[120] Y. Wang, Y. Wang, Y. Meng, H. Ding, Y. Shan, X. Zhao, X. Tang, A highly efficient visible-light-activated photocatalyst based on bismuth-and sulfur-codoped TiO2, J. Phys. Chem. C 112 (2008) 6620-6626. https://doi.org/10.1021/jp7110007
[121] G.A. Apostolescu, C. Cernatescu, C. Cobzaru, R.E. Tataru-Farmus, N. Apostolescu, Studies on the photocatalytic degradation of organic dyes using CeO2-ZnO mixed oxides, Environ. Eng. Manag. J. 14 (2015) 415-420.
[122] S. Ameen, M.S. Akhtar, H.K. Seo, H.S. Shin, Solution-processed CeO2/TiO2 nanocomposite as potent visible light photocatalyst for the degradation of bromophenol dye, J. Chem. Eng. 247 (2014) 193-198. https://doi.org/10.1016/j.cej.2014.02.104
[123] S.S. Lee, W. Song, M. Cho, H.L. Puppala, P. Nguyen, H. Zhu, V.L. Colvin, Antioxidant properties of cerium oxide nanocrystals as a function of nanocrystal diameter and surface coating, ACS Nano. 7 (2013) 9693-9703. https://doi.org/10.1021/nn4026806
[124] H. Li, G. Wang, F. Zhang, Y. Cai, Y. Wang, I. Djerdj, Surfactant-assisted synthesis of CeO2 nanoparticles and their application in wastewater treatment, RSC Adv. 2 (2012) 12413-12423. https://doi.org/10.1039/c2ra21590j
[125] A.D. Liyanage, S.D. Perera, K. Tan, Y. Chabal, K.J. Balkus Jr, Synthesis, characterization, and photocatalytic activity of Y-Doped CeO2 nanorods, ACS Catal. 4 (2014) 577-584. https://doi.org/10.1021/cs400889y
[126] R.M. Mohamed, E.S. Aazam, Synthesis and characterization of CeO2-SiO2 nanoparticles by microwave-assisted irradiation method for photocatalytic oxidation of methylene blue dye, Int. J. Photoenergy 2012 (2012) 928760 (1-9).
[127] Qi, K. Zhao, G. Li, Y. Gao, H. Zhao, R. Yu, Z. Tang, Multi-shelled CeO2 hollow microspheres as superior photocatalysts for water oxidation, Nanoscale 6 (2014) 4072-4077. https://doi.org/10.1039/C3NR06822F
[128] Saranya, K.S. Ranjith, P. Saravanan, D. Mangalaraj, R.T.R. Kumar, Cobalt-doped cerium oxide nanoparticles: Enhanced photocatalytic activity under UV and visible light irradiation, Mater. Sci. Semicond. Process. 26 (2014) 218-224. https://doi.org/10.1016/j.mssp.2014.03.054
[129] T.V.M. Sreekanth, G.R. Dillip, Y.R. Lee Picrasmaquassioides mediated cerium oxide nanostructures and their post-annealing treatment on the microstructural, morphological and enhanced catalytic performance, Ceram. Int. 42 (2016) 6610-6618. https://doi.org/10.1016/j.ceramint.2015.12.171
[130] N. Zhang, S. Liu, X. Fu, Y.J. Xu, A simple strategy for fabrication of plum-pudding type Pd@CeO2 semiconductor nanocomposite as a visible-light-driven photocatalyst for selective oxidation, J. Phys. Chem. C 115 (2011) 22901-22909. https://doi.org/10.1021/jp205821b