Enhanced Photocatalytic Activity of TiO2 Supported on Different Carbon Allotropes for Degradation of Pharmaceutical Organic Compounds

$20.00

Enhanced Photocatalytic Activity of TiO2 Supported on Different Carbon Allotropes for Degradation of Pharmaceutical Organic Compounds

R.J. Tayade, W.K. Jo

TiO2-carbon composites with different amount of TiO2 (5%, 10%, 20%, 30% and 50%) supported on different carbon allotropes such as activated charcoal, graphite, and graphene were synthesized by hydrothermal method. The synthesized catalysts were characterized by X-ray diffraction (XRD), ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS), N2 adsorption and scanning electron microscopy (SEM) techniques. XRD result demonstrated that, the loading of TiO2 has not significantly altered the structure of the support carbon allotropes. However, the bandgap and surface area of the composite was varied with respect to the amount of TiO2 loading in the composites. The photocatalytic activity of the synthesized TiO2-carbon composites was evaluated by photocatalytic degradation of isoniazide in aqueous medium. All the synthesized catalyst were found easy to separate from the reaction mixture. The result demonstrated that the composites synthesized using activated charcoal showed enhanced photocatalytic activity as compared to the other allotropes of carbon. The highest photocatalytic activity was obtained using a composite having 30% TiO2 supported on activated charcoal.

Keywords
Activated Charcoal, Graphite, Graphene, TiO2, Isoniazide, Photocatalysis

Published online 2/25/2018, 21 pages

DOI: https://dx.doi.org/10.21741/9781945291593-4

Part of Photocatalytic Nanomaterials for Environmental Applications

References
[1] U.I. Gaya, A.H. Abdullah, Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. J Photochem Photobio C., 9 (2008) 1-12. https://doi.org/10.1016/j.jphotochemrev.2007.12.003
[2] H. Yang, G. Li, T. An, Y. Gao, J. Fu, Photocatalytic degradation kinetics and mechanism of environmental pharmaceuticals in aqueous suspension of TiO2: A case of sulfa drugs. Catal .Today, 153 (2010) 200-207. https://doi.org/10.1016/j.cattod.2010.02.068
[3] M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev., 95 (1995) 69-96. https://doi.org/10.1021/cr00033a004
[4] P.K. Surolia, M.A. Lazar, R.J. Tayade, R.V. Jasra, Photocatalytic degradation of 3, 3′-Dimethylbiphenyl-4, 4′-diamine (o-Tolidine) over nanocrystalline TiO2 synthesized by sol− gel, solution combustion, and hydrothermal methods, Ind. Eng. Chem. Res., 47 (2008) 5847-5855. https://doi.org/10.1021/ie800073j
[5] Z. Ding, X. Hu, G.Q. Lu, P.-L. Yue, P.F. Greenfield, Novel silica gel supported TiO2 photocatalyst synthesized by CVD method, Langmuir, 16 (2000) 6216-6222. https://doi.org/10.1021/la000119l
[6] Z. Liu, D.D. Sun, P. Guo, J.O. Leckie, An efficient bicomponent TiO2/SnO2 nanofiber photocatalyst fabricated by electrospinning with a side-by-side dual spinneret method, Nano Lett.,7 (2007) 1081-1085. https://doi.org/10.1021/nl061898e
[7] P.K. Surolia, R.J. Tayade, R.V. Jasra, TiO2-coated cenospheres as catalysts for photocatalytic degradation of methylene blue, p-nitroaniline, n-decane, and n-tridecane under solar irradiation, Ind. Eng. Chem. Res., 49 (2010) 8908-8919. https://doi.org/10.1021/ie100388m
[8] P. Huo, Y. Yan, S. Li, H. Li, W. Huang, Floating photocatalysts of fly-ash cenospheres supported AgCl/TiO2 films with enhanced Rhodamine B photodecomposition activity, Desalination, 256 (2010) 196-200. https://doi.org/10.1016/j.desal.2010.01.012
[9] M. Holgado, A. Cintas, M. Ibisate, C. J. Serna, C. Lopez, F. Meseguer, Three-dimensional arrays formed by monodisperse TiO2 coated on SiO2 spheres. J. Colloid. Interface Sci., 229 (2000) 6-11. https://doi.org/10.1006/jcis.2000.6973
[10] W.K Jo, R.J. Tayade, Facile photocatalytic reactor development using nano-TiO2 immobilized mosquito net and energy efficient UVLED for industrial dyes effluent treatment, Journal of Environmental Chemical Engineering, 4 (2016) 319-327. https://doi.org/10.1016/j.jece.2015.11.024
[11] T.K. Pathak, N.H. Vasoya, T.S. Natarajan, K.B. Modi, R.J. Tayade, Photocatalytic degradation of aqueous nitrobenzene solution using nanocrystalline Mg-Mn ferrites, Materials Science Forum 764 (2013) 116-129. https://doi.org/10.4028/www.scientific.net/MSF.764.116
[12] R.J. Tayade, R.G. Kulkarni, R.V. Jasra, Enhanced photocatalytic activity of TiO2-coated NaY and HY zeolites for the degradation of methylene blue in water. Ind. Eng. Chem. Res., 46 (2007) 369-376. https://doi.org/10.1021/ie060641o
[13] R.J. Tayade, P.K. Surolia, M.A. Lazar, R.V. Jasra, Enhanced photocatalytic activity by silver metal ion exchanged NaY zeolite photocatalysts for the degradation of organic contaminants and dyes in aqueous medium, Ind. Eng. Chem. Res., 47 (2008) 7545-7551. https://doi.org/10.1021/ie800441c
[14] L. Shao, Y. Yao, S. Quan, H. Wei, R. Wang, Z. Guo, One-pot in situ synthesized TiO2/layered double hydroxides (LDHs) composites toward environmental remediation, Mater. Lett. 114 (2014) 111-114. https://doi.org/10.1016/j.matlet.2013.09.121
[15] C. Ooka, H. Yoshida, K. Suzuki, T. Hattori, Highly hydrophobic TiO2 pillared clay for photocatalytic degradation of organic compounds in water, Micropor. Mesopor. Mat., 67 (2004) 143-150. https://doi.org/10.1016/j.micromeso.2003.10.011
[16] T.S. Natarajan, H.C. Bajaj, R.J. Tayade, Palmyra tuber peel derived activated carbon and anatase TiO 2 nanotube based nanocomposites with enhanced photocatalytic performance in rhodamine 6G dye degradation, Process Safety and Environmental Protection 104 (2016) 346-357. https://doi.org/10.1016/j.psep.2016.09.021
[17] Pierson, H. 1993, Handbook of carbon graphite, diamond, and fullerenes: properties, processing, and applications. Park Ridge, NJ, Noyes Publications.
[18] Kruger A. 2010 Carbon materials and nanotechnology. Weinheim, Germany, Wieley-VCH.
[19] W.K. Jo, Y. Won, I. Hwang, R.J. Tayade, Enhanced photocatalytic degradation of aqueous nitrobenzene using graphitic carbon-TiO2 composites, Ind. Eng. Chem. Res., 53 (2014) 3455-3461. https://doi.org/10.1021/ie500245d
[20] F.A. Filho, A.J.G. Zarbin, Hollow porous carbon microspheres obtained by the pyrolysis of TiO2/poly(furfuryl alcohol) composite precursors, Carbon. 44 (2006) 2869–2876. https://doi.org/10.1016/j.carbon.2006.06.002
[21] M. Ouzzine, A.J. Romero-Anaya, M.A. Lillo-Rodenas, A. Linares-Solano, Spherical activated carbon as an enhanced support for TiO2/AC photocatalysts, Carbon, 67 (2014) 104-118. https://doi.org/10.1016/j.carbon.2013.09.069
[22] B. Yin, J.T. Wang, W. Xu, D.–H. Long, W.M. Qiao, L.-C. Ling, Preparation of TiO2/mesoporous carbon composites and their photocatalytic performance for methyl orange degradation, Carbon, 56 (2013) 393–394. https://doi.org/10.1016/j.carbon.2013.01.050
[23] R. Leary, A. Westwood, Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis, Carbon, 49 (2011) 741-772. https://doi.org/10.1016/j.carbon.2010.10.010
[24] Z. He, W. Que, J. Chen, Y. He, G. Wang, Surface chemical analysis on the carbon-doped mesoporous TiO2 photocatalysts after post-thermal treatment: XPS and FTIR characterization, J. Phys. Chem. Solids, 74 (2013) 924-928. https://doi.org/10.1016/j.jpcs.2013.02.001
[25] W.C. Oh, and F.J. Zhang, Preparation and characterization of graphene oxide reduced from a mild chemical method, Asian J. Chem., 23 (2011) 875-79
[26] R.A. Spurr, H. Myers, Quantitative analysis of anatase-rutile mixture with an X-ray diffractometer, Anal. Chem. 29 (1957) 760-762. https://doi.org/10.1021/ac60125a006
[27] Gregg S.J., Sing K.S.W. 1982, Adsorption, Surface Area and Porosity, 2nd ed., New York, Academic Press.
[28] S. Ding, J.S. Chen, D. Luan, F.Y.C. Boey, S. Madhavi, and X.W. Lou, Graphene-supported anatase TiO2 nanosheets for fast lithium storage, Chem. Commun. 47(2011) 5780–5782. https://doi.org/10.1039/c1cc10687b
[29] B. Pan, and B. Xing, Adsorption mechanisms of organic chemicals on carbon nanotubes, Environ. Sci. Technol., 42 (2008) 9005-9013. https://doi.org/10.1021/es801777n
[30] C. Moreno-Castilla, Adsorption of organic molecules from aqueous solutions on carbon materials, Carbon, 42 (2004) 83–94. https://doi.org/10.1016/j.carbon.2003.09.022