Understanding Reaction Mechanism in Photon-Assisted Reduction of Carbon Dioxide
N. Hariprasad, B. Viswanathan, K.R. Krishnamurthy, M.V. Harindranathan Nair
Photon-assisted reduction of carbon dioxide has become an emerging field of scientific interest for utilisation of CO2, which may be helpful in overcoming energy and environment-related problems [1-6]. However, the knowledge assimilation in this area does not consider all the fundamental aspects appropriately, possibly because of the interdisciplinary nature of the research field. The nature and extent of electron transfer are crucial aspects of the reduction process. Most of the studies excluded the interfacial phenomenon across the semiconductor/ electrolyte junctions while interpreting the reaction mechanism. Through this chapter, we are trying to revisit the photophysics and photochemistry of semiconductors fundamentally, to enhance the understanding of electron transfer mechanism of the photon-assisted reduction of carbon dioxide.
Keywords
Carbon Dioxide, Photo-reduction, Solar Energy Conversion, Reaction Mechanism, Electron Transfer, Semiconductor-electrolyte Interface
Published online 2/25/2018, 36 pages
DOI: https://dx.doi.org/10.21741/9781945291593-6
Part of Photocatalytic Nanomaterials for Environmental Applications
References
[1] P.V. Kamat, Semiconductor surface chemistry as holy grail in photocatalysis and photovoltaics,Acc. Chem. Res.50 (2017), 527–531. https://doi.org/10.1021/acs.accounts.6b00528
[2] T. Hisatomi, K. Domen, Introductory lecture: sunlight-driven water splitting and carbon dioxide reduction by heterogeneous semiconductor systems as key processes in artificial photosynthesis,Faraday Discuss. 198 (2017)11-35. https://doi.org/10.1039/C6FD00221H
[3] M.C. Beard, J. L. Blackburn, J. C. Johnson, G. Rumbles, Status and prognosis of future-generation photoconversion to photovoltaics and solar fuels, ACS Energy Lett. 1 (2016)344–347. https://doi.org/10.1021/acsenergylett.6b00204
[4] S. Chu, Y. Cui, N. Liu, The path towards sustainable energy, Nat. Mater. 16 (2016) 16–22. https://doi.org/10.1038/nmat4834
[5] A. Dibenedetto, Across the board: angeladibenedetto, ChemSusChem 9 (2016) 3124–3127. https://doi.org/10.1002/cssc.201601431
[6] W. Tu, Y. Zhou, Z. Zou, Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: State-of-the-art accomplishment, challenges, and prospects,Adv. Mater. 26 (2014) 4607–4626. https://doi.org/10.1002/adma.201400087
[7] X. Chang, T. Wang, J. Gong, Effective Charge Carrier Utilizationin Visible-Light-Driven CO2Conversion, in: Z. Mi, L. Wang, C. Jagadish (Eds.), Semiconductors and Semimetals, Academic Press, Burlington, 97 (2017) pp. 429-467.
[8] D. A. Neamen, Semiconductor Physics and Devices: Basic Principles, Fourth Edition, McGraw-Hill Education, New York, 2011.
[9] Y. Y. Peter, M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties, Fourth Edition, Springer-Verlag, Berlin-Heidelberg, 2010.
[10] S. M. Sze and Kwok K. Ng, Physics of Semiconductor Devices, Third Edition, John Wiley & Sons, New Jersey, 2007.
[11] R. F. Pierret, Advanced Semiconductor Fundamentals (Modular Series on Solid State Devices, Vol. 6), Pearson Prentice Hall, New Jersey, 2002.
[12] K. W. Böer, Introduction to Space Charge Effects in Semiconductors, Springer-Verlag Berlin Heidelberg, 2010. https://doi.org/10.1007/978-3-642-02236-4
[13] A. I. Kokorin, D. W. Bahnemann, Chemical Physics of Nanostructured Semiconductors, CRC Press, The Netherlands, 2003.
[14] W. Shockley, Electrons and Holes in Semiconductors with Application to Transistor Electronics, Van Nostrand Reinhold Inc., U.S, 1950.
[15] X. Yang, D. Wang, Photophysics and photochemistry at the semiconductor/electrolyte interface for solar water splitting, in: Z. Mi, L. Wang, C. Jagadish (Eds.), Semiconductors and Semimetals, Academic Press, Burlington, 97 (2017) pp. 47-80.
[16] J. Bisquert, Nanostructured Energy Devices: Equilibrium Concepts and Kinetics, CRC Press, Boca Raton, 2015.
[17] A. G. Milnes, D. L. Feucht, Heterojunction and Metal Semiconductor Junctions, Academic Press, New York, 1972.
[18] B. L. Sharma, Metal-Semiconductor Schottky Barrier Junctions and Their Applications, Plenum Press, New York, 1984. https://doi.org/10.1007/978-1-4684-4655-5
[19] M. X. Tan, P. E. Laibinis, S.T. Nguyen, J. M. Kesselman, C. E. Stanton, N. E. Lewis, Principles and Applications of Semiconductor Photoelectrochemistry, in:K. D. Karlin (Eds.), Progress in Inorganic Chemistry, John Wiley & Sons, Inc., Hoboken, NJ, USA, 41 (1994) pp. 21-144. https://doi.org/10.1002/9780470166420.ch2
[20] M. Gratzel, Photoelectrochemical cells, Nature 414(2001) 338–344. https://doi.org/10.1038/35104607
[21] J. O’M. Bockris, A. K.N. Reddy, M. E. Gamboa-Aldeco, Modern Electrochemistry 2A: Fundamentals of Electrodics,Springer-Verlag US, 2000.
[22] R. Memming, Semiconductor Photoelectrochemistry, Wiley VCH, Weinheim, 2015.
[23] A. J. Bard, M. Stratmann, S. Licht, Encyclopedia of Electrochemistry, Semiconductor Electrodes and Photoelectrochemistry, Volume 6, Wiley-VCH, 2002.
[24] S. Srinivasan, Electrode/Electrolyte Interfaces: Structure and Kinetics of Charge Transfer, in: Fuel Cells from Fundamental to Application, Springer US, Boston, 2006, pp. 27–92.
[25] W. Plieth, Electrochemistry of Material Science, Elsevier B.V., UK, 2008.
[26] N. Sato, Electrochemistry at Metal and Semiconductor Electrodes, Elsevier B.V. The Netherlands, 1998.
[27] A. J. Bard, A. B. Bocarsly, F. R. F. Fan, E. G. Walton, M. S. Wrighton, The concept of Fermi level pinning at semiconductor/liquid junctions. Consequences for energy conversion efficiency and selection of useful solution redox couples in solar devices, J. Am. Chem. Soc. 102 (1980) 3671-3677. https://doi.org/10.1021/ja00531a001
[28] J.E. Thorne, S. Li, C. Du, G. Qin, D. Wang, Energetics at the surface of photoelectrodes and its influence on the photoelectrochemical properties, J. Phys. Chem. Lett. 6 (2015) 4083–4088. https://doi.org/10.1021/acs.jpclett.5b01372
[29] W. W. Gartner, Depletion layer photoeffects in semiconductor, 116 (1959) 84-87.
[30] Z. Zhang, J. T. Yates, Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces, Chem. Rev. 112 (2012) 5520-5551. https://doi.org/10.1021/cr3000626
[31] G. N. Lewis, Merle Randall, Thermodynamics and the Free Energy of Chemical Substances, McGraw-Hill, United States, 1923.
[32] A. Smets, K. Jager, O. Isabella, R. V. Swaaij, M. Zeman, Solar Energy: The Physics and Engineering of Photovoltaic Conversion, Technologies and Systems, UTI Cambridge, 2016.
[33] W. Shockley, W. T. Read, Statistics of the recombinations of holes and electrons, Phys. Rev. 87 (1952) 835. https://doi.org/10.1103/PhysRev.87.835
[34] R. N. Hall, Electron-hole recombination in germanium, Phys. Rev. 87 (1952) 387. https://doi.org/10.1103/PhysRev.87.387
[35] J. Bisquert, P. Cendula, L. Bertoluzzi, S. Gimenez, Energy diagram of semiconductor/electrolyte junctions, J. Phys. Chem. Lett. 5 (2014) 205–207. https://doi.org/10.1021/jz402703d
[36] W.A. Smith, I.D. Sharp, N.C. Strandwitz, J. Bisquert, Interfacial band-edge energetics for solar fuels production, Energy Environ. Sci. 8 (2015) 2851–2862. https://doi.org/10.1039/C5EE01822F
[37] B. Chai, T. Peng, P. Zeng and J. Mao, Synthesis of floriated In2S3 decorated with TiO2 nanoparticles for efficientphotocatalytic hydrogen production under visible light, J. Mater. Chem. 21 (2011)14587–14593. https://doi.org/10.1039/c1jm11566a
[38] Z. He, D. Wang, J. Tang, S. Song, J. Chen, X. Tao, A quasi-hexagonal prism-shaped carbon nitride for photoreduction of carbon dioxide under visible light, Environ. Sci. Pollut. Res. 24 (2017) 8219-8229. https://doi.org/10.1007/s11356-017-8497-4
[39] W. J. Chun, A. Ishikawa, H. Fujisawa, T. Takata, J. N. Kondo, M. Hara, M. Kawai, Y. Matsumoto, K. Domen, Conduction and valence band positions of Ta2O5, TaON, and Ta3N5 by UPS and electrochemical methods, J. Phys. Chem. B 107 (2003) 1798-1803. https://doi.org/10.1021/jp027593f
[40] S. Gimenez, H.K. Dunn, P. Rodenas, F. Fabregat-Santiago, S.G. Miralles, E.M. Barea, R. Trevisan, A. Guerrero, J. Bisquert, Carrier density and interfacial kinetics of mesoporous TiO2 in aqueous electrolyte determined by impedance spectroscopy, J. Electroanal. Chem. 668 (2012) 119–125. https://doi.org/10.1016/j.jelechem.2011.12.019
[41] L. Bertoluzzi, P. Lopez-Varo, J.A. Jimenez Tejada, J. Bisquert, Charge transfer processes at the semiconductor/electrolyte interface for solar fuel production: insight from impedance spectroscopy, J. Mater. Chem. A. 4 (2016) 2873–2879. https://doi.org/10.1039/C5TA03210E
[42] D. B. Bonham, M. E. Orazem, A Mathematical model for the influence of deep‐level electronic states on photoelectrochemical impedance spectroscopy I. Theoretical development, J. Electrochem. Soc. 139 (1992)118-126. https://doi.org/10.1149/1.2069155
[43] S.K. Haram, A. Kshirsagar, Y.D. Gujarathi, P.P. Ingole, O.A. Nene, G.B. Markad, S.P. Nanavati, Quantum confinement in CdTe quantum dots: Investigation through cyclic voltammetry supported by density functional theory (DFT), J. Phys. Chem. C. 115 (2011) 6243–6249. https://doi.org/10.1021/jp111463f
[44] L. Bertoluzzi, L. Badia-Bou, F. Fabregat-Santiago, S. Gimenez, J. Bisquert, Interpretation of cyclic voltammetry measurements of thin semiconductor films for solar fuel applications, J. Phys. Chem. Lett. 4 (2013) 1334–1339. https://doi.org/10.1021/jz400573t
[45] K. Gelderman, L. Lee, S.W. Donne, Flat-band potential of a semiconductor: Using the Mott–Schottky equation, J. Chem. Educ. 84 (2007) 685. https://doi.org/10.1021/ed084p685
[46] W.J. Albery, G.J. O’Shea, A.L. Smith, Interpretation and use of Mott-Schottky plots at the semiconductor/electrolyte interface, J. Chem. Soc. Faraday Trans. 92 (1996) 4083–4085. https://doi.org/10.1039/FT9969204083
[47] A. Mani, C. Huisman, A. Goossens, J. Schoonman, Mott−Schottky analysis and impedance spectroscopy of TiO2/6T and ZnO/6T devices, J. Phys. Chem. B. 112 (2008) 10086–10091. https://doi.org/10.1021/jp8013964
[48] O. Almora, C. Aranda, E. Mas-Marzá, G. Garcia-Belmonte, On Mott-Schottky analysis interpretation of capacitance measurements in organometal perovskite solar cells, Appl. Phys. Lett. 109 (2016) 173903. https://doi.org/10.1063/1.4966127
[49] A. Lasia, Semiconductors and Mott-Schottky Plots, in: Electrochemical Impedance Spectroscopy and its Applications,Springer, New York, 2013, pp.251-255.
[50] H. Narayanan, B. Viswanathan, S. Yesodharan, Photocatalytic reduction carbon
dioxide: Issues and prospects, Curr. Catal. 5 (2016) 79-107. https://doi.org/10.2174/2211544705666160427113828
[51] H. Narayanan, H. Nair,B. Viswanathan, On the current status of the mechanistic aspects of photocatalyticreduction of carbon dioxide, Indian J. Chem., Sect. A. 56A (2017) 251-269.
[52] E.Y. Liu, J.E. Thorne, Y. He, D. Wang, Understanding photocharging effects on bismuth vanadate, ACS Appl. Mater. Interfaces. 9 (2017) 22083–22087. https://doi.org/10.1021/acsami.7b06528
[53] J. Hu, R. Gottesman, L. Gouda, A. Kama, M. Priel, S. Tirosh, J. Bisquert, A. Zaban, Photovoltage behavior in perovskite solar cells under light-soaking showing photoinduced interfacial changes, ACS Energy Lett. 2 (2017) 950–956. https://doi.org/10.1021/acsenergylett.7b00212
[54] R. Gottesman, P. Lopez-Varo, L. Gouda, J.A. Jimenez-Tejada, J. Hu, S. Tirosh, A. Zaban, J. Bisquert, Dynamic phenomena at perovskite/electron-selective contact interface as interpreted from photovoltage decays, Chem. 1 (2016) 776–789. https://doi.org/10.1016/j.chempr.2016.10.002
[55] V. Jeyalakshmi, R. Mahalakshmy, K. Ramesh, P.V.C. Rao, N. V Choudary, G. Sri Ganesh, K. Thirunavukkarasu, K.R. Krishnamurthy, B. Viswanathan, Visible light-drivenreduction of carbon dioxide with water on modified Sr3Ti2O7 catalysts, RSC Adv. 5 (2015) 5958–5966. https://doi.org/10.1039/C4RA11985A
[56] V. Jeyalakshmi, S. Tamilmani, R. Mahalakshmy, P. Bhyrappa, K.R. Krishnamurthy, B. Viswanathan, Sensitization of La-modified NaTaO3 with cobalt tetra phenyl porphyrin for photocatalytic reduction of CO2 by water with UV–visible light, J. Mol. Catal. A Chem. 420 (2016) 200–207. https://doi.org/10.1016/j.molcata.2016.04.027
[57] L. Li, P.A. Salvador, G.S. Rohrer, Photocatalysts with internal electric fields, Nanoscale. 6 (2014) 24–42. https://doi.org/10.1039/C3NR03998F
“”
“”
“”
““