TiO2-High Surface Area Materials Based Composite Photocatalytic Nanomaterials for Degradation of Pollutants: A Review
M. Thomas, T.S. Natarajan
Heterogeneous TiO2 semiconductor based photocatalytic process is widely recognized oxidation technology for degradation of pollutants which completely converts the pollutants into water, carbon dioxide and inorganic compounds as compared to other conventional treatment technologies. The photocatalyst properties, reaction operational parameters and the lifetime of photogenerated electron hole pairs possess considerable influence in the degradation efficiency. The degradation reaction comprises of adsorption of pollutants onto the catalyst surface followed by reaction on the catalyst surface and desorption of degraded pollutants from the surface. Thus, the adsorption of pollutants is one of the important parameters for enriching the degradation efficiency which associates with the surface area of the photocatalysts. However, in some cases surface area did not favor the degradation efficiency in which the lifetime of the charge carriers improves the degradation efficiency. Herein, we aim to review on different TiO2-high surface area materials based composite photocatalysts, different synthesis methodologies and their degradation efficiency.
Keywords
Photocatalysis, TiO2, High Surface Area, Activated Carbon, Carbon Nanotube, Graphene Oxide, Zeolite, Silica, Irradiation, Pollutants Degradation
Published online 2/25/2018, 49 pages
DOI: https://dx.doi.org/10.21741/9781945291593-2
Part of Photocatalytic Nanomaterials for Environmental Applications
References
[1] M.A. Montgomery, M. Elimelech, Water and sanitation in developing countries: Including health in the equation, Environ. Sci. Technol. 41 (2007) 17-24. https://doi.org/10.1021/es072435t
[2] https://www.un.org/waterforlifedecade/background.shtml
[3] E. Khan, M. Li, C.P. Huang, Hazardous waste treatment technologies, Water Environ. Res. 79 (2007) 1858-1902. https://doi.org/10.2175/106143007X218601
[4] V.K. Gupta, Suhas, Application of low-cost adsorbents for dye removal – A review, J. Environ. Manage. 90 (2009) 2313-2342. https://doi.org/10.1016/j.jenvman.2008.11.017
[5] I. Ali, New Generation Adsorbents for Water Treatment, Chem. Rev. 112 (2012) 5073-5091. https://doi.org/10.1021/cr300133d
[6] A. Ahmad, S.H. Mohd-Setapar, C.S. Chuong, A. Khatoon, W.A. Wani, R. Kumar, M. Rafatullah, Recent advances in new generation dye removal technologies: novel search for approaches to reprocess wastewater, RSC Adv. 5 (2015) 30801-30818. https://doi.org/10.1039/C4RA16959J
[7] W.H. Glaze, J.W. Kang, D.H. Chapin, The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation, Ozone Sci. Eng. 9 (1987) 335-352. https://doi.org/10.1080/01919518708552148
[8] R. Andreozzi, V. Caprio, A. Insola, R. Marotta, Advanced oxidation processes (AOP) for water purification and recovery, Catal. Today 53(1999) 51-59. https://doi.org/10.1016/S0920-5861(99)00102-9
[9] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238(1972) 37-38. https://doi.org/10.1038/238037a0
[10] J.H. Carey, J. Lawrence, H.M. Tosine, Photodechlorination of PCB’s in the presence of titanium dioxide in aqueous suspensions. Bull. Environ. Contam. Toxicol. 16 (1976) 697-701. https://doi.org/10.1007/BF01685575
[11] S.N. Frank, A.J. Bard, Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder. J. Am. Chem. Soc. 99 (1977) 303-304. https://doi.org/10.1021/ja00443a081
[12] J.-M. Herrmann, C. Guillard, P. Pichat, Heterogeneous photocatalysis: an emerging technology for water treatment, Catal. Today 17 (1993) 7-20. https://doi.org/10.1016/0920-5861(93)80003-J
[13] A.L. Linsebigler, G.Q. Lu, J.T. Yates, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chem. Rev. 95 (1995) 735-758. https://doi.org/10.1021/cr00035a013
[14] R.J. Tayade, R.G. Kulkarni, R.V. Jasra, Photocatalytic degradation of aqueous nitrobenzene by nanocrystalline TiO2. Ind. Eng. Chem. Res. 45 (2006) 922-927. https://doi.org/10.1021/ie051060m
[15] X. Chen, S.S. Mao, Titanium dioxide nanomaterials: Synthesis, properties, modification, and applications, Chem. Rev. 107 (2007) 2891-2959. https://doi.org/10.1021/cr0500535
[16] R.J. Tayade, T.S. Natarajan, H.C. Bajaj, Photocatalytic degradation of methylene blue dye using ultraviolet light emitting diodes, Ind. Eng. Chem. Res. 48 (2009) 10262-10267. https://doi.org/10.1021/ie9012437
[17] A.A. Ismail, D.W. Bahnemann, Mesoporous titania photocatalysts: preparation, characterization and reaction mechanisms. J. Mater. Chem. 21 (2011) 11686-11707. https://doi.org/10.1039/c1jm10407a
[18] C. McCullagh, N. Skillen, M. Adams, P.K.J. Robertson, Photocatalytic reactors for environmental remediation: a review. J. Chem. Technol. Biotechnol. 86 (2011) 1002-1017. https://doi.org/10.1002/jctb.2650
[19] T.S. Natarajan, K. Natarajan, H.C. Bajaj, R.J. Tayade, Ultraviolet light emitting diode (UV-LED) source-based photocatalytic reactors for environmental remediation, in: Inamuddin (Eds), Advanced Functional Polymers and Composites. Volume 2, Nova Science Publishers, Inc. 2013, pp. 33-91.
[20] T.S. Natarajan, H.C. Bajaj, R.J. Tayade, Preferential adsorption behavior of methylene blue dye onto surface hydroxyl group enriched TiO2 nanotube and its photocatalytic regeneration. J. Colloid Interface Sci. 433 (2014) 104-114. https://doi.org/10.1016/j.jcis.2014.07.019
[21] U.G. Akpan, B.H. Hameed, Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: A review, J. Hazard. Mater. 170 (2009) 520-529. https://doi.org/10.1016/j.jhazmat.2009.05.039
[22] S. Ahmed, M.G. Rasul, R. Brown, M.A. Hashib, Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: A short review, J. Environ. Manage. 92 (2011) 311-330. https://doi.org/10.1016/j.jenvman.2010.08.028
[23] S. Sarkar, R. Das, H. Choi, C. Bhattacharjee, Involvement of process parameters and various modes of application of TiO2 nanoparticles in heterogeneous photocatalysis of pharmaceutical wastes- a short review, RSC Adv. 4 (2014) 57250-57266. https://doi.org/10.1039/C4RA09582K
[24] H. Cheng, J. Wang, Y. Zhao, X. Han, Effect of phase composition, morphology, and specific surface area on the photocatalytic activity of TiO2 nanomaterials, RSC Adv. 4 (2014) 47031-47038. https://doi.org/10.1039/C4RA05509H
[25] K. M. Reza, A. Kurny, F. Gulshan, Parameters affecting the photocatalytic degradation of dyes using TiO2: a review, Appl. Water Sci. 7 (2017) 1569-1578. https://doi.org/10.1007/s13201-015-0367-y
[26] W. Choi, A. Termin, M.R. Hoffmann, The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics, J. Phys. Chem. 98 (1994) 13669-13679. https://doi.org/10.1021/j100102a038
[27] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science 293 (2001) 269-271. https://doi.org/10.1126/science.1061051
[28] M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O’Shea, M.H. Entezarig, D.D. Dionysiou, A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B. 125 (2012) 331-349. https://doi.org/10.1016/j.apcatb.2012.05.036
[29] L.G. Devi, R. Kavitha, A review on non-metal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: Role of photogenerated charge carrier dynamics in enhancing the activity, Appl. Catal. B. 140-141 (2013) 559-587. https://doi.org/10.1016/j.apcatb.2013.04.035
[30] T.S. Natarajan, K. Natarajan, H.C. Bajaj, R.J. Tayade, Enhanced photocatalytic activity of bismuth-doped TiO2 nanotubes under direct sunlight irradiation for degradation of Rhodamine B dye. J. Nanopart. Res. 15:1669 (2013) 1-18.
[31] E.P. Reddy, L. Davydov, P. Smirniotis, TiO2-loaded zeolites and mesoporous materials in the sonophotocatalytic decomposition of aqueous organic pollutants: the role of the support, Appl. Catal. B. 42 (2003) 1-11. https://doi.org/10.1016/S0926-3373(02)00192-3
[32] S. Anandan, M. Yoon, Photocatalytic activities of the nano-sized TiO2-supported Y-zeolites, J. Photochem. Photobio. C: Photochem. Rev. 4 (2003) 5-18. https://doi.org/10.1016/S1389-5567(03)00002-9
[33] A. Corma, H. Garcia, Zeolite-based photocatalysts, Chem. Commun., (2004) 1443- 1459. https://doi.org/10.1039/b400147h
[34] J.L. Faria, W. Wang, Carbon materials in photocatalysis. In: Serp P, Figueiredo JL, editors. Carbon materials for catalysis. Hoboken, NJ: John Wiley & Sons; 2009. p. 481-506.
[35] K. Woan, G. Pyrgiotakis, W. Sigmund, Photocatalytic Carbon-Nanotube-TiO2 Composites, Adv. Mater. 21 (2009) 2233-2239. https://doi.org/10.1002/adma.200802738
[36] H. Zhang, X.J. Lv, Y.M. Li, Y. Wang, J.H. Li, P25-Graphene Composite as a High Performance Photocatalyst. ACS Nano 4 (2010) 380-386. https://doi.org/10.1021/nn901221k
[37] C.-C. Wang, J.-R. Li, X.-L. Lv, Y.-Q. Zhang, G. Guo, Photocatalytic organic pollutants degradation in metal-organic frameworks, Energy Environ. Sci. 7 (2014) 2831-2867. https://doi.org/10.1039/C4EE01299B
[38] T.S. Natarajan, H.C. Bajaj, R.J. Tayade, Palmyra tuber peel derived activated carbon and anatase TiO2 nanotube based nanocomposites with enhanced photocatalytic performance in rhodamine 6G dye degradation. Process Saf. Environ. Prot. 104 (2016) 346-357. https://doi.org/10.1016/j.psep.2016.09.021
[39] T.S. Natarajan, J.Y. Lee, H.C. Bajaj, W.K. Jo, R.J. Tayade, Synthesis of multiwall carbon nanotubes/TiO2 nanotube composites with enhanced photocatalytic decomposition efficiency. Catal. Today 282 (2017) 13-23. https://doi.org/10.1016/j.cattod.2016.03.018
[40] A.H. Ramırez, I.M. Ramırez (Eds), Photocatalytic Semiconductors: Synthesis, Characterization, and Environmental Applications, Springer International Publishing, Switzerland 2015.
[41] C.J. Brinker, G.W. Scherer, Sol-gel science. Academic, San Diego, (1990).
[42] M. Niederberger, N. Pinna, Metal oxide nanoparticles in organic solvents. Synthesis, formation, assembly and application. Springer, London (2009). https://doi.org/10.1007/978-1-84882-671-7
[43] K. Byrappa, M. Yoshimura, Handbook of hydrothermal technology. A Technology for Crystal Growth and Materials Processing. Noyes, New York, (2001).
[44] S. Guo, Z. Wu, H. Wang, F. Dong, Synthesis of mesoporous TiO2 nanorods via a mild template-free sonochemical route and their photocatalytic performances. Catal Commun 10 (2009) 1766-1770. https://doi.org/10.1016/j.catcom.2009.05.027
[45] S. Komarneni, R.K. Rajha, H. Katsuki, Microwave-hydrothermal processing of titanium dioxide. Mater. Chem. Phys. 61 (1999) 50-54. https://doi.org/10.1016/S0254-0584(99)00113-3
[46] G.L. Puma, A. Bono, D. Krishnaiah, J.G. Collin, Preparation of titanium dioxide photocatalyst loaded onto activated carbon support using chemical vapor deposition: A review paper, J. Hazard. Mater. 157 (2008) 209-219. https://doi.org/10.1016/j.jhazmat.2008.01.040
[47] R. Leary, A. Westwood, Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis, Carbon 49 (2011) 741-772. https://doi.org/10.1016/j.carbon.2010.10.010
[48] J. Matos, J. Laine, J.-M. Herrmanna, Synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon, Appl. Catal. B. 18 (1998) 281-291. https://doi.org/10.1016/S0926-3373(98)00051-4
[49] J. Matos, J. Laine, J.-M. Herrmann, Effect of the Type of Activated Carbons on the Photocatalytic Degradation of Aqueous Organic Pollutants by UV-Irradiated Titania, J. Catal. 200 (2001) 10-20. https://doi.org/10.1006/jcat.2001.3191
[50] C.H. Ao, S.C. Lee, Enhancement effect of TiO2 immobilized on activated carbon filter for the photodegradation of pollutants at typical indoor air level, Appl. Catal. B. 44 (2003) 191-205. https://doi.org/10.1016/S0926-3373(03)00054-7
[51] S. X. Liu, X.Y. Chen, X. Chen, A TiO2/AC composite photocatalyst with high activity and easy separation prepared by a hydrothermal method, J. Hazard. Mater. 143 (2007) 257-263. https://doi.org/10.1016/j.jhazmat.2006.09.026
[52] L.F. Velasco, J.B. Parra, C.O. Ania, Role of activated carbon features on the photocatalytic degradation of phenol, Appl. Surf. Sci. 256 (2010) 5254-5258. https://doi.org/10.1016/j.apsusc.2009.12.113
[53] B. Huang, S. Saka, Photocatalytic activity of TiO2 crystallite-activated carbon composites prepared in supercritical isopropanol for the decomposition of formaldehyde. J. Wood. Sci. 49 (2003) 79-85. https://doi.org/10.1007/s100860300013
[54] A. Tryba, A.W. Morawski, M. Inagaki, Application of TiO2-mounted activated carbon to the removal of phenol from water, Appl. Catal. B., 41 (2003) 427-433. https://doi.org/10.1016/S0926-3373(02)00173-X
[55] Y. Li, X. Li, J. Li, J. Yin, Photocatalytic degradation of methyl orange in a sparged tube reactor with TiO2-coated activated carbon composites. Catal. Commun. 6 (2005) 650-655. https://doi.org/10.1016/j.catcom.2005.06.008
[56] E. Carpio, P. Zúñiga, S. Ponce, J. Solis, J. Rodriguez, W. Estrada, Photocatalytic degradation of phenol using TiO2 nanocrystals supported on activated carbon, J. Mol. Catal. A: Chem. 228 (2005) 293-298. https://doi.org/10.1016/j.molcata.2004.09.066
[57] Y. Li, X. Li, J. Li, J. Yin, Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study, Water Res. 40 (2006) 1119-1126. https://doi.org/10.1016/j.watres.2005.12.042
[58] Y. Liu, S. Yang, J. Hong, C. Sun, Low-temperature preparation and microwave photocatalytic activity study of TiO2-mounted activated carbon. J. Hazard. Mater. 142 (2007) 208-215. https://doi.org/10.1016/j.jhazmat.2006.08.020
[59] M.-L. Chen, C.-S. Lim, W.-C. Oh, Preparation with different mixing ratios of anatase to activated carbon and their photocatalytic performance. J. Ceram. Pro. Res. 8 (2007) 119-124.
[60] H.E. Zhong, Y. Shaogui, J. Yongming, S. Cheng, Microwave photocatalytic degradation of Rhodamine B using TiO2 supported on activated carbon: Mechanism implication. J. Environ. Sci. 21(2009) 268-272. https://doi.org/10.1016/S1001-0742(08)62262-7
[61] X. Wang, Z. Hu, Y. Chen, G. Zhao, Y. Liu, Z. Wen, A novel approach towards high-performance composite photocatalyst of TiO2 deposited on activated carbon, Appl. Surf. Sci. 255 (2009) 3953-3958. https://doi.org/10.1016/j.apsusc.2008.10.083
[62] M. Baek, W. Jung, J. Yoon, J. Hong, Y. Lee, J. Suh, Preparation, characterization and photocatalytic activity evaluation of micro- and mesoporous TiO2/spherical activated carbon, J. Ind. Eng. Chem. 19 (2013) 469-477. https://doi.org/10.1016/j.jiec.2012.08.026
[63] M. Baek, J. Yoon, J. Hong, J. Suh, Application of TiO2-containing mesoporous spherical activated carbon in a fluidized bed photoreactor-Adsorption and photocatalytic activity, Appl. Catal. A: Gen. 450 (2013) 222-229. https://doi.org/10.1016/j.apcata.2012.10.018
[64] A. Omri, S.D. Lambert, J. Geens, F. Bennour, M. Benzina, Synthesis, surface characterization and photocatalytic activity of TiO2 supported on almond shell activated carbon, J. Mater. Sci. Technol. 30 (2014) 894-902. https://doi.org/10.1016/j.jmst.2014.04.007
[65] M. Ouzzine, A. J. Romero-Anaya, M.A. Lillo-Rodenas, A. L.-Solano, Spherical activated carbon as an enhanced support for TiO2/AC photocatalysts, Carbon, 67 (2014) 104-118. https://doi.org/10.1016/j.carbon.2013.09.069
[66] R.C. Asha, M. Kumar, Photocatalytic degradation of poultry wastewater using activated carbon-supported titanium dioxide, Desalin. Water Treat. 54 (2015) 3279-3290. https://doi.org/10.1080/19443994.2014.909332
[67] X. Li, H. Lin, X. Chen, H. Niu, T. Zhang, J. Liu, F. Qu, Fabrication of TiO2/porous carbon nanofibers with superior visible photocatalytic activity. New J. Chem. 39 (2015) 7863-7872. https://doi.org/10.1039/C5NJ01189B
[68] C. Zhang, D. Yang, X. Jiang, W. Jiang, Desulphurization performance of TiO2-modified activated carbon by a one-step carbonization activation method, Environ. Technol. 37 (2016), 15, 1-4 (doi:10.1080/09593330.2015.1135991).
[69] P. Singha, M.C. Vishnu, K.K. Sharma, A. Borthakur, P. Srivastava, D.B. Pal, D. Tiwary, P.K. Mishra, Photocatalytic degradation of Acid Red dye stuff in the presence of activated carbon-TiO2 composite and its kinetic enumeration, J. Water Process Eng. 12 (2016) 20-31. https://doi.org/10.1016/j.jwpe.2016.04.007
[70] M.G. Alalm, A. Tawfik, S. Ookawara, Enhancement of photocatalytic activity of TiO2 by immobilization on activated carbon for degradation of pharmaceuticals, J. Environ. Chem. Eng. 4 (2016) 1929-1937. https://doi.org/10.1016/j.jece.2016.03.023
[71] A. Eshaghi, S. Hayeripour, A. Eshaghi, Photocatalytic decolorization of reactive red 198 dye by a TiO2–activated carbon nano-composite derived from the sol-gel method, Res. Chem. Intermed. 42 (2016) 2461-2471. https://doi.org/10.1007/s11164-015-2161-8
[72] A.C. Martins, A.L. Cazetta, O. Pezoti, J.R.B. Souza, T. Zhang, E.J. Pilau, T. Asefa, V. C. Almeida, Sol-gel synthesis of new TiO2/activated carbon photocatalyst and its application for degradation of tetracycline, Ceram. Int. 43 (2017) 4411-4418. https://doi.org/10.1016/j.ceramint.2016.12.088
[73] M. Doi, S. Saka, H. Miyafuji, D.A.I. Gorang, Development of Carbonized TiO2-woody Composites for Environmental Cleaning, Mater. Sci. Res. Inter. 6 (2000) 15-21. https://doi.org/10.2472/jsms.49.3Appendix_15
[74] C. S. Chuang, M.-K. Wang, C.-H. Ko, C.-C. Ou, C.-H. Wu, Removal of benzene and toluene by carbonized bamboo materials modified with TiO2, Bioresource Technol. 99 (2008) 954-958. https://doi.org/10.1016/j.biortech.2007.03.003
[75] H.A. Le, L.T. Linh, S. Chin, J. Jurng, Photocatalytic degradation of methylene blue by a combination of TiO2-anatase and coconut shell activated carbon, Powder Technol. 225 (2012) 167-175. https://doi.org/10.1016/j.powtec.2012.04.004
[76] A.H. El-Sheikh, A.P. Newman, H. Al-Daffaee, S. Phull, N. Cresswell, S. York, Deposition of anatase on the surface of activated carbon, Surf. Coat. Technol. 187 (2004) 284-292. https://doi.org/10.1016/j.surfcoat.2004.03.012
[77] W.C. Oh, Synthesis and Characterization of Fe-containing AC/TiO2 Composites and Their Photodegradation Effect for the Piggery Waste, Environ. Eng. Res. 13 (2008) 85-92. https://doi.org/10.4491/eer.2008.13.2.085
[78] J. Matos, A. Garcia, T. Cordero, J.M. Chovelon, C. Ferronato, Eco-friendly TiO2-AC Photocatalyst for the Selective Photooxidation of 4-Chlorophenol, Catal. Lett. 130 (2009) 568-574. https://doi.org/10.1007/s10562-009-9989-8
[79] Z.D. Meng, K. Zhang, W.C. Oh, Preparation and Characterization and Visible Light Photocatalytic Activity of Fe-Treated AC/TiO2 Composites for Methylene Blue, J. Korean Ceramic Soc. 46 (2009) 621-626. https://doi.org/10.4191/KCERS.2009.46.6.621
[80] J. Kim, B.S. Kwak, M. Kang, TiO2/Carbon Composites Prepared from Rice Husk and the Removal of Bisphenol A in Photocatalytic Liquid System, Bull. Korean Chem. Soc. 31 (2010) 344-350. https://doi.org/10.5012/bkcs.2010.31.02.344
[81] M. Asilturk, S. Sener, TiO2-activated carbon photocatalysts: Preparation, characterization and photocatalytic activities, Chem. Eng. J 180 (2012) 354-363. https://doi.org/10.1016/j.cej.2011.11.045
[82] M.X. Zeng, Y.J. Li, M. Y. Ma, W. Chen, L.Y. Li, Photocatalytic activity and kinetics for acid yellow degradation over surface composites of TiO2-coated activated carbon under different photocatalytic conditions, Trans. Nonferrous Met. Soc. China 23 (2013) 1019-1027. https://doi.org/10.1016/S1003-6326(13)62561-3
[83] L. Youji, Z. Xiaoming, C. Wei, L. Leiyong, Z. Mengxiong, Q. Shidong, S. Shuguo, Photodecolorization of Rhodamine B on tungsten-doped TiO2/activated carbon under visible-light irradiation, J. Hazard. Mater. 227-228 (2012) 25-33. https://doi.org/10.1016/j.jhazmat.2012.04.071
[84] D. Li, X. Ma, X. Liu, L. Yu, Preparation and characterization of Nano-TiO2 loaded bamboo-based activated carbon fibers by H2O activation, BioResources. 9 (2012) 602-612.
[85] B. Wang, R. Karthikeyan, X.Y. Lu, J. Xuan, M.K.H. Leung, High photocatalytic activity of immobilized TiO2 nanorods on carbonized cotton fibers J. Hazard. Mater. 263 (2013) 659-669. https://doi.org/10.1016/j.jhazmat.2013.10.029
[86] S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56-58. https://doi.org/10.1038/354056a0
[87] P. Vincent, A. Brioude, C. Journet, S. Rabaste, S.T. Purcell, J.L. Brusq, J.C. Plenetm Inclusion of carbon nanotubes in a TiO2 sol-gel matrix, J. Non-Crystalline Solids 311 (2002) 130-137. https://doi.org/10.1016/S0022-3093(02)01371-6
[88] A. Jitianu, T.Cacciaguerra, R.Benoit, S. Delpeux, F. Béguin, S. Bonnamy, Synthesis and characterization of carbon nanotubes-TiO2 nanocomposites, Carbon, 42, 2004, 1147-1151. https://doi.org/10.1016/j.carbon.2003.12.041
[89] L. Chen, B.-L. Zhang, M.-Z. Qu, Z.-L. Yu, Preparation and characterization of CNTs-TiO2 composites, Powder Technol. 154 (2005) 70-72. https://doi.org/10.1016/j.powtec.2005.04.028
[90] B. Gao, C. Peng, G.Z. Chen, G.L. Puma, Photo-electro-catalysis enhancement on carbon nanotubes/titanium dioxide (CNTs/TiO2) composite prepared by a novel surfactant wrapping sol-gel method, Appl. Catal. B. 85 (2008) 17-23. https://doi.org/10.1016/j.apcatb.2008.06.027
[91] C.-Y. Yen, Y.-F. Lin, C.-H. Hung, Y.-H. Tseng, C.-C. Ma, M.-C. Chang, H. Shao, The effects of synthesis procedures on the morphology and photocatalytic activity of multi-walled carbon nanotubes/TiO2 nanocomposites, Nanotechnology 19 (2008) 045604 (11pp). https://doi.org/10.1088/0957-4484/19/04/045604
[92] T. An, J. Chen, X. Nie, G. Li, H. Zhang, X. Liu, H. Zhao Synthesis of Carbon Nanotube-Anatase TiO2 Sub-micrometer-sized Sphere Composite Photocatalyst for Synergistic Degradation of Gaseous Styrene, ACS Appl. Mater. Interfaces 4 (2012) 5988-5996. https://doi.org/10.1021/am3016476
[93] J.-Y. Jung, D. Lee, Y.-S. Lee, CNT-embedded hollow TiO2 nanofibers with high adsorption and photocatalytic activity under UV irradiation, J. Alloys Compds. 622 (2015) 651-656. https://doi.org/10.1016/j.jallcom.2014.09.068
[94] Z. Lu, X. Xiang, L. Zou, J. Xie, Fluffy-ball-shaped carbon nanotube-TiO2 nanorod nanocomposites for photocatalytic degradation of methylene blue, RSC Adv. 5 (2015) 42580-42586. https://doi.org/10.1039/C5RA05641A
[95] Z.-R. Tang, F. Li, Y. Zhang, X. Fu, Y.-J. Xu, Composites of Titanate Nanotube and Carbon Nanotube as Photocatalyst with High Mineralization Ratio for Gas-Phase Degradation of Volatile Aromatic Pollutant, J. Phys. Chem. C, 115 (2011) 7880-7886. https://doi.org/10.1021/jp1115838
[96] B.K. Vijayan, N.M. Dimitrijevic, D.F.-Shapiro, J. Wu, K.A. Gray, Coupling Titania Nanotubes and Carbon Nanotubes To Create Photocatalytic Nanocomposites, ACS Catal. 2 (2012) 223-229. https://doi.org/10.1021/cs200541a
[97] T. Jiang, L. Zhang, M. Ji, Q. Wang, Q. Zhao, X. Fu, H. Yin, Carbon nanotubes/TiO2 nanotubes composite photocatalysts for efficient degradation of methyl orange dye, Particuology 11 (2013) 737-742. https://doi.org/10.1016/j.partic.2012.07.008
[98] W. Wang, P. Serp, P. Kalck, J.L. Faria, Visible light photodegradation of phenol on MWNT-TiO2 composite catalysts prepared by a modified sol-gel method. J. Mol. Catal. A: Chem. 235 (2005) 194-199. https://doi.org/10.1016/j.molcata.2005.02.027
[99] W. Wang, P. Serp, P. Kalck, J.L. Faria, Photocatalytic degradation of phenol on MWNT and titania composite catalysts prepared by a modified sol-gel method. Appl. Catal. B. 56 (2005) 305-312. https://doi.org/10.1016/j.apcatb.2004.09.018
[100] Y. Yu, J. C. Yu, J.-G. Yu, Y.-C. Kwok, Y.-K. Che, J.-C. Zhao, L. Ding, W.-K. Ge, P.-K. Wong, Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes. App. Catal. A: Gen. 289 (2005) 186-196. https://doi.org/10.1016/j.apcata.2005.04.057
[101] G. An, W. Ma, Z. Sun, Z. Liu, B. Han, S. Miao, Z. Miao, K. Ding, Preparation of titania/carbon nanotube composites using supercritical ethanol and their photocatalytic activity for phenol degradation under visible light irradiation. Carbon 45 (2007) 1795-1801. https://doi.org/10.1016/j.carbon.2007.04.034
[102] B.Liu, H.C. Zeng, Carbon nanotubes supported mesoporous mesocrystals of anatase TiO2. Chem. Mater. 20 (2008) 2711-2718. https://doi.org/10.1021/cm800040k
[103] H. Wang, H.-L. Wang, W.-F. Jiang, Solar photocatalytic degradation of 2,6-dinitro-p-cresol (DNPC) using multi-walled carbon nanotubes (MWCNTs)-TiO2 composite photocatalysts. Chemosphere 75 (2009) 1105-1111. https://doi.org/10.1016/j.chemosphere.2009.01.014
[104] C.G. Silva, J.L. Faria, Photocatalytic oxidation of benzene derivatives in aqueous suspensions: Synergic effect induced by the introduction of carbon nanotubes in a TiO2 matrix. App. Catal. B. 101 (2010) 81-89. https://doi.org/10.1016/j.apcatb.2010.09.010
[105] W. Zhou, K. Pan, Y.Qu, F. Sun, C. Tian, Z. Ren, G. Tian, H. Fu, Photodegradation of organic contamination in wastewaters by bonding TiO2/single-walled carbon nanotube composites with enhanced photocatalytic activity. Chemosphere 81 (2010) 555-561. https://doi.org/10.1016/j.chemosphere.2010.08.059
[106] Z. Li, B. Gao, G.Z. Chen, R. Mokaya, S. Sotiropoulos, G.L. Puma, Carbon nanotube/titanium dioxide (CNT/TiO2) core-shell nanocomposites with tailored shell thickness, CNT content and photocatalytic/photoelectrocatalytic properties. Appl. Catal. B. 110 (2011) 50-57. https://doi.org/10.1016/j.apcatb.2011.08.023
[107] S. Wang, S. Zhou, Photodegradation of methyl orange by photocatalyst of CNTs/P-TiO2 under UV and visible-light irradiation, J. Hazard. Mater. 185 (2011) 77-85. https://doi.org/10.1016/j.jhazmat.2010.08.125
[108] L. Tian, L. Ye, K. Deng, L. Zan, TiO2/carbon nanotube hybrid nanostructures: Solvothermal synthesis and their visible light photocatalytic activity. J. Solid State Chem. 184 (2011)1465-1471. https://doi.org/10.1016/j.jssc.2011.04.014
[109] A. Saleh, V.K. Gupta, Photo-catalyzed degradation of hazardous dye methyl orange by use of a composite catalyst consisting of multi-walled carbon nanotubes and titanium dioxide. J. Colloid Interface Sci. 371 (2012) 101-106. https://doi.org/10.1016/j.jcis.2011.12.038
[110] L. Zhu, Z. Meng, K. Cho, W. Oh, Synthesis of CdS/CNT-TiO2 with a high photocatalytic activity in photodegradation of methylene blue. New Carbon Mater. 27 (2012) 166-174. https://doi.org/10.1016/S1872-5805(12)60011-0
[111] S.D. Dalt, A.K. Alves, C.P. Bergmann, Photocatalytic degradation of methyl orange dye in water solutions in the presence of MWCNT/TiO2 composites. Mater. Res. Bull. 48 (2013) 1845–1850. https://doi.org/10.1016/j.materresbull.2013.01.022
[112] D. Zhao, X. Yang, C. Chen, X. Wang, Enhanced photocatalytic degradation of methylene blue on multiwalled carbon nanotubes-TiO2. J. Colloid Interface Sci. 398 (2013) 234-239. https://doi.org/10.1016/j.jcis.2013.02.017
[113] A. Nourbakhsh, S. Abbaspour, M. Masood, S.N. Mirsattari, A. Vahedi, K. J.D. Mackenzie, Photocatalytic properties of mesoporous TiO2 nanocomposites modified with carbon nanotubes and copper. Ceram. Int. 42 (2016)11901-11906. https://doi.org/10.1016/j.ceramint.2016.04.112
[114] R. Zouzelka, Y. Kusumawati, M. Remzova, J. Rathousky, T. Pauporté, Photocatalytic activity of porous multiwalled carbon nanotube-TiO2 composite layers for pollutant degradation. J. Hazard. Mater. 317 (2016) 52-59. https://doi.org/10.1016/j.jhazmat.2016.05.056
[115] M. Bozic, V. Vivod, R. Vogrincic, I. Ban, G. Jaksa, S. Hribernik, D. Fakin, V. Kokol, Enhanced catalytic activity of the surface modified TiO2-MWCNT nanocomposites under visible light. J. Colloid Interface Sci. 465 (2016) 93-105. https://doi.org/10.1016/j.jcis.2015.11.051
[116] H. M. Yang, S.-J. Park, Effect of incorporation of multiwalled carbon nanotubes on photodegradation efficiency of mesoporous anatase TiO2 spheres. Mater. Chem. Phys. 186 (2017) 261-270. https://doi.org/10.1016/j.matchemphys.2016.10.052
[117] V.B. Koli, A.G. Dhodamani, S.D. Delekar, S.H. Pawar, In situ sol-gel synthesis of anatase TiO2-MWCNTs nanocomposites and their photocatalytic applications. J. Photochem. Photobiol. A: Chem. 333 (2017) 40-48. https://doi.org/10.1016/j.jphotochem.2016.10.008
[118] N. Shaari, S.H. Tan, A.R. Mohamed, Synthesis and characterization of CNT/Ce-TiO2 nanocomposite for phenol degradation, J. Rare Earths, 30 (2012) 651-658. https://doi.org/10.1016/S1002-0721(12)60107-0
[119] K. Ouyang, S. Xien, X. Ma, Effect of key operational factors on decolorization of methyl orange by multi-walled carbon nanotubes (MWCNTs)/TiO2/CdS composite under simulated solar light irradiation, Ceramics Inter. 39 (2013) 8035-8042. https://doi.org/10.1016/j.ceramint.2013.03.073
[120] P. Zhang, Z. Mo, L. Han, Y. Wang, G. Zhao, C. Zhang, Z. Li, Magnetic recyclable TiO2/multi-walled carbon nanotube nanocomposite: Synthesis, characterization and enhanced photocatalytic activity, J. Mol. Catal. A: Chem. 402 (2015) 17-22. https://doi.org/10.1016/j.molcata.2015.03.005
[121] M.M. Mohamed, G. Osman, K.S. Khairou, Fabrication of Ag nanoparticles modified TiO2-CNT heterostructures for enhanced visible light photocatalytic degradation of organic pollutants and bacteria, J. Environ. Chem. Eng. 3 (2015) 1847-1859. https://doi.org/10.1016/j.jece.2015.06.018
[122] S. Li, Z. Zhao, Y. Huang, J. Di, Y. Jia, H. Zheng, Hierarchically structured WO3-CNT@TiO2NS composites with enhanced photocatalytic activity, J. Mater. Chem. A 3 (2015) 5467-5473. https://doi.org/10.1039/C4TA06883A
[123] S. Stankovich, D. A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials, Nature 442 (2006) 282-286. https://doi.org/10.1038/nature04969
[124] X. Huang, X. Qi, F. Boey, H. Zhang, Graphene-based composites, Chem. Soc. Rev. 41 (2012) 666-686. https://doi.org/10.1039/C1CS15078B
[125] Q. Xiang, J. Yu, Graphene-Based Photocatalysts for Hydrogen Generation, J. Phys. Chem. Lett. 4 (2013) 753-759. https://doi.org/10.1021/jz302048d
[126] Y. Zhang, Z.-R. Tang, X. Fu, Y.-J. Xu, TiO2-Graphene Nanocomposites for Gas-Phase Photocatalytic Degradation of Volatile Aromatic Pollutant: Is TiO2-Graphene Truly Different from other TiO2-Carbon Composite Materials? ACS Nano 4 (2010) 7303-7314. https://doi.org/10.1021/nn1024219
[127] G. Jiang, Z. Lin, C. Chen, L. Zhu, Q. Chang, N. Wang, W. Wei, H. Tang, TiO2 nanoparticles assembled on graphene oxide nanosheets with high photocatalytic activity for removal of pollutants, Carbon 49 (2011) 2693-2701. https://doi.org/10.1016/j.carbon.2011.02.059
[128] S.D. Perera, R.G. Mariano, K. Vu, N. Nour, O. Seitz, Y. Chabal, K.J. Balkus, Jr., Hydrothermal Synthesis of Graphene-TiO2 Nanotube Composites with Enhanced Photocatalytic Activity, ACS Catal. 2 (2012) 949-956. https://doi.org/10.1021/cs200621c
[129] Y. Gu, M. Xing, J. Zhang, Synthesis and photocatalytic activity of graphene based doped TiO2 nanocomposites Appl. Surf. Sci. 319 (2014) 8-15. https://doi.org/10.1016/j.apsusc.2014.04.182
[130] M. Sun, Y. Fang, Y. Wang, S. Sun, J. He, Z. Yan, Synthesis of Cu2O/graphene/rutile TiO2 nanorod ternary composites with enhanced photocatalytic activity, J. Alloys Compds. 650 (2015) 520-527. https://doi.org/10.1016/j.jallcom.2015.08.002
[131] B. Appavu, S. Thiripuranthagan, Visible active N, S co-doped TiO2/graphene photocatalysts for the degradation of hazardous dyes, J. Photochem. Photobio. A: Chem. 340 (2017) 146-156. https://doi.org/10.1016/j.jphotochem.2017.03.010
[132] Y. Liang, H. Wang, H. S. Casalongue, Z. Chen, H. Dai, TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials. Nano Res. 3 (2010) 701-705. https://doi.org/10.1007/s12274-010-0033-5
[133] H. Zhang, P. Xu, G. Du, Z. Chen, K. Oh, D. Pan, Z. Jiao, A facile one-step synthesis of TiO2/graphene composites for photodegradation of methyl orange, Nano Res. 4 (2011) 274-283. https://doi.org/10.1007/s12274-010-0079-4
[134] V. Stengl, D. Popelková, P. Vlacil, TiO2-Graphene Nanocomposite as High Performace Photocatalysts. J. Phys. Chem. C 115 (2011) 25209-25218. https://doi.org/10.1021/jp207515z
[135] N. Li, G. Liu, C. Zhen, F. Li, L. Zhang, H.-M. Cheng, Battery performance and photocatalytic activity of mesoporous anatase TiO2 nanospheres/graphene composites by template-free self-assembly. Adv. Funct. Mater. 21 (2011) 1717-1722.
[136] M.S.A.S. Shah, A.R. Park, K. Zhang, J.H. Park, P.J. Yoo, Green synthesis of biphasic TiO2-reduced graphene oxide nanocomposites with highly enhanced photocatalytic activity. ACS Appl. Mater. Interfaces 4 (2012) 3893-3901. https://doi.org/10.1021/am301287m
[137] X. Pan, Y. Zhao, S. Liu, Carol L. Korzeniewski, S.Wang, Z. Fan, Comparing graphene-TiO2 nanowire and graphene-TiO2 nanoparticle composite photocatalysts. ACS Appl. Mater. Interfaces 4 (2012) 3944−3950. https://doi.org/10.1021/am300772t
[138] Q. Huang, S. Tian, D. Zeng, X. Wang, W. Song, Y. Li, W. Xiao, C. Xie, Enhanced photocatalytic activity of chemically bonded TiO2/graphene composites based on the effective interfacial charge transfer through the C−Ti bond. ACS Catal. 3 (2013) 1477-1485. https://doi.org/10.1021/cs400080w
[139] W.-K. Jo, Y. Won, I. Hwang, R.J. Tayade, Enhanced photocatalytic degradation of aqueous nitrobenzene using graphitic carbon-TiO2 composites. Ind. Eng. Chem. Res. 53 (2014) 3455-3461. https://doi.org/10.1021/ie500245d
[140] B. Appavu, K. Kannan, S. Thiripuranthagan, Enhanced visible light photocatalytic activities of template free mesoporous nitrogen doped reduced graphene oxide/titania composite catalysts. J. Ind. Eng. Chem. 36 (2016) 184-193. https://doi.org/10.1016/j.jiec.2016.01.042
[141] R. Wang, R. Yang, B. Wang, W. Gao, Efficient degradation of methylene blue by the nano TiO2-functionalized graphene oxide nanocomposite photocatalyst for wastewater treatment. Water Air Soil Pollut. 227:2 (2016) 1-9. https://doi.org/10.1007/s11270-015-2720-z
[142] Y. Yang, L. Xu, H. Wang, W. Wang, L. Zhang, TiO2/graphene porous composite and its photocatalytic degradation of methylene blue. Mater. Des. 108 (2016) 632-639. https://doi.org/10.1016/j.matdes.2016.06.104
[143] J. Hu, H. Li, S. Muhammad, Q. Wu, Y. Zhao, Q. Jiao, Surfactant-assisted hydrothermal synthesis of TiO2/reduced graphene oxide nanocomposites and their photocatalytic performances. J. Solid State Chem. 253 (2017) 113-120. https://doi.org/10.1016/j.jssc.2017.05.034
[144] G. Zerjav, M. S. Arshad, P. Djinovic, I. Junkar, J. Kovac, J. Zavasnik, A. Pintar, Improved electron-hole separation and migration in anatase TiO2 nanorod/reduced graphene oxide composites and their influence on photocatalytic performance. Nanoscale 9 (2017) 4578-4592. https://doi.org/10.1039/C7NR00704C
[145] M.-C. Rosu, M. Coros, F. Pogacean, L. Magerusan, C. Socaci, A. Turza, S. Pruneanu, Azo dyes degradation using TiO2-Pt/graphene oxide and TiO2-Pt/reduced graphene oxide photocatalysts under UV and natural sunlight irradiation. Solid State Sci. 70 (2017) 13-20. https://doi.org/10.1016/j.solidstatesciences.2017.05.013
[146] X. Liu, K.-K. Iu, J.K. Thomas, Preparation, characterization and photoreactivity of titanium(IV) oxide encapsulated in zeolites, J. Chem. Soc. Faraday Trans. 89 (1993) 1861-1865. https://doi.org/10.1039/ft9938901861
[147] K.J. Green, R. Rudham, Photocatalytic oxidation of propan-2-ol by semiconductor-zeolite composites, J. Chem. Soc. Faraday Trans. 89 (1993) 1867-1870. https://doi.org/10.1039/FT9938901867
[148] A. Corma, H. Garcia, Zeolite-based photocatalysts, Chem. Commun., (2004) 1443-1459. https://doi.org/10.1039/b400147h
[149] X. Yu, C.H. Langford, Enhanced Photoactivity of a Titanium(IV) Oxide Supported on ZSMS and Zeolite A at Low Coverage, J. Phys. Chem. 99 (1995) 11501-11507. https://doi.org/10.1021/j100029a031
[150] C. Zhu, L. Wang, L. Kong, X. Yang, L.Wang, S. Zheng, F. Chen, F. MaiZhi, H. Zong, Photocatalytic degradation of AZO dyes by supported TiO2 + UV in aqueous solution, Chemosphere 41 (2000) 303-309. https://doi.org/10.1016/S0045-6535(99)00487-7
[151] J. Chen, L. Eberlein, C.H. Langford, Pathways of phenol and benzene photooxidation using TiO2 supported on a zeolite, J. Photochem. Photobiol. A: Chem. 148 (2002) 183-189. https://doi.org/10.1016/S1010-6030(02)00041-2
[152] R.J. Tayade, R.G. Kulkarni, R.V. Jasra, Enhanced Photocatalytic Activity of TiO2-Coated NaY and HY Zeolites for the Degradation of Methylene Blue in Water, Ind. Eng. Chem. Res. 46 (2007) 369-376. https://doi.org/10.1021/ie060641o
[153] R.J. Tayade, P.K. Surolia, M.A. Lazar, R.V. Jasra, Enhanced Photocatalytic Activity by Silver Metal Ion Exchanged NaY Zeolite Photocatalysts for the Degradation of Organic Contaminants and Dyes in Aqueous Medium, Ind. Eng. Chem. Res. 47 (2008) 7545-7551. https://doi.org/10.1021/ie800441c
[154] C.-C. Wang, C.-K. Lee, M.-D. Lyu, L.-C. Juang, Photocatalytic degradation of C.I. Basic Violet 10 using TiO2 catalysts supported by Y zeolite: An investigation of the effects of operational parameters, Dyes Pigm. 76 (2008) 817-824. https://doi.org/10.1016/j.dyepig.2007.02.004
[155] G. Zhang, W. Choi, S.H. Kim, S.B. Hong, Selective photocatalytic degradation of aquatic pollutants by titania encapsulated into FAU-type zeolites, J. Hazard. Mater. 188 (2011) 198-205. https://doi.org/10.1016/j.jhazmat.2011.01.105
[156] W. Zhang, X. Xiao, L. Zheng, C. Wan, Fabrication of TiO2/MoS2@zeolite photocatalyst and its photocatalytic activity for degradation of methyl orange under visible light, Appl. Surf. Sci. 358 (2015) 468-478. https://doi.org/10.1016/j.apsusc.2015.08.054
[157] N. Setthaya, P. Chindaprasirt, S. Yin, K. Pimraksa, TiO2-zeolite photocatalysts made of metakaolin and rice husk ash for removal of methylene blue dye, Powder Technol., 313 (2017) 417-426. https://doi.org/10.1016/j.powtec.2017.01.014
[158] M.V. Shankar, S. Anandan, N. Venkatachalam, B. Arabindoo, V. Murugesan, Fine route for an efficient removal of 2,4-dichlorophenoxyacetic acid (2,4-D) by zeolite-supported TiO2. Chemosphere 63 (2006) 1014-1021. https://doi.org/10.1016/j.chemosphere.2005.08.041
[159] M. Huang, C. Xu, Z. Wu, Y. Huang, J. Lin, J. Wu, Photocatalytic discolorization of methyl orange solution by Pt modified TiO2 loaded on natural zeolite, Dyes Pigm. 77 (2008) 327-334. https://doi.org/10.1016/j.dyepig.2007.01.026
[160] S. Koa, P. D. Fleming, M. Joyce, P. Ari-Gur, High performance nano-titania photocatalytic paper composite. Part II: Preparation and characterization of natural zeolite-based nano-titania composite sheets and study of their photocatalytic activity. Mater. Sci. Eng. B 164 (2009) 135–139. https://doi.org/10.1016/j.mseb.2009.08.010
[161] S. Artkla, W. Kim, W. Choi, J. Wittayakun, Highly enhanced photocatalytic degradation of tetramethylammonium on the hybrid catalyst of titania and MCM-41 obtained from rice husk silica. Appl. Catal. B. 91 (2009) 157-164. https://doi.org/10.1016/j.apcatb.2009.05.019
[162] M. Mahalakshmi, S.V. Priya, B. Arabindoo, M. Palanichamy, V. Murugesan, Photocatalytic degradation of aqueous propoxur solution using TiO2 and Hβ-zeolite-supported TiO2. J. Hazard. Mater. 161 (2009) 336-343. https://doi.org/10.1016/j.jhazmat.2008.03.098
[163] S.B. Rasmussen, R. Portela, S. Suarez, J.M. Coronado, M.-L. Rojas-Cervantes, P. Avila, B. Sánchez, Hybrid TiO2-SiMgOX composite for combined chemisorption and photocatalytic elimination of gaseous H2S. Ind. Eng. Chem. Res. 49 (2010) 6685-6690. https://doi.org/10.1021/ie901733p
[164] W. Zhang, K. Wang, Y. Yu, H. He, TiO2/HZSM-5 nano-composite photocatalyst: HCl treatment of NaZSM-5 promotes photocatalytic degradation of methyl orange. Chem. Eng. J. 163 (2010) 62-67. https://doi.org/10.1016/j.cej.2010.07.042
[165] C. Lazau, C. Ratiu, C. Orha, R. Pode, F. Manea, Photocatalytic activity of undoped and Ag-doped TiO2-supported zeolite for humic acid degradation and mineralization. Mater. Res. Bull.46 (2011) 1916-1921. https://doi.org/10.1016/j.materresbull.2011.07.026
[166] L. You-ji, C. Wei, Photocatalytic degradation of Rhodamine B using nanocrystalline TiO2-zeolite surface composite catalysts: effects of photocatalytic condition on degradation efficiency. Catal. Sci. Technol. 1 (2011) 802-809. https://doi.org/10.1039/c1cy00012h
[167] C. Wang, H. Shi, Y. Li, Synthesis and characterization of natural zeolite supported Cr-doped TiO2 photocatalysts. Appl. Surf. Sci. 258(2012) 4328–4333. https://doi.org/10.1016/j.apsusc.2011.12.108
[168] Y. Kuwahara, J. Aoyama, K. Miyakubo, T. Eguchi, T. Kamegawa, K. Mori, H. Yamashita, TiO2 photocatalyst for degradation of organic compounds in water and air supported on highly hydrophobic FAU zeolite: Structural, sorptive, and photocatalytic studies. J. Catal. 285 (2012) 223-234. https://doi.org/10.1016/j.jcat.2011.09.031
[169] S. Gomez, C. L. Marchena, L. Pizzio, L. Pierella Preparation and characterization of TiO2/HZSM-11 zeolite for photodegradation of dichlorvos in aqueous solution. J. Hazard. Mater. 258-259 (2013) 19-26. https://doi.org/10.1016/j.jhazmat.2013.04.030
[170] S. Liu, M. Lim, R. Amal, TiO2-coated natural zeolite: Rapid humic acid adsorption and effective photocatalytic regeneration. Chem. Eng. Sci. 105 (2014) 46–52. https://doi.org/10.1016/j.ces.2013.10.041
[171] D. Kanakaraju, J. Kockler, C.A. Motti, B.D. Glass, M. Oelgemöller, Titanium dioxide/zeolite integrated photocatalytic adsorbents for the degradation of amoxicillin. Appl. Catal. B: Environ. 166-167 (2015) 45-55. https://doi.org/10.1016/j.apcatb.2014.11.001
[172] M.N. Chong, Z.Y. Tneu, P.E. Poh, B. Jin, R. Aryald, Synthesis, characterization and application of TiO2 zeolite nanocomposites for the advanced treatment of industrial dye wastewater. J. Taiwan Inst. Chem. Eng. 50 (2015) 288-296. https://doi.org/10.1016/j.jtice.2014.12.013
[173] S. Wardhani, M.F. Rahman, D. Purwonugroho, R.T. Tjahjanto, C.A. Damayanti, I. O. Wulandari, Photocatalytic Degradation of Methylene Blue Using TiO2-Natural Zeolite as A Photocatalyst. J. Pure App. Chem. Res. 2016, 5 (1), 19-27. https://doi.org/10.21776/ub.jpacr.2016.005.01.232
[174] H.B. Yener, M. Yılmaz, Ö. Deliismail, S.F. Özkan, Ş.Ş. Helvacl, Clinoptilolite supported rutile TiO2 composites: Synthesis, characterization, and photocatalytic activity on the degradation of terephthalic acid. Sep. Purif. Technol. 173 (2017) 17–26. https://doi.org/10.1016/j.seppur.2016.09.010
[175] I. Jansson, S. Suárez, F.J. García‑García, B. Sánchez, ZSM-5/TiO2 Hybrid Photocatalysts: Influence of the Preparation Method and Synergistic Effect. Top. Catal. (2017), DOI:10.1007/s11244-017-0805-1. https://doi.org/10.1016/j.seppur.2016.09.010
[176] C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature 359 (1992) 710-712. https://doi.org/10.1038/359710a0
[177] J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, J.L. Schlenker, A new family of mesoporous molecular sieves prepared with liquid crystal templates, J. Am. Chem. Soc. 114 (1992) 10834-10843. https://doi.org/10.1021/ja00053a020
[178] S.A. Bagshaw, E. Prouzet, T.J. Pinnavaia, Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants, Science 269 (1995) 1242-1244. https://doi.org/10.1126/science.269.5228.1242
[179] E. Prouzet, T.J. Pinnavaia, Assembly of mesoporous molecular sieves containing wormhole Motifs by a nonionic surfactant pathway: control of pore size by synthesis temperature, Angew. Chem. Int. Ed. Engl., 36 (1997) 516-518. https://doi.org/10.1002/anie.199705161
[180] D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores, Science 279 (1998) 548-552. https://doi.org/10.1126/science.279.5350.548
[181] T. Torimoto, S. Ito, S. Kuwabata, H. Yoneyama, Effects of adsorbents used as supports for titanium dioxide loading on photocatalytic degradation of propyzamide, Environ. Sci. Technol. 30 (1996) 1275-1281. https://doi.org/10.1021/es950483k
[182] W. Dong, C. W. Lee, X. Lu, Y. Sun, W. Hua, G. Zhuang, S. Zhang, J. Chen, H. Hou, D. Zhao, Synchronous role of coupled adsorption and photocatalytic oxidation on ordered mesoporous anatase TiO2-SiO2 nanocomposites generating excellent degradation activity of RhB dye, Appl. Catal. B. 95 (2010) 197-207. https://doi.org/10.1021/es950483k
[183] W. Dong, Y. Sun, Q. Ma, L. Zhu, W. Hua, X. Lu, G. Zhuang, S. Zhang, Z. Guo, D. Zhao, Excellent photocatalytic degradation activities of ordered mesoporous anatase TiO2-SiO2 nanocomposites to various organic contaminants, J. Hazard. Mater. 229-230 (2012) 307-320. https://doi.org/10.1016/j.jhazmat.2012.06.002
[184] A. Pal, T.K. Janan, K. Chatterjee, Silica supported TiO2 nanostructures for highly efficient photocatalytic application under visible light irradiation, Mater. Res. Bulletin 76 (2016) 353-357. https://doi.org/10.1016/j.materresbull.2015.12.040
[185] Q. Chen, H. Shi, W. Shi, Y. Xu, D. Wu, Enhanced visible photocatalytic activity of titania-silica photocatalysts: effect of carbon and silver doping, Catal. Sci. Technol. 2 (2012) 1213-1220. https://doi.org/10.1039/c2cy00545j
[186] K.P.O. Mahesh, D.-H. Kuo, B.-R. Huang, Facile synthesis of heterostructured Ag-deposited SiO2@TiO2 composite spheres with enhanced catalytic activity towards the photodegradation of AB 1 dye, J. Mol. Catal. A: Chem. 396 (2015) 290-296. https://doi.org/10.1016/j.molcata.2014.10.017
[187] Y. Jiang, Z. Jin, C. Chen, W. Duan, B. Liu, X. Chen, F. Yang, J. Guo, Cerium-doped mesoporous-assembled SiO2/P25 nanocomposites with innovative visible-light sensitivity for the photocatalytic degradation of organic dyes, RSC Adv. 7 (2017) 12856-12870. https://doi.org/10.1039/C7RA00191F
[188] J. Yu, J. C. Yu, X. Zhao, The effect of SiO2 addition on the grain size and photocatalytic activity of TiO2 thin films. J. Sol-Gel Sci. Technol. 24 (2002) 95-103. https://doi.org/10.1023/A:1015258105966
[189] M. Hirano, K, Ota, Direct formation and photocatalytic performance of anatase (TiO2)/Silica (SiO2) composite nanoparticles, J. Am. Ceram. Soc., 87 (2004) 1567-1570. https://doi.org/10.1111/j.1551-2916.2004.01567.x
[190] J. Marugan, M.-J. Lopez-Munoz, R.V. Grieken, J. Aguado, Photocatalytic decolorization and mineralization of dyes with nanocrystalline TiO2/SiO2 materials. Ind. Eng. Chem. Res. 46 (2007) 7605-7610. https://doi.org/10.1021/ie070093u
[191] A. Nilchi, S. Janitabar-Darzi, S. Rasouli-Garmarodi, Sol-gel preparation of nanoscale TiO2 /SiO2 composite for eliminating of congo red azo dye, Mater. Sci. Appl. 2 (2011) 476-480.
[192] C.-H. Huang, K.-P. Chang, H.-D. Ou, Y.-C. Chiang, E.-E. Chang, C.-F. Wang, Characterization and application of Ti-containing mesoporous silica for dye removal with synergistic effect of coupled adsorption and photocatalytic oxidation. J. Hazard. Mater. 186 (2011) 1174-1182. https://doi.org/10.1016/j.jhazmat.2010.11.125
[193] W. Zhao, L. Feng, R. Yang, J. Zheng, X. Li, Synthesis, characterization, and photocatalytic properties of Ag modified hollow SiO2/TiO2 hybrid microspheres. Appl. Catal. B. 103 (2011) 181-189. https://doi.org/10.1016/j.apcatb.2011.01.025
[194] H.-S. Wu, L.-D. Sun, H.-P. Zhou, C.-H. Yan, Novel TiO2-Pt@SiO2 nanocomposites with high photocatalytic activity. Nanoscale 4 (2012) 3242-3247. https://doi.org/10.1039/c2nr30523b
[195] J. Li, D. Zhen, G. Sui, C. Zhang, Q. Deng, L. Jia, Nanocomposite of Cu-TiO2-SiO2 with high photoactive performance for degradation of rhodamine B dye in aqueous wastewater. J. Nanosci. Nanotechnol. 12 (2012) 6265-6270. https://doi.org/10.1166/jnn.2012.6438
[196] X. Zhang, Y. Zhu, X. Yang, S. Wang, J. Shen, B. Lin, C. Li, Enhanced visible light photocatalytic activity of interlayer-isolated triplex Ag@SiO2@TiO2 core-shell nanoparticles. Nanoscale 5 (2013) 3359-3366. https://doi.org/10.1039/c3nr00044c
[197] B. Yu, X. Jiang, J. Yin, Silica/titania sandwich-like mesoporous nanosheets embedded with metal nanoparticles templated by hyperbranched poly(ether amine) (hPEA). Nanoscale 5 (2013) 5489-5498. https://doi.org/10.1039/c3nr01336g
[198] Y. Yu, M. Zhu, W. Liang, S. Rhodes, J. Fang, Synthesis of silica-titania composite aerogel beads for the removal of Rhodamine B in water. RSC Adv. 5 (2015) 72437-72443. https://doi.org/10.1039/C5RA13625C
[199] K.P.O. Mahesh, Dong-Hau Kuo, Synthesis of Ni nanoparticles decorated SiO2/TiO2 magnetic spheres for enhanced photocatalytic activity towards the degradation of azo dye. Appl. Surf. Sci. 357 (2015) 433-438. https://doi.org/10.1016/j.apsusc.2015.08.264
[200] Z.-Y. Yang, G.-Y. Shen, Y.-P. He, X.-X. Liu, S.-J. Yang, Preparation of TiO2/SiO2 composite oxide and its photocatalytic degradation of rhodamine B, J. Porous Mater. 23 (2016) 589-599. https://doi.org/10.1007/s10934-015-0114-7
[201] A. Pal, T. K. Jana, K. Chatterjee, Silica supported TiO2 nanostructures for highly efficient photocatalytic application under visible light irradiation. Mater. Res. Bulletin 76 (2016) 353-357. https://doi.org/10.1016/j.materresbull.2015.12.040
[202] M.U.D. Sheikh, G.A. Naikoo, M. Thomas, M. Bano, F. Khan, Solar-assisted photocatalytic reduction of methyl orange azo dye over porous TiO2 nanostructures. New J. Chem. 40 (2016) 5483-5494. https://doi.org/10.1039/C5NJ03513A
[203] D. Maucec, A. Suligoj, A. Ristic, G. Drazic, A. Pintar, N.N. Tusar, Titania versus zinc oxide nanoparticles on mesoporous silica supports as photocatalysts for removal of dyes from wastewater at neutral pH. Catal. Today 2017. https://doi.org/10.1016/j.cattod.2017.05.061