Effective Degradation of Methylene Blue using ZnO:Fe:Ni Nanocomposites
P. Dhiman, G. Kumar, K.M. Batoo, A. Kumar, G. Sharma, M. Singh
This work supports the novelty of ZnO based semiconductor composites as a potential photocatalyst for the degradation of methylene blue (MB) dye. ZnO:Fe:Ni nanocomposites were prepared by solution combustion route. The prepared product was characterized for structural, morphological, optical and photocatalytic activities. The crystallinity and the structure of the samples were determined by X-Ray diffractometer and the relevant structural parameters were obtained using Rietveld fitting of the X-ray spectra. The X-ray photoelectron spectroscopy confirms the elemental presence and the valence state of the elements present in the sample. UV–visible absorption spectra have been utilized to calculate the band gap of the prepared samples. The prepared nanocomposite showed good photodegradation of MB dye. In general, many photocatalytic degradation studies have been reported using the man-made light source, however in the present chapter work on ZnO:Fe:Ni composite used in degradation of methylene blue in presence of direct sunlight is discussed.
Keywords
Rietveld Fitting, X-ray Photoelectron Spectroscopy, HRTEM, Photocatalysis
Published online 4/1/2018, 21 pages
DOI: https://dx.doi.org/10.21741/9781945291630-3
Part of Organic Pollutants in Wastewater I
References
[1] H.Y. Zhu, R. Jiang, Y.Q. Fu, Y.J. Guan , J. Yao, L. Xiao, G.M. Zeng, Effective photocatalytic decolorization of methyl orange utilizing TiO2/ZnO/ chitosan nanocomposite films under simulated solar irradiation. Desalination 286(2012)41–48. https://doi.org/10.1016/j.desal.2011.10.036
[2] X. Chen, Z. Wu, D. Liu, Z. Gao, Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes, Nanoscale Res. Lett.12 (2017)143. https://doi.org/10.1186/s11671-017-1904-4
[3] R. Kant, Textile dyeing industry an environmental hazard, Nat. Sci. 4 (2012) 22–26. https://doi.org/10.4236/ns.2012.41004
[4] U.G. Akpan, B.H. Hameed, Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: Areview, J. Hazard. Mater. 170 (2009) 520–529. https://doi.org/10.1016/j.jhazmat.2009.05.039
[5] K. Kaviyarasu, L. Kotsedi, A. Simo, X. Fuku, G. T. Mola, J. Kennedy, M. Maaza, Photocatalytic activity of ZrO2 doped lead dioxide nanocomposites: Investigation of structural and optical microscopy of RhB organic dye, Appl. Surf.Sci.,421 (2017) 234-239. https://doi.org/10.1016/j.apsusc.2016.11.149
[6] P. Dhiman, J. Chand, A. Kumar, R.K. Kotnala, K.M. Batoo, M. Singh, Synthesis and characterization of novel Fe@ZnO nanosystem, J. Alloys Compd. 578 (2013) 235–241. https://doi.org/10.1016/j.jallcom.2013.05.015
[7] S. Anandan, T. Selvamani, G.G. Prasad, A.M. Asiri, J.J. Wu, Magnetic and catalytic properties of inverse spinel CuFe2O4nanoparticles, J. Magn. Magn. Mater. 432 (2017) 437–443. https://doi.org/10.1016/j.jmmm.2017.02.026
[8] E.V. Casbeer, K. Sharma, X. Li, Synthesis and photocatalytic activity of ferrites under visible light: A review, Sep. Purif. Technol. 87 (2012) 1–14. https://doi.org/10.1016/j.seppur.2011.11.034
[9] K. Intarasuwan, P. Amornpitoksuk, S. Suwanboon, P. Graidist, Photocatalytic dye degradation by ZnO nanoparticles prepared from X2C2O4 (X = H, Na and NH4) and the cytotoxicity of the treated dye solutions, Sep. Purif. Technol. 177 (2017) 304–312. https://doi.org/10.1016/j.seppur.2016.12.040
[10] C. Aggelopoulos, M. Dimitropoulos, A. Govatsi, L. Sygellou, D. C. Tsakirogloua, N.S. Yannopoulos, Influence of the surface-to-bulk defects ratio of ZnO and TiO2 on their UV-mediated photocatalytic activity, Appl. Catal. B: Environ. 205 (2017) 292–301. https://doi.org/10.1016/j.apcatb.2016.12.023
[11] M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nanowire dye sensitized solar cell, Nat. Mater. 4 (2005) 455–459. https://doi.org/10.1038/nmat1387
[12] Y. Liu, L.Yu, Y. Hu, C.F. Guo, F.M. Zhang, X.W. Lou, A magnetically separable photocatalyst based on nest-like γ-Fe2O3/ZnO double-shelled hollow structures with enhanced photocatalytic activity. Nanoscale 4 (2012)183–187. https://doi.org/10.1039/C1NR11114K
[13] S. Kant, D. Pathania, P. Singh, P. Dhiman, A. Kumar, Removal of malachite green and methylene blue by Fe0.01Ni0.01Zn0.98O/polyacrylamide nanocomposite using coupled adsorption and photocatalysis, Appl. Catal. B: Environ. 147 (2014) 340– 352. https://doi.org/10.1016/j.apcatb.2013.09.001
[14] G. Wang, B. Huang, Z. Li, Z.Lou,Z. Wang, Y. Dai, M.-H. Whangbo, Synthesis and characterization of ZnS with controlled amount of S vacancies for photocatalytic H2 production under visible light, Sci. Rep. 5 (2015) 8544. https://doi.org/10.1038/srep08544
[15] G. Sharma, S. Bhogal, M. Naushad, Inamuddin, A. Kumar, F.J. Stadler, Microwave assisted fabrication of La/Cu/Zr/carbon dots trimetallic nanocomposites with their adsorptional vs photocatalytic efficiency for remediation of persistent organic pollutants, J. Photochem. Photobiol. A Chem. 347 (2017) 235–243. https://doi.org/10.1016/j.jphotochem.2017.07.001
[16] M. Wenxin, R. Baosheng, H. Zhen, C.Qifeng, C. Xiaofeng, G. Yanchuan, Mesostructured zinc oxide architectures with high photocatalytic activity, Mater. Cem. Phys. 186 (2017) 341–352. https://doi.org/10.1016/j.matchemphys.2016.11.005
[17] P. Ranjan, R.K. Singh,H.Suematsu,L.Phillip,R.Sarathi, Synthesis of nano-ZnO by wire explosion process and its photocatalytic Activity, J. Environ. Chem. Eng. 5 (2017) 1676-1684. https://doi.org/10.1016/j.jece.2017.02.036
[18] S. Wenzhong, L. Zhijie, H. Wang, Y. Liu, Q. Guo, Y. Zhang, J. Hazard. Mater. 152 ( 2008) 172–175. https://doi.org/10.1016/j.jhazmat.2007.06.082
[19] O. Mekasuwandumrong, P. Pawinrat, P. Praserthdam, J. Panpranot, Effects of synthesis conditions and annealing post-treatment on the photocatalytic activities of ZnO nanoparticles in the degradation of methylene blue dye, Chem. Eng. J. 164 (2010) 77-84. https://doi.org/10.1016/j.cej.2010.08.027
[20] R.Y. Hong, J.H. Li, L.L. Chen, D.Q. Liu, H.Z. Li, Y. Zheng, J. Ding, Synthesis, surface modification and photocatalytic property of ZnO nanoparticles, Powder Technol. 189 (2009) 426-432. https://doi.org/10.1016/j.powtec.2008.07.004
[21] A. Kumar, M. Naushad, A. Rana, Inamuddin, Preeti, G. Sharma, A.A. Ghfar, F.J. Stadler, M.R. Khan, ZnSe-WO3 nano-hetero-assembly stacked on Gum ghatti for photo-degradative removal of Bisphenol A: Symbiose of adsorption and photocatalysis, Int. J. Biol. Macromol. 104 (2017) 1172–1184. https://doi.org/10.1016/j.ijbiomac.2017.06.116
[22] J. Qin, X. Zhang, C. Yang, M. Cao, M. Ma, R. Liu, ZnO microspheres-reduced graphene oxide nanocomposite for photocatalytic degradation of methylene blue dye, Appl. Surf. Sci. 392 (2017) 196-203. https://doi.org/10.1016/j.apsusc.2016.09.043
[23] M. Ahmad, E.Ahmed, Z.L. Hong, W. Ahmed, A. Elhissi, N.R. Khalid, Photocatalytic, sonocatalytic and sonophotocatalytic degradation of Rhodamine B using ZnO/CNTscomposites photocatalysts, Ultrason. Sonochem. 21 (2014) 761-773. https://doi.org/10.1016/j.ultsonch.2013.08.014
[24] P. Dhiman, K. M. Batoo, R.K. Kotnala, J. Chand, M. Singh,Room temperature ferromagnetism and structural characterization of Fe,Ni co-doped ZnO nanocrystals, Appl. Surf. Sci. 287 (2013) 287– 292. https://doi.org/10.1016/j.apsusc.2013.09.144
[25] M.A. Ali, M.R. Idris, M.E. Quayum, Fabrication of ZnO nanoparticles bysolution-combustion method for the photocatalytic degradation of organic dye, J. Nanostruct. Chem. (2013) 3-36.
[26] C.J. Raj, R.K. Joshi, K.B.R. Varma, Synthesis from zinc oxalate, growth mechanism and optical properties of ZnO nano/microstructures, Cryst. Res. Technol. 46 (2011) 1181. https://doi.org/10.1002/crat.201100201
[27] X.Chuanhui, H. Chenguo, T. Yongshu, C.Peng, W. Buyong, X. Jing, Room-temperature ferromagnetic properties of Fe-doped ZnO rod arrays, Solid State Sci. 13 (2011) 388. https://doi.org/10.1016/j.solidstatesciences.2010.11.041
[28] A.P. Rambu, C. Doroftei, L. Ursu , F. Iacomi, Structure and gas sensing properties of nanocrystalline Fe-doped ZnO films prepared by spin coating method, J. Mater. Sci. 48 (2013) 4305. https://doi.org/10.1007/s10853-013-7245-5
[29] W.J. Liu, X.D. Tang, Z. Tang, W. Bai, N.Y. Tang, Oxygen defects mediated magnetism of Ni doped ZnO, Adv. Cond. Matter. Phys. 6(2013) 424398. https://doi.org/10.1155/2013/424398
[30] A. Yildiz, B. Kayhan, B. Yurduguzel, A. P. Rambu, F. Iacomi, S. Simon, Ni doping effect on electrical conductivity of ZnO nanocrystalline thin films, J Mater. Sci: Mater Electron. 22 (2011) 1473. https://doi.org/10.1007/s10854-011-0332-y
[31] J.K. Salem, T.M. Hammad , R. R. Harrison, Synthesis, structural and optical properties of Ni-doped ZnO micro-spheres, J. Mater. Sci.: Mater. Electron. 24 (2013) 1670. https://doi.org/10.1007/s10854-012-0994-0
[32] R. Elilarassi, G. Chandrasekaran, Structural, optical and electron paramagnetic resonance studies on Cu-doped ZnO nanoparticles synthesized using a novel auto-combustion method, J. Mater. Sci.: Mater. Electron. 24 (2013) 96. https://doi.org/10.1007/s10854-012-0893-4
[33] S. Kant, D. Pathania, P. Singh, P. Dhiman, A. Kumar, Removal of malachite green and methylene blue by Fe0.01Ni0.01Zn0.98O/polyacrylamide nanocomposite using coupled adsorption and photocatalysis, Appl. Catal. B: Environ. 147 (2014) 340. https://doi.org/10.1016/j.apcatb.2013.09.001
[34] S. Wenzhong, L. Zhijie, W. Hui, L. Yihong, G. Qingjie, Z. Yuanli, Photocatalytic degradation for methylene blue using zinc oxide prepared by codeposition and sol–gel methods, J. Hazard. Mater. 152 (2008) 172–175. https://doi.org/10.1016/j.jhazmat.2007.06.082
[35] S. Kant, A. Kumar, A comparative analysis of structural, optical and photocatalytic properties of ZnO and Ni doped ZnO nanospheres prepared by sol gel method, Adv. Mat. Lett. 3 (2012) 350-354. https://doi.org/10.5185/amlett.2012.5344
[36] M.A. Mahmood, S. Baruah, J. Dutta, Enhanced visible light photocatalysis by manganese doping or rapid crystallization with ZnO nanoparticles, Mater. Chem. Phys. 130 (2011) 531-535. https://doi.org/10.1016/j.matchemphys.2011.07.018
[37] K. Rekha, M. Nirmala, M.G. Nair, A. Anukaliani, Structural, optical, photocatalytic and antibacterial activity of zinc oxide and manganese doped zinc oxide nanoparticles, Physica B Condensed Matter 405 (2010) 3180-3185. https://doi.org/10.1016/j.physb.2010.04.042
[38] Y. H Tong, J.Cheng, Y. L.Liu, G. G. Siu, Enhanced photocatalytic performance of ZnO hierarchical nanostructures synthesized via a two-temperature aqueous solution route, Scr. Mater. 60 (2009) 1093. https://doi.org/10.1016/j.scriptamat.2008.12.060
[39] X.L. Xu, X. Duan, Z.G. Yi, Z.W. Zhou, X.M. Fan, Y. Wang, Photocatalytic production of superoxide ion in the aqueous suspensions of two kinds of ZnO under simulated solar light, Catal. Commun. 12 (2010) 169-172. https://doi.org/10.1016/j.catcom.2010.09.006
[40] M.Y. Guo, A.M. Ching Ng, F. Liu, A.B. Djurisic, W.K. Chan, H. Su, K.S. Wong, Effect of native defects on photocatalytic properties of ZnO, J. Phys. Chem. C. 115 (2011) 11095-11101. https://doi.org/10.1021/jp200926u