Methods for the Detection, Determination and Removal of Phenolic Compounds from Wastewater
Q. Kanwal, D.N. Iqbal, M. Iqbal
Phenolic compounds are pollutants of main concern, which at very low concentration are highly toxic. In this chapter, we have discussed the comparison of the applicability and efficiency of conventional as well as advanced methods of treatment of wastewater for removal of phenols. Conventional treatments like extraction, adsorption, electrochemical as well as chemical oxidation, and distillation, have been effectively used for many phenolic compounds, but advanced treatments like ozonation, Fenton processes, photochemical treatment, and wet air oxidation have received little attention as compared to that of conventional treatment methods. Compared to physicochemical treatment, biological treatment is energy saving and environment-friendly as compared to that of physicochemical treatment. But it is not a very effective treatment method for pollutants with high concentration. Enzymatic treatment is the best treatment method for the removal of phenols with a number of enzymes such as peroxidases, laccases, and tyrosinases under gentle conditions.
Keywords
Wastewater Treatment, Phenol Toxicity, Degradation, Bioremediation
Published online 4/1/2018, 34 pages
DOI: https://dx.doi.org/10.21741/9781945291630-6
Part of Organic Pollutants in Wastewater I
References
[1] P. Panagos, M. Van Liedekerke, Y. Yigini, L. Montanarella, Contaminated sites in Europe: review of the current situation based on data collected through a European network, J. Environ. Public Health. 2013 (2013) 1-10. https://doi.org/10.1155/2013/158764
[2] S-H. Lin, R-S. Juang, Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents: a review, J. Environ. Manage. 90 (2009) 1336-1349. https://doi.org/10.1016/j.jenvman.2008.09.003
[3] J. Michałowicz, W. Duda, Phenols–Sources and Toxicity. Polish J. Environ. Stud. 16 (2007) 347-362.
[4] B. Bukowska. Toxicity of 2, 4-Dichlorophenoxyacetic acid molecular mechanisms, Polish J. Environ. Stud. 15 (2006) 365-374.
[5] EPA E. National Library Network. US Environmental Protection Agency. (2007) URL: https://www.epa.gov/natlibra/ols htm.
[6] ATSDR C. CERCLA priority list of hazardous substances. Agency for Toxic Substances and Disease Registry (2007).
[7] O Olujimi, O Fatoki, J Odendaal, J.Okonkwo, Endocrine disrupting chemicals (phenol and phthalates) in the South African environment: a need for more monitoring. Water SA. 36 (2010) 671-682. https://doi.org/10.4314/wsa.v36i5.62001
[8] S. Chakraborty, T. Bhattacharya, T. Patel, K. Tiwari, Biodegradation of phenol by native microorganisms isolated from coke processing wastewater, J. Environ. Biol. 31 (2010) 291-296.
[9] A.A. Gami, Phenol and its toxicity, J. Environ. Microbiol. Toxicol. 2 (2014) 173–180.
[10] A. Nuhoglu, B. Yalcin, Modelling of phenol removal in a batch reactor. Process Biochem. 40 (2005) 1233-1239. https://doi.org/10.1016/j.procbio.2004.04.003
[11] E. Díaz. Bacterial degradation of aromatic pollutants: a paradigm of metabolic versatility, Int. Microbiol, 7 (2004) 173-80.
[12] K. Jüttner, U. Galla, H. Schmieder, Electrochemical approaches to environmental problems in the process industry, Electrochim. Acta 45 (2000) 2575-2594. https://doi.org/10.1016/S0013-4686(00)00339-X
[13] M. Tomaszewska, S. Mozia, A.W. Morawski, Removal of organic matter by coagulation enhanced with adsorption on PAC, Desalination, 161 (2004) 79-87. https://doi.org/10.1016/S0011-9164(04)90042-2
[14] W. Kujawski, A. Warszawski, W. Ratajczak, T. Porebski, W. Capała, I. Ostrowska, Removal of phenol from wastewater by different separation techniques, Desalination 163 (2004) 287-296. https://doi.org/10.1016/S0011-9164(04)90202-0
[15] Z. Lazarova, S. Boyadzhieva. Treatment of phenol-containing aqueous solutions by membrane-based solvent extraction in coupled ultrafiltration modules, Chem. Eng. J. 100 (2004) 129-138. https://doi.org/10.1016/j.cej.2004.01.028
[16] N.S. Alderman, A.L. N’Guessan, M.C. Nyman, Effective treatment of PAH contaminated Superfund site soil with the peroxy-acid process, J. Hazard Mater. 146 (2007) 652-660. https://doi.org/10.1016/j.jhazmat.2007.04.068
[17] P. Chhonkar, S. Datta, H. Joshi, H. Pathak, Impact of industrial effluents on soil health and agriculture-Indian experience: Part I-Distill a paper mill effluents, J. Sci. Ind. Res. 59 (2000) 350-361.
[18] J. Shao, Y. Cheng, C. Yang, G. Zeng, W. Liu, P. Jiao, Efficient removal of naphthalene-2-ol from aqueous solutions by solvent extraction, J. Environ. Sci. 47 (2016) 120-129. https://doi.org/10.1016/j.jes.2016.03.010
[19] M. Palma, J. Paiva, M. Zilli, A. Converti, Batch phenol removal from methyl isobutyl ketone by liquid–liquid extraction with chemical reaction, Chem. Eng. Process: Process Intensificat. 46 (2007) 764-768. https://doi.org/10.1016/j.cep.2006.10.003
[20] P. Yu, Z. Chang, Y. Ma, S. Wang, H. Cao, C. Hua, Separation of p-Nitrophenol and o-Nitrophenol with three-liquid-phase extraction system, Separat. Purificat. Tech. 70 (2009) 199-206. https://doi.org/10.1016/j.seppur.2009.09.016
[21] T. Jiao, X. Zhuang, H. He, C. Li, H. Chen, S. Zhang, Separation of phenolic compounds from coal tar via liquid–liquid extraction using amide compounds, Ind. Eng. Chem. Res. 54 (2015) 2573-2579. https://doi.org/10.1021/ie504892g
[22] N. Othman, N.F.M. Noah, L.Y. Shu, Z-Y. Ooi, N. Jusoh, M. Idroas, Easy removing of phenol from wastewater using vegetable oil-based organic solvent in emulsion liquid membrane process, Chin. J. Chem. Eng. 25 (2017) 45-52. https://doi.org/10.1016/j.cjche.2016.06.002
[23] W. Kujawski, A. Warszawski, W. Ratajczak, T. Porebski, W. Capała, I. Ostrowska, Application of pervaporation and adsorption to the phenol removal from wastewater, Separat. Purificat. Tech. 40 (2004) 123-132. https://doi.org/10.1016/j.seppur.2004.01.013
[24] M.J. González-Muñoz, S. Luque, J. Alvarez, J. Coca, Recovery of phenol from aqueous solutions using hollow fibre contactors, J. Membr. Sci. 213 (2003) 181-193. https://doi.org/10.1016/S0376-7388(02)00526-4
[25] R-S. Juang, W-C. Huang, Y-H. Hsu, Treatment of phenol in synthetic saline wastewater by solvent extraction and two-phase membrane biodegradation, J. Hazard. Mater. 164 (2009) 46-52. https://doi.org/10.1016/j.jhazmat.2008.07.116
[26] N. Rao, J.R. Singh, R. Misra, T. Nandy, Liquid–liquid extraction of phenol from simulated sebacic acid wastewater, J. Sci. Ind. Res. 68 (2009) 823-828.
[27] H. Xiuqiong, K. Huang, Y. Pinhua, C. Zhang, X. Keng, L. Pengfei, Liquid-liquid-liquid three phase extraction apparatus: operation strategy and influences on mass transfer efficiency, Chin. J. Chem. Eng. 20 (2012) 27-35. https://doi.org/10.1016/S1004-9541(12)60359-0
[28] J. Gómez, G. León, A. Hidalgo, M. Gómez, M. Murcia, G. Griñán, Application of reverse osmosis to remove aniline from wastewater, Desalination 245 (2009) 687-693. https://doi.org/10.1016/j.desal.2009.02.038
[29] R. Subha, O. Sridevi, D. Anitha, D. Sudha, Treatment methods for the removal of phenol from water-A Review. Int. Conf. Systems, Sci. Control, Commun. Eng. Tech. 01 (2015). [ICSSCCET 2015] ID. 044
[30] A. Bódalo, E. Gómez, A. Hidalgo, M. Gómez, M. Murcia, I. López, Nanofiltration membranes to reduce phenol concentration in wastewater, Desalination 245 (2009) 680-686. https://doi.org/10.1016/j.desal.2009.02.037
[31] Z. Murthy, S.K. Gupta, Thin film composite polyamide membrane parameters estimation for phenol-water system by reverse osmosis, J. Sep. Sci. Tech. 33 (1998) 2541-2557. https://doi.org/10.1080/01496399808545318
[32] L.L. Gibbs, J.F. Scamehorn, S.D. Christian, Removal of n-alcohols from aqueous streams using micellar-enhanced ultrafiltration, J. Membr. Sci. 30 (1987) 67-74. https://doi.org/10.1016/S0376-7388(00)83341-4
[33] B.R. Fillipi, J.F. Scamehorn, S.D. Christian, R.W. Taylor, A comparative economic analysis of copper removal from water by ligand-modified micellar-enhanced ultrafiltration and by conventional solvent extraction, J. Membr. Sci. 145 (1998) 27-44. https://doi.org/10.1016/S0376-7388(98)00052-0
[34] H. Adamczak, K. Materna, R. Urbański, J. Szymanowski, Ultrafiltration of micellar solutions containing phenols, J. Colloid. Interf. Sci. 218 (1999) 359-368. https://doi.org/10.1006/jcis.1999.6430
[35] G-M. Zeng, K. Xu, J-H. Huang, X. Li, Y-Y. Fang, Y-H. Qu. Micellar enhanced ultrafiltration of phenol in synthetic wastewater using polysulfone spiral membrane, J. Membr. Sci. 310 (2008) 149-160. https://doi.org/10.1016/j.memsci.2007.10.046
[36] M.F. Nazar, S.S. Shah, J. Eastoe, A.M. Khan, A. Shah, Separation and recycling of nanoparticles using cloud point extraction with non-ionic surfactant mixtures, J. colloid. Interface Sci. 363 (2011) 490-496. https://doi.org/10.1016/j.jcis.2011.07.070
[37] A. Afkhami, T. Madrakian, H. Siampour, Flame atomic absorption spectrometric determination of trace quantities of cadmium in water samples after cloud point extraction in Triton X-114 without added chelating agents, J. Hazard. Mater. 138 (2006) 269-272. https://doi.org/10.1016/j.jhazmat.2006.03.073
[38] T. Poznyak, I. Chairez, A. Poznyak, Application of a neural observer to phenols ozonation in water: Simulation and kinetic parameters identification, Water Res. 39 (2005) 2611-2620. https://doi.org/10.1016/j.watres.2005.04.061
[39] I. Chairez, A. Poznyak, T. Poznyak, Reconstruction of dynamics of aqueous phenols and their products formation in ozonation using differential neural network observers, Ind. Eng Chem. Res. 46 (2007) 5855-5866. https://doi.org/10.1021/ie0705103
[40] H. Wang, F. Zhao, S-i. Fujita, M. Arai, Hydrogenation of phenol in scCO2 over carbon nanofiber supported Rh catalyst, Catal. Commun. 9 (2008) 362-368. https://doi.org/10.1016/j.catcom.2007.07.002
[41] P. Jin, R. Chang, D. Liu, K. Zhao, L. Zhang, Y. Ouyang, Phenol degradation in an electrochemical system with TiO2/activated carbon fiber as electrode, J. Environ. Chem. Eng. 2 (2014) 1040-1047. https://doi.org/10.1016/j.jece.2014.03.023
[42] I. Udom, P.D. Myers, M.K. Ram, A. Hepp, E. Archibong, E.K. Stefanakos, Optimization of photocatalytic degradation of phenol using simple photocatalytic reactor, Am. J. Anal. Chem. 5 (2014) 743-749. https://doi.org/10.4236/ajac.2014.511083
[43] H.M. Jalali, Kinetic investigation of photo-catalytic activity of TiO2/metal nanocomposite in phenol photo-degradation using Monte Carlo simulation, RSC Adv. 5 ( 2015) 36108-36116. https://doi.org/10.1039/C5RA02226F
[44] Y. Jiang, T. Waite, Degradation of trace contaminants using coupled sonochemistry and Fenton’s reagent, Water Sci. Tech. 47 ( 2003) 85-92.
[45] Y. Xiong, C. He, H.T. Karlsson, X. Zhu, Performance of three-phase three-dimensional electrode reactor for the reduction of COD in simulated wastewater-containing phenol, Chemosphere 50 (2003) 131-136. https://doi.org/10.1016/S0045-6535(02)00609-4
[46] E. El-Ashtoukhy, Y. El-Taweel, O. Abdelwahab, E. Nassef, Treatment of petrochemical wastewater containing phenolic compounds by electrocoagulation using a fixed bed electrochemical reactor, Int. J. Electrochem. Sci. 8 (2013) 1534-1550.
[47] A.P.H. Association, A.W.W. Association, W.P.C. Federation, W.E. Federation. Standard methods for the examination of water and wastewater: Am. Public Health Association. (1915) https://www.mwa.co.th/download/file_upload/SMWW_1000-3000.pdf.
[48] S.J. Kulkarni, J.P. Kaware, Review on research for removal of phenol from wastewater. Int. J. Sci. Res. Pub. 3 (2013) 1-5.
[49] C.E. Barrera-Díaz, G.Roa-Morales, P.B. Hernández, C.M. Fernandez-Marchante, M.A. Rodrigo, Enhanced electrocoagulation: New approaches to improve the electrochemical process, J. Electrochem. Sci. Eng. 4 (2014) 285-296. https://doi.org/10.5599/jese.2014.0060
[50] T.A. Enache, A.M. Oliveira-Brett, Phenol and para-substituted phenols electrochemical oxidation pathways, Electroanal. Chem. 655 (2011) 9-16. https://doi.org/10.1016/j.jelechem.2011.02.022
[51] S. Doǧan, Y. Turan, H. Ertürk, O. Arslan, Characterization and purification of polyphenol oxidase from artichoke (Cynara scolymus L.), J. Agr. Food. Chem. 53 (2005) 776-785. https://doi.org/10.1021/jf049053g
[52] Q. Husain, U. Jan, Detoxification of phenols and aromatic amines frompolluted wastewater by using phenol oxidases, J. Sci. Ind. Res. 59 (2000) 1-4.
[53] U. Jadhav, S. Salve, R. Dhawale, M. Padul, V. Dawkar, A. Chougale, Use of partially purified banana peel polyphenol oxidase in the degradation of various phenolic compounds and textile dye blue 2RNL, Text. Light Ind. Sci. Tech. 2 (2013) 27-35.
[54] P.M. van Schie, L.Y. Young, Biodegradation of phenol: mechanisms and applications, Bioremed. J. 4 (2000) 1-18. https://doi.org/10.1080/10588330008951128
[55] Z. Huixian, K. Taylor, Products of oxidative coupling of phenol by horseradish peroxidase, Chemosphere 94 (1994)1807-1817. https://doi.org/10.1016/0045-6535(94)90028-0
[56] L. Martirani, P. Giardina, L. Marzullo, G. Sannia, Reduction of phenol content and toxicity in olive oil mill waste waters with the ligninolytic fungus Pleurotus ostreatus, Water Res. 30 (1996) 1914-1918. https://doi.org/10.1016/0043-1354(95)00330-4
[57] H. Wright, J.A. Nicell, Characterization of soybean peroxidase for the treatment of aqueous phenols, Bioresour. Tech. 70 (1999) 69-79. https://doi.org/10.1016/S0960-8524(99)00007-3
[58] N. Duran, E. Esposito, Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review, Appl. catals B: Environ. 28 (2000) 83-99. https://doi.org/10.1016/S0926-3373(00)00168-5
[59] N. Pradeep, S. Anupama, K. Navya, H. Shalini, M. Idris, U. Hampannavar, Biological removal of phenol from wastewaters: a mini review, Appl. Water Sci. 5 (2015) 105-112. https://doi.org/10.1007/s13201-014-0176-8
[60] G. Gurujeyalakshmi, P. Oriel, Isolation of phenol-degrading Bacillus stearothermophilus and partial characterization of the phenol hydroxylase, Appl. Environ. Microbiol. 55 (1989) 500-502.
[61] S.G. Burton, J.R. Duncan, P.T. Kaye, P.D. Rose, Activity of mushroom polyphenol oxidase in organic medium, Biotech. Bioeng. 42 (1993) 938-944. https://doi.org/10.1002/bit.260420804
[62] A. Garzillo, M. Colao, C. Caruso, C. Caporale, D. Celletti, V. Buonocore, Laccase from the white-rot fungus Trametes trogii, Appl. Microb. Biotech. 49 (1998) 545-551. https://doi.org/10.1007/s002530051211
[63] L. Li, J.C. Steffens. Overexpression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance, Planta 215 (2002) 239-247. https://doi.org/10.1007/s00425-002-0750-4
[64] N. Lončar, N. Božić, I. Anđelković, A. Milovanović, B. Dojnov, M . Vujčić, Removal of aqueous phenol and phenol derivatives by immobilized potato polyphenol oxidase, J. Serb. Chem. Soc. 76 (2011) 513-522. https://doi.org/10.2298/JSC100619046L
[65] B. Okeke, A. Paterson, J. Smith, I. Watson-Craik, Comparative biotransformation of pentachlorophenol in soils by solid substrate cultures of Lentinula edodes, Appl. Microb. Biotech. 48 (1997) 563-569. https://doi.org/10.1007/s002530051097
[66] S. Ali, R. Fernandez-Lafuente, D.A. Cowan, Meta-pathway degradation of phenolics by thermophilic Bacilli, Enzyme Microb. Tech. 3 (1998) 2462-2468. https://doi.org/10.1016/S0141-0229(98)00072-6
[67] J. Bollag, K. Shuttleworth, D. Anderson, Laccase-mediated detoxification of phenolic compounds, Appl. Environ. l Microb. 54 (1988) 3086-3091.
[68] P. Schneider, M.B. Caspersen, K. Mondorf, T. Halkier, L.K. Skov, P.R. Østergaard, Characterization of a Coprinus cinereus laccase, Enzyme Microb. Tech. 25 (1999) 502-508. https://doi.org/10.1016/S0141-0229(99)00085-X
[69] G. Hublik, F. Schinner. Characterization and immobilization of the laccase from Pleurotus ostreatus and its use for the continuous elimination of phenolic pollutants, Enzyme Microb. Tech. 27 (2000) 330-336. https://doi.org/10.1016/S0141-0229(00)00220-9
[70] A. Robles, R. Lucas, G.A. de Cienfuegos, A Gálvez, Phenol-oxidase (laccase) activity in strains of the hyphomycete Chalara paradoxa isolated from olive mill wastewater disposal ponds, Enzyme Microb.Tech. 26 (2000) 484-490. https://doi.org/10.1016/S0141-0229(99)00197-0
[71] M. Stanisavljević, L. Nedić, Removal of phenol from industrial wastewaters by horseradish-Cochlearia armoracia L-peroxidase. Facta universitatis-series: Work. Live, Envron. Protect. 2 (2004) 345-349.
[72] T. Johjima, M. Ohkuma, T. Kudo, Isolation and cDNA cloning of novel hydrogen peroxide-dependent phenol oxidase from the basidiomycete Termitomyces albuminosus, Appl. Microbiol. Biotech. 61 (2003) 220-225. https://doi.org/10.1016/0043-1354(95)00237-5
[73] V. Cooper, J. Nicell, Removal of phenols from a foundry wastewater using horseradish peroxidase, Water Res. 30 (1996) 954-964. https://doi.org/10.1016/0043-1354(95)00237-5
[74] Y. Wu, K.E. Taylor, N. Biswas, J.K. Bewtra, A model for the protective effect of additives on the activity of horseradish peroxidase in the removal of phenol, Enzyme Microb. Technol. 22 (1998) 315-322. https://doi.org/10.1016/S0141-0229(97)00197-X
[75] K.d.Q. Wilberg, D.G. Nunes, J. Rubio, Removal of phenol by enzymatic oxidation and flotation, Brazil J. Chem. Eng. 17 (2000) 907-914. https://doi.org/10.1590/S0104-66322000000400055
[76] Y-C Lai, S-C Lin, Application of immobilized horseradish peroxidase for the removal of p-chlorophenol from aqueous solution, Process Biochem. 17 (2005) 1167-1174. https://doi.org/10.1016/j.procbio.2004.04.009
[77] I. Alemzadeh, S. Nejati, Removal of phenols with encapsulated horseradish peroxidase in calcium alginate, Iran J. Chem. Chem. Engi. 28 (2009) 43-49.
[78] K.F. Mossallam, F.M.Sultanova, N.A. Salimova, Enzymatic removal of phenol from produced water and the effect of petroleum oil content. Thirteenth Intl Water Tech Conf, Hurghada, Egypt. (2009) 1009-1020.
[79] N. Caza, J. Bewtra, N. Biswas, K. Taylor, Removal of phenolic compounds from synthetic wastewater using soybean peroxidase, Water Res. 33 (1999) 3012-3018. https://doi.org/10.1016/S0043-1354(98)00525-9
[80] M. Ghioureliotis, J.A. Nicell, Assessment of soluble products of peroxidase-catalyzed polymerization of aqueous phenol, Enzyme Microb. Tech. 25 (1999) 185-193. https://doi.org/10.1016/S0141-0229(99)00041-1
[81] F. Naghibi, F. Pourmorad, S. Honary, M. Shamsi, Decontamination of water polluted with phenol using Raphanus sativus root, Iran. J. Pharm. Res. 2 (2010) 29-32. https://doi.org/10.1016/j.chemosphere.2006.04.049
[82] S. Akhtar, Q. Husain, Potential applications of immobilized bitter gourd (Momordica charantia) peroxidase in the removal of phenols from polluted water, Chemosphere, 65 (2006) 1228-1235. https://doi.org/10.1016/j.biortech.2008.04.031
[83] F. Quintanilla-Guerrero, M. Duarte-Vázquez, B. García-Almendarez, R. Tinoco, R. Vazquez-Duhalt, C. Regalado, Polyethylene glycol improves phenol removal by immobilized turnip peroxidase, Bioresourc. Tech. 99 (2008) 8605-8611.
[84] M.C. Lakshmi, V. Sridevi, A review on biodegradation of phenol from industrial effluents, J. Ind. Poll. Control. 25 (2015) 13-27.
[85] P.K. Arora, H. Bae, Bacterial degradation of chlorophenols and their derivatives, Microb Cell Fact. 13 (2014) 25- 31. https://doi.org/10.1186/1475-2859-13-25
[86] S. Agarry, B. Solomon, Kinetics of batch microbial degradation of phenols by indigenous Pseudomonas fluorescence, Int. J. Environ. Sci. Tech. 5 (2008) 223-232. https://doi.org/10.1007/BF03326016
[87] Ş. Şeker, H. Beyenal, B. Salih, A. Tanyolac, Multi-substrate growth kinetics of Pseudomonas putida for phenol removal, Appl. Microbiol. Biotech. 47 ( 1997) 610-614. https://doi.org/10.1007/s002530050982
[88] M. Ajaz, N. Noor, S.A. Rasool, S.A. Khan, Phenol resistant bacteria from soil: identification-characterization and genetical studies, Pak. J. Bot. 5 (2004) 5415-424.
[89] F. Kafilzadeh, M-S. Farhangdoost, Y. Tahery, Isolation and identification of phenol degrading bacteria from Lake Parishan and their growth kinetic assay, Afr. J. Biotech. 9 (2010) 6721-6726.
[90] I. Sgountzos, S. Pavlou C.Paraskeva, A. Payatakes, Growth kinetics of Pseudomonas fluorescens in sand beds during biodegradation of phenol, Biochem. Eng. J. 30 (2006) 164-173. https://doi.org/10.1016/j.bej.2006.03.005
[91] Y.Wang, J. Song, W. Zhao, X. He, J. Chen, M. Xiao, In situ degradation of phenol and promotion of plant growth in contaminated environments by a single Pseudomonas aeruginosa strain, J. Hazard. Mater. 192 (2011) 354-360. https://doi.org/10.1016/j.jhazmat.2011.05.031
[92] S. Prasad, R.S. Babu, R. Chakrapani, C. Rao, Kinetics of high concentrated phenol biodegradation by Acinetobacter baumannii, Int. J. Biotech. Biochem. 6 (2010) 609-615.
[93] S. Thomas, S. Sarfaraz, L. Mishra, L. Iyengar, Degradation of phenol and phenolic compounds by a defined denitrifying bacterial culture, World J. Microbiol. Biotech. 18 (2002) 57-63. https://doi.org/10.1023/A:1013947722911
[94] H. Ehrhardt, H. Rehm, Phenol degradation by microorganisms adsorbed on activated carbon, Appl. Microbiol. Biotech. 21 (1985) 32-36. https://doi.org/10.1007/BF00252358
[95] R.J. Varma, B.G. Gaikwad, Rapid and high biodegradation of phenols catalyzed by Candida tropicalis NCIM 3556 cells, Enzyme. Microbiol. Technol. 43 (2008) 431-435. https://doi.org/10.1016/j.enzmictec.2008.07.008
[96] C.T. dos Passos, M. Michelon, J.Burkert, S.J. Kalil, C.A.V. Burkert, Biodegradation of phenol by free and encapsulated cells of a new Aspergillus sp. isolated from a contaminated site in southern Brazil, Afr. J. Biotech. 9 (2010) 6716-6720.
[97] Y. Jiang, X. Cai, D. Wu, N. Ren, Biodegradation of phenol and m-cresol by mutated Candida tropicalis, J. Environ. Sci. 5 (2010) 621-626. https://doi.org/10.1016/S1001-0742(09)60154-6
[98] L. Zídková, J. Szőköl, L. Rucká, M. Pátek, J. Nešvera, Biodegradation of phenol using recombinant plasmid-carrying Rhodococcus erythropolis strains, Int. Biodeterior. Biodegrad. 84 (2013) 179-184. https://doi.org/10.1016/j.ibiod.2012.05.017
[99] A. Viggiani, G. Olivieri, L. Siani, A. Di Donato, A. Marzocchella, P. Salatino, An airlift biofilm reactor for the biodegradation of phenol by Pseudomonas stutzeri OX1, J. Biotech. 23 (2006) 464-477. https://doi.org/10.1016/j.jbiotec.2005.12.024
[100] V. Arutchelvan, V. Kanakasabai, R. Elangovan, S Nagarajan, V. Muralikrishnan, Kinetics of high strength phenol degradation using Bacillus brevis, J. Hazard. Mater. 129 ( 2006) 216-222. https://doi.org/10.1016/j.jhazmat.2005.08.040
[101] R.J. Varma, B.G. Gaikwad, Rapid and high biodegradation of phenols catalyzed by Candida tropicalis NCIM 3556 cells, Enzyme Microb. Technol. 43 (2008) 431-435. https://doi.org/10.1016/j.enzmictec.2008.07.008
[102] C.T. dos Passos, M. Michelon, J. Burkert, S.J. Kalil, C.A.V. Burkert, Biodegradation of phenol by free and encapsulated cells of a new Aspergillus sp. isolated from a contaminated site in southern Brazil, Afr. J. Biotechnol. 9 (2010) 6716-6720.
[103] Y. Jiang, X. Cai, D. Wu, N. Ren, Biodegradation of phenol and m-cresol by mutated Candida tropicalis, J. Environ. Sci. 22 (2010) 621-626. https://doi.org/10.1016/S1001-0742(09)60154-6
[104] L. Zídková, J. Szőköl, L. Rucká, M. Pátek, J. Nešvera, Biodegradation of phenol using recombinant plasmid-carrying Rhodococcus erythropolis strains, Int. Biodeter. Biodegrad. 84 (2013) 179-184. https://doi.org/10.1016/j.ibiod.2012.05.017
[105] A. Viggiani, G. Olivieri, L. Siani, A. Di Donato, A. Marzocchella, P. Salatino, P. Barbieri, E. Galli, An airlift biofilm reactor for the biodegradation of phenol by Pseudomonas stutzeri OX1, J. Biotechnol. 123 (2006) 464-477. https://doi.org/10.1016/j.jbiotec.2005.12.024
[106] V. Arutchelvan, V. Kanakasabai, R. Elangovan, S. Nagarajan, V. Muralikrishnan, Kinetics of high strength phenol degradation using Bacillus brevis, J. Hazard. Mater. 129 (2006) 216-222. https://doi.org/10.1016/j.jhazmat.2005.08.040