Enhanced Hydrogen Storage Properties of Hydrothermally Synthesized TiO2 Nanotube-Multiwall Carbon Nanotube Nanocomposite

$20.00

Enhanced Hydrogen Storage Properties of Hydrothermally Synthesized TiO2 Nanotube-Multiwall Carbon Nanotube Nanocomposite

M.C. Raj, T.S. Natarajan, R.J. Tayade, H.C. Bajaj

Titanium dioxide (TiO2)-carbon based composite materials have gained greater attention because of their eco-friendly nature, higher adsorption capacity and enhanced photocatalytic activity. Among the TiO2-carbon composite materials, TiO2-multiwall carbon nanotube (TNT-MWCNT) composite materials are attractive for hydrogen storage application due to the presence of two tubular structures with high surface area. The present study focus on the hydrogen uptake studies of hydrothermally synthesized TiO2 nanotube-multiwall carbon nanotube nanocomposite by in-situ addition of MWCNT. Subsequently characterized by powder X-ray diffraction (PXRD), transmission electron microscope (TEM), CHNS analysis, and nitrogen adsorption-desorption isotherm analysis. Hydrogen uptake studies revealed that 0.25 wt% MWCNT@TNT nanocomposite exhibited enhanced H2 uptake (132 cc/g) than other composite and bare MWCNT (36 cc/g) and TNT (54 cc/g) respectively. The increment in the hydrogen uptake capacities of the composite materials was attributed to the enhancement in the surface area as well as micro pore volume by multi walled carbon nanotube incorporation.

Keywords
Multiwall Carbon Nanotube, TiO2 Nanotube, Hydrothermal, Hydrogen Storage, Nanocomposite

Published online 2/25/2018, 18 pages

DOI: https://dx.doi.org/10.21741/9781945291593-9

Part of Photocatalytic Nanomaterials for Environmental Applications

References
[1] M. Paik Suh, H.J. Park, T.K. Prasad, D. Lim, Hydrogen Storage in Metal–Organic Frameworks, Chem. Rev. 112 (2012) 782-835. https://doi.org/10.1021/cr200274s
[2] L. Schlapbach, A. Zuttel, Hydrogen-storage materials for mobile applications, Nature. 414 (2001) 353-358. https://doi.org/10.1038/35104634
[3] M. Bastos-Neto, C. Patzschke, M. Lange, J. Mollmer, A. Moller, S. Fichtner, C. Schrage, D. Lassig, J. Lincke, R. Staudt, H. Krautscheid, R. Glaser, Assessment of hydrogen storage by physisorption in porous materials, Energy Environ. Sci. 5 (2012) 8294-8303. https://doi.org/10.1039/c2ee22037g
[4] Information on https://www1.eere.energy.gov/hydrogenandfuelcells/storage/current_technology.html
[5] S. Satyapal, J. Petrovic, C. Read, G. Thomas, G. Ordaz, The U.S. Department of Energy’s National Hydrogen Storage Project: Progress towards meeting hydrogen-powered vehicle, Catal. Today. 120 (2007) 246-256. https://doi.org/10.1016/j.cattod.2006.09.022
[6] S. Iijima, Helical microtubules of graphitic carbon, Nature. 354 (1991) 56-58. https://doi.org/10.1038/354056a0
[7] A.C. Dillon, K.M. Jones, T.A. Bekkedahl, C.H. Kiang, D.S. Bethune, M.J. Heben, Storage of hydrogen in single-walled carbon nanotubes, Nature. 386 (1997) 377-379. https://doi.org/10.1038/386377a0
[8] G. Gundiah, A. Govindaraj, C.N.R. Rao, Hydrogen storage in carbon nanotubes and related materials, J. Mater. Chem. 13 (2003) 209-213. https://doi.org/10.1039/b207107j
[9] S.J. Yang, J.Y. Choi, H.K. Chae, J.H. Cho, K.S. Nahm, C.R.. Park, Preparation and Enhanced Hydrostability and Hydrogen Storage Capacity of CNT@MOF-5 Hybrid Composite, Chem. Mater. 21 (2009) 1893-1897. https://doi.org/10.1021/cm803502y
[10] K.P Prasanth, P.Rallapalli, M.C. Raj, H.C. Bajaj, R.V. Jasra, Enhanced hydrogen sorption in single walled carbon nanotube incorporated MIL-101 composite metal–organic framework, Int. J. Hydrogen Energ. 36 (2011) 7594-7601. https://doi.org/10.1016/j.ijhydene.2011.03.109
[11] M. Endo, T. Hayashi, Y.A. Kim, M. Terrones, M.S. Dresselhaus, Applications of carbon nanotubes in the twenty-first century, Phil. Trans. R. Soc. Lond. A. 362 (2004) 2223-2238. https://doi.org/10.1098/rsta.2004.1437
[12] M. Trojanowicz, Analytical applications of carbon nanotubes: a review, Trends Analyt Chem. 25 (2006) 480-489. https://doi.org/10.1016/j.trac.2005.11.008
[13] M. T. Yildirim, S. Ciraci, Titanium-Decorated Carbon Nanotubes as a Potential High-Capacity Hydrogen Storage Medium, Phys. Rev. Lett. 94 (2005) 175501-175504. https://doi.org/10.1103/PhysRevLett.94.175501
[14] E. Liu, J. Wang, J. Li, C. Shi, C. He, X. Du, N. Zhao, Enhanced electrochemical hydrogen storage capacity of multi-walled carbon nanotubes by TiO2 decoration, Int. J. Hydrogen Energ. 36 (2011) 6739-6743. https://doi.org/10.1016/j.ijhydene.2011.02.128
[15] A. Lueking, R.T. Yang, Hydrogen Spillover from a Metal Oxide Catalyst onto Carbon Nanotubes—Implications for Hydrogen Storage, J Catal. 206 (2002) 165-168. https://doi.org/10.1006/jcat.2001.3472
[16] S. Rather, N. Mehraj-ud-din, R. Zacharia, S.W. Hwang, A.R. Kim, K.S. Nahm, Hydrogen storage of nanostructured TiO2-impregnated carbon nanotubes, Int. J. Hydrogen Energ. 34 (2009) 961 – 966. https://doi.org/10.1016/j.ijhydene.2008.09.089
[17] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Titania Nanotubes Prepared by Chemical Processing , Adv. Mater. 11 (1999) 1307 – 1311. https://doi.org/10.1002/(SICI)1521-4095(199910)11:15%3C1307::AID-ADMA1307%3E3.0.CO;2-H
[18] D.V. Bavykin, J.M. Friedrich, F.C. Walsh, Protonated titanates and TiO2 nanostructured materials: synthesis, properties, and applications, Adv. Mater. 18 (2006) 2807 – 2824. https://doi.org/10.1002/adma.200502696
[19] T.S Natarajan, K. Natarajan, H.C. Bajaj, R.J. Tayade, Enhanced photocatalytic activity of bismuth-doped TiO2 nanotubes under direct sunlight irradiation for degradation of Rhodamine B dye, J. Nanopart. Res. 15 (2013) 1669-1687. https://doi.org/10.1007/s11051-013-1669-3
[20] P. Roy, S. Berger, P. Schmuki, TiO2 Nanotubes: Synthesis and Applications Angew. Chem. Int. Edit. 50 (2011) 2904-2939. https://doi.org/10.1002/anie.201001374
[21] S. Tohru, Inorganic and Metallic Nanotubular Materials Recent Technologies and Applications: T. Kijima (Ed.): Inorganic and Metallic Nanotubular Materials. @ Springer-Verlag Berlin Heidelberg 2010 ,Top. App. Phys. 117(2010) 17–32
[22] D.V. Bavykin, A.A. Lapkin, P.K. Plucinski, J.M. Friedrich, F.C. Walsh, Reversible Storage of Molecular Hydrogen by Sorption into Multilayered TiO2 Nanotubes, J. Phys. Chem. B. 109 (2005) 19422-19427. https://doi.org/10.1021/jp0536394
[23] P.B.S. Rallapalli, M.C. Raj, D.V. Patil, K.P. Prasanth, R.S. Somani, H.C Bajaj, Activated carbon @ MIL-101(Cr): a potential metal-organic framework composite material for hydrogen storage, ‎Int. J. Energy Res, 37 (2013) 746–753. https://doi.org/10.1002/er.1933
[24] H.C. Bajaj, R.S. Somani, P.B.S. Rallapalli, D.V. Patil, K.P. Prasanth, M.C. Raj, R.S. Thakur, M. John, B.L. Newalkar, N.V. Choudary, US Patent 9,433,919 (2016).
[25] Y.H. Tseng, C.Y. Yen, M.Y. Yen, and C.C.M. Ma, Effects of the acid pretreated multi-walled carbon nanotubes on the photocatalytic capacity of TiO2/multi-walled carbon nanotubes nanocomposites, Micro and Nano Letters, 5 (2010) 1–6. https://doi.org/10.1049/mnl.2009.0094
[26] M. Kruk, M. Jaroniec, C.H. Ko, R. Ryoo, Characterization of the Porous Structure of SBA-15, Chem. Mater. 12 (2000) 1961 – 1968. https://doi.org/10.1021/cm000164e
[27] S.H, Lim, J. Luo, Z. Zhong, W. Ji, J. Lin, Room-Temperature Hydrogen Uptake by TiO2 Nanotubes, Inorg, Chem. 44 (2005) 4124 – 4126. https://doi.org/10.1021/ic0501723
[28] F. Rouquerol, J. Rouquerol, K Sing, Adsorption by Powders and Porous Solids Principles, Methodology and Applications, second ed., Academic Press London: 1999
[29] S.J. Gregg, K.S.W. Sing, Adsorption, Surface Area and porosity, first ed., Academic Press London:1982.
[30] K.M. Thomas, Hydrogen adsorption and storage on porous materials, Catal Today. 120 (2007) 389-398. https://doi.org/10.1016/j.cattod.2006.09.015
[31] R.J. Tayade, D.L. Key, Synthesis and Characterization of Titanium Dioxide Nanotubes for Photocatalytic Degradation of Aqueous Nitrobenzene in the Presence of Sunlight, Mater. Sci. Forum. 657 (2010) 62-74. https://doi.org/10.4028/www.scientific.net/MSF.657.62
[32] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Nihara, Formation of Titanium Oxide Nanotube, Langmuir. 14 (1998) 3160-3163. https://doi.org/10.1021/la9713816
[33] M. Thommes. Physical Adsorption Characterization of Ordered and Amorphous Mesoporous Materials. Nanoporous Materials: Science And Engineering editors, London: Imperial College Press, 2004, pp. 317-364. https://doi.org/10.1142/9781860946561_0011
[34] A.V. Neimark, K.S.W. Sing, & Thommes, M, Handbook of Heterogeneous Catalysis, second ed., Weinheim: Wiley-VCH, 2008.
[35] M. Armandi, B. Bonelli, K. Cho, R. Ryoo, E. Garrone, Study of hydrogen physisorption on nanoporous carbon materials of different origin, Int. J. Hydrogen Energ. 36 (2011) 7937-7943. https://doi.org/10.1016/j.ijhydene.2011.01.049