Role of Ultrasound in the Synthesis of Nanoparticles and Remediation of Environmental Pollutants
Pankaj, S. Sahu, S. Misra, H. Srivastava
The present review briefly discusses two important aspects of the application of power ultrasound. Firstly, the application of ultrasound in the synthesis of nanoparticles, using various state-of-the-art sonochemical methods for the synthesis of nanoparticles of metals of s-, p-, d- and f- blocks and their compounds using ultrasound alone or in combination with other techniques. The advantage of using ultrasound lies in controlling the size, morphology and physical state (amorphous / crystalline) of nanoparticles through the variation in frequency, power and duration of sonication. Secondly, the use of ultrasound in the remediation of pollutants in aqueous effluents, such as, metal ions, organic acids, dyes, pesticides, pharmaceuticals, preservatives etc., has been discussed. Ultrasound is undoubtedly a very promising futuristic tool for both these technologies.
Keywords
Ultrasound, Cavitation, Sonophotocatalyst, Nanoparticles, Sonochemical
Published online 2/25/2018, 40 pages
DOI: https://dx.doi.org/10.21741/9781945291593-16
Part of Photocatalytic Nanomaterials for Environmental Applications
References
[1] Saba Hasan, A review on Nanoparticles: Their Synthesis and Types, Research Journal of Recent Sciences. 4(ISC-2014), 1-3 (2015)
[2] Information on https://shellzero.wordpress.com/2012/05/14/ nano-materials – and – its – properties/
[3] Mai Mostafa Khalaf, Hikmet Gamal Ibrahimov and Etibar Hummat Ismailov, Nanostructured Materials: Importance, Synthesis and Characterization-A Review, Chemistry Journal, 2(3)(2012)118-125.
[4] René Overney, Nanothermodynamics and Nanoparticle Synthesis (2010) NME 498A/A.
[5] Kenneth S. Suslick sonochemistry, Kirk-Othmer Encyclopedia of Chemical Technology, fourth edition, John Wiley & Sons, Inc.: New York, 26(1998)516- 541.
[6] Ta Yeong Wu, Ningqun Guo, Chee Yang Teh, Jacqueline Xiao and Wen Hay “Applications of Ultrasound Technology in Environmental Remediation” in: Advances in Ultrasound Technology for Environmental Remediation, Springer Briefs in Molecular Science Green Chemistry for Sustainability, 2012, 13 – 93.
[7] Jin Ho Bang and Kenneth S. Suslick, Applications of Ultrasound to the Synthesis of Nanostructured Materials, Adv. Mater. 22(2010), 1039–1059. https://doi.org/10.1002/adma.200904093
[8] А.А. Novik, Applying Of Ultrasound for Production of Nanomaterials XXII Session of the Russian Acoustical Society Moscow, Session of the Scientific Council of Russian, Academy of Science on Acoustics, 17 (2010)276-278
[9] Gedanken, Sonochemistry and its application to nanochemistry, Current Science, 85(12)(2003)1720-1722
[10] Ahmad Monshi, Mohammad Reza Foroughi and Mohammad Reza Monshi, Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD, World Journal of Nano Science and Engineering, 2(2012)154-160. https://doi.org/10.4236/wjnse.2012.23020
[11] Irudayaraj Johnson, H. Joy Prabu and S. Arulappan, Ultrasound tailoring of industrially important nanoparticles, International, Journal of Scientific Research Engineering & Technology (IJSRET), 2 (2) (2013) 056-059.
[12] M. Mohapatra and S. Anand, Synthesis and applications of nano-structured iron oxides/ hydroxide, a review, International Journal of Engineering, Science and Technology, 2 (8) (2010) 127-146.
[13] Sambandam Anandan and Muthupandian Ashokkumar, Sonochemical synthesis of noble monometallic and bimetallic nanoparticles for catalytic applications in: Cavitation, 2014, 55-88.
[14] B. C. Gates, Catalytic chemistry, Wiley& Sons., New York, (1992)406.
[15] S. J. Doktycz and K. S. Suslick, Interparticle Collisions Driven by Ultrasound, 247(1990)1067-1069.
[16] M. I. Díez-Garcíaa, V. Manzi-Orezzolia, M. Jan kulovskaa, S. Anandanb, P. Bonetea, R.Gómez and T. Lana-Villarreal, Effects of ultrasound irradiation on the synthesis of metal oxide nanostructures, Physics Procedia, 63 (2015) 85 – 90. https://doi.org/10.1016/j.phpro.2015.03.014
[17] Sabriye Piskin, Sibel Kasap and Muge Sari Yilmaz, Synthesis of TiO2 nanoparticles by Sol- Gel and sonochemical combination, Chemical and Molecular Engineering, 10(1)(2016) 117 – 119.
[18] M. Heshmat, H. Abdizadeh and M. R. Golobostanfard, Sonochemical assisted synthesis of ZnO nanostructured thin films prepared by sol-gel method, Procedia Materials Science 11(2015), 486-490. https://doi.org/10.1016/j.mspro.2015.11.070
[19] Chinnathambi Mahendiran, Raman Ganesan and Aharon Gedanken, Sonoelectrochemical Synthesis of Metallic Aluminum Nanoparticles, Eur. J. Inorg. Chem. 2009(14) (2009) 2050–2053. https://doi.org/10.1002/ejic.200900097
[20] H. Lei, Y.-J. Tang, J.-J. Wei, J. Li, X.-B. Li and H.-L. Shi, Synthesis of tungsten nanoparticles by sonoelectrochemistry, Ultrasonics Sonochemistry, 14(2007)81–83. https://doi.org/10.1016/j.ultsonch.2006.01.008
[21] Pinar Acar Bozkurt and Burak Derkus, Synthesis and characterization of CdS nanorods by combined Sonochemical – solvothermal method, Materials Science-Poland, 34(3)(2016)684–690. https://doi.org/10.1016/j.jallcom.2012.11.017
[22] Yafang Zhang, Guangfang Li, Xiaohui Yang, Hao Yang, Zhong Lu and Rong Chen, Monoclinic BiVO4 micro/nano structures: Microwave and ultrasonic wave combined synthesis and their visible-light photocatalytic activities, Journal of Alloys and Compounds, 551(2013)544–550.
[23] Qin Li, Hui Li, Runming Wang, Guangfang Li, Hao Yang and Rong Chen, Controllable microwave and ultrasonic wave combined synthesis of ZnO micro-/nanostructures in HEPES solution and their shape-dependent photocatalytic activities, Journal of Alloys and Compounds, 567 (2013)1–9. https://doi.org/10.1016/j.jallcom.2013.03.077
[24] Veronica Sáez and Timothy J. Mason, Sonoelectrochemical Synthesis of Nanoparticles, Molecules, 14 (2009) 4284-4299. https://doi.org/10.3390/molecules14104284
[25] Panpailin Seeharaj, Banjong Boonchom, Piyanut Charoonsuk, Pattaraporn Kim- Lohsoontorn and Naratip Vittayakorna, Barium zirconatetitanate nanoparticles synthesized by the sonochemical method, Ceramics International, 39 (2013) S559–S562. https://doi.org/10.1016/j.ceramint.2012.10.135
[26] Sirajit Vuttivong, Surasak Niemcharoen, Panpailin Seeharaj, Wanwilai C. Vittaya kornand and Naratip Vittayakorn, Sonochemical Synthesis of Spherical BaTiO3 Nanoparticles, Ferroelectrics, 457(4)(2013) 44–52. https://doi.org/10.1080/00150193.2013.847332
[27] Jong Pil Park, Jea Young Park, Cha Hwan Hwang, Myung-ho Choi, Jee Eon Kim, Kang Min Ok, and Il-Wun Shim, Synthesis of LiCoO2 Nanoparticles by a Sonochemical Method under the Multibubble Sonoluminescence Conditions, Bull. Korean Chem. Soc. 31(2)(2010)327-330. https://doi.org/10.5012/bkcs.2010.31.02.327
[28] Seung Soo Lee, Ki-Taek Byun, Jong Pil Park, Sin Kyu Kim, Ho-Young Kwak and Il-Wun Shim Preparation of Li4Ti5O12 nanoparticles by a simple sonochemical method, Dalton Trans. (37)(2007)4182–4184. https://doi.org/10.1039/b707164g
[29] Olga Baidu kova and Ekaterina V. Skorb, Ultrasound-assisted synthesis of magnesium hydroxide nanoparticles from magnesium, Ultrasonics Sonochemistry, 31 (2016) 423– 428. https://doi.org/10.1016/j.ultsonch.2016.01.034
[30] M. Jesionek, M. Nowak, P. Szperlich, D. Stroz J. Szala, K. Jesionek and T. Rzychon, Sonochemical growth of antimony selenoiodide in multiwalled carbon nanotube, Ultrasonics Sonochemistry, 19 (2012) 179–185. https://doi.org/10.1016/j.ultsonch.2011.06.006
[31] M. Nowak, B. Kauch, P. Szperlich, D. Stro_z, J. Szala, T. Rzychon, Ł. Bober, B.Toron and A. Nowrot, Sonochemical preparation of SbS1-xSexI nanowires, Ultrasonics Sonochemistry, 17 (2010)487–493. https://doi.org/10.1016/j.ultsonch.2009.10.006
[32] S. Avivi, O. Palchik, V. Palchik, M. A. Slifkin, A. M. Weiss and A. Gedanken Sonochemical Synthesis of Nanophase Indium Sulfide, Chem. Mater, 13(2001) 2195- 2200. https://doi.org/10.1021/cm010162+
[33] Akbar Abdollahi, Gholam Hossein Shahverdizadeh, Samad Motameni-Tabatabaii and Sara Hosseinchi-Gareaghaji, Sonochemical synthesis and characterization of nanoparticles lead(II) coordination polymer, National Conference on Nanotechnology and Green Chemistry, 936(1–3)(2009) 206–212.
[34] Qing Li,Yi Ding, Mingwang Shao,Ji, Wu,Guihua Yu, Yitai Quan, Sonochemical synthesis of nano crystalline lead chalcogenides, Materials Research Bulletin, 38(2003)549 -543.
[35] Linlin YANG, Yonggang WANG, Yujiang WANG, Xiaofeng WANG and Gaorong HAN, Morphology-controlled synthesis of PbMoO4 crystals by a simple sonochemical method, Journal of the Ceramic Society of Japan, 120 (12) (2012)609-612.
[36] Yashar Azizian – Kalandaragh, Ali Khodayari, Zaiping Zeng, Christos S. Garoufalis, Sotirios Baskoutas and Lionel Cervera Gontard, Strong quantum confinement effects in SnS nanocrystals produced by ultrasound-assisted method, J Nanopart Res. 15(2013)1 – 9.
[37] Sambandam Anandan and Jerry J. Wu, Sonochemical synthesis of carbon supported Sn nanoparticles and its electrochemical application, Ultrasonics Sonochemistry, 21(2014)1954–1957. https://doi.org/10.1016/j.ultsonch.2014.02.018
[38] Shuijin Lei, Kaibin Tang, Zhen Fang, and Huagui Zheng Ultrasonic-Assisted Synthesis of Colloidal Mn3O4 Nanoparticles at Normal Temperature and Pressure, Crystal Growth & Design, 6(8)(2006)1757-1760. https://doi.org/10.1021/cg050402o
[39] Abdulhadi Baykal, Hüseyin Kavas, Zehra Durmuş, Mine Demir, Sinan Kazan, RamazanTopkaya and Muhammet S. Toprak Sonochemical synthesis and chracterization of Mn3O4 nanoparticles, Cent. Eur. J. Chem. 8(3)(2010), 633–638.
[40] Azadeh Askarinejad and Ali Morsali, Direct ultrasonic-assisted synthesis of sphere-like nanocrystals of spinel Co3O4 and Mn3O4, Ultrasonics Sonochemistry, 16 (2009) 124– 131. https://doi.org/10.1016/j.ultsonch.2008.05.015
[41] S. Mohseni Meybodi, S.A. Hosseini, M. Rezaee, S.K. Sadrnezhaad and D. Mohammadyani, Synthesis of wide band gap nanocrystalline NiO powder via a sonochemical method, Ultrasonics Sonochemistry, 19 (2012)841–845. https://doi.org/10.1016/j.ultsonch.2011.11.017
[42] D. Mohammadyani, S. A. Hosseini and S. K. Sadrnezhaad, Sonochemical Synthesis of Nickel Oxide Nano-particle-Proceeding of the 3rdconference on nanostructures, March, 2010, 722 – 725.
[43] Alireza Aslani, Vahid Oroojpour, Mehrab Fallahi, Sonochemical synthesis, size controlling and gas sensing properties of NiO nanoparticles, Applied Surface Science. 257(2011)4056–406. https://doi.org/10.1016/j.apsusc.2010.11.174
[44] P. Jeevanandam, Yu. Koltypin, and A. Gedanken, Synthesis of Nanosized alpha-Nickel Hydroxide by a Sonochemical Method, Nano Letters, 1 (5)(2001)263-266. https://doi.org/10.1021/nl010003p
[45] Laura Obreja, N. Foca, M. I. Popa and V. Melnig, Alcoholic reduction platinum nanoparticles synthesis by Sonochemical Method, Tomul I, s. Biomaterials in Biophysics, Medical Physics and Ecology, (2008) 31-36.
[46] Millan M. Mdleleni, Taeghwan Hyeon, and Kenneth S. Suslick, Sonochemical synthesis of nanostructured Molybdenum Sulfide, J. AM. Chem. Soc. 120(1998). 6189-6190. https://doi.org/10.1021/ja9800333
[47] Azadeh Askarinejad and Ali Morsali, Direct ultrasonic-assisted synthesis of sphere-like nanocrystals of spinel Co3O4 and Mn3O4, UltrasonicsSonochemistry, 16 (2009) 124– 131. https://doi.org/10.1016/j.ultsonch.2008.05.015
[48] Shiva Hojaghani, Moayed Hosseyni Sadr and Ali Morsali Sonochemical Synthesis of a Cobalt (II) Coordination Polymer Nano-structure with azo ligand: A New Precursor for Preparation Pure Phase of Co3O4 Nanostructure, JNS. 3(2013)109‐114.
[49] Weizhong Lv, Qi Qiu, Fang Wang, Shaohui Wei and Bo Liu, Zhongkuan Luo Sonochemical synthesis of cobalt aluminate nanoparticles under various preparation parameters, Ultrasonics Sonochemistry, 17 (2010)793–801. https://doi.org/10.1016/j.ultsonch.2010.01.018
[50] Sankar Chakma, Vijayanand S. Moholkar, Sonochemical synthesis of mesoporous ZrFe2O5 and its application for degradation of recalcitrant pollutants, RSC Adv. 5(2015) 53529-53542. https://doi.org/10.1039/C5RA06148B
[51] Jong-Eun Park, Mahito Atobe and Toshio Fuchigam, Synthesis of multiple shapes of gold nanoparticles with controlled sizes in aqueous solution using ultrasound, Ultrasonics Sonochemistry, 13 (2006)237–241. https://doi.org/10.1016/j.ultsonch.2005.04.003
[52] Kenji Okitsu, Muthupandian Ashokkumar, and Franz Grieser Sonochemical Synthesis of Gold Nanoparticles: Effects of Ultrasound Frequency, J. Phys. Chem. B. 109(44) (2005)20673-20675. https://doi.org/10.1021/jp0549374
[53] Irena Ban, Matjaž Kristl, Valerija Danč, Anita Danč and Miha Drofenik, Preparation of cadmium telluride nanoparticles from aqueous solutions by sonochemical method, Materials Letters, 67 (2012)56–59. https://doi.org/10.1016/j.matlet.2011.09.001
[54] Irshad A. Wani, Aparna Ganguly, Jahangeer Ahmed and Tokeer Ahmad, Silver nanoparticles: Ultrasonic wave assisted synthesis, optical characterization and surface area studies, Materials Letters, 65 (2011)520–522.
[55] Elaheh K. Goharshadi, Sayyed Hashem Sajjadi, Roya Mehrkhah and Paul Nancarrow, Sonochemical synthesis and measurement of optical properties of zinc sulfide quantum dots, Chemical Engineering Journal, 209 (2012)113–117. https://doi.org/10.1016/j.cej.2012.07.131
[56] Md. Nazrul Islam, Le Van Phong, Jong-Ryul Jeong and Cheol Gi Kim, A facile route to sonochemical synthesis of magnetic iron oxide (Fe3O4) nanoparticles, Thin Solid Films, 519 (2011)8277–8279. https://doi.org/10.1016/j.tsf.2011.03.108
[57] M. Siva kumar, A. Gedan ken, W. Zhong, Y. H. Jiang, Y. W. Du, I. Bru kental, D. Bhattacharya, Y. Yeshurun and I. Nowik, Sonochemical synthesis of nanocrystalline LaFeO3, J. Mater. Chem. 14(2004) 764 –769.
[58] Phan Van Cuong, Nguyen Hong Quang, Soo-HO Kim, Saket Asthana, Joonghoe Dho and Do- Hyung Kim, La1-xSrxMnO3 perovskite nanoparticles-sonochemical synthesis and their properties, proceedings of IWNA , 17(2007)184-186.
[59] Dipak Vitthal, Pinjari Aniruddha and Bhalchandra Pandit, Room temperature synthesis of crystalline CeO2 nanopowder: Advantage of sonochemical method over conventional method, Ultrasonics Sonochemistry, 18 (2011) 1118–1123. https://doi.org/10.1016/j.ultsonch.2011.01.008
[60] Amin Shiralizadeh Dezfuli, Mohammad Reza Ganjali and Parviz Norouzi, Facile sonochemical synthesis and morphology control of CePO4 nanostructures via an oriented attachment mechanism: Application as luminescent probe for selective sensing of Pb2+ ion in aqueous solution, Materials Science and Engineering C. 42 (2014) 774– 781. https://doi.org/10.1016/j.msec.2014.06.012
[61] K.Vinodgopal, Yuanhua He, Muthupandian Ashokkumar and Franz Griser, Sonochemically prepared platinum-ruthenium bimetallic nanoparticles, The Journal of Physical Chemistry B. 110(9) (2006)3849-3852. https://doi.org/10.1021/jp060203v
[62] Sambandam Anandan, Franz Grieser, and Muthupandian Ashokkumar, Sonochemical Synthesis of Au-Ag Core-Shell Bimetallic Nanoparticles, J. Phys. Chem. C. 112(39) (2008)15102–15105. https://doi.org/10.1021/jp806960r
[63] Xianyong Lu, Zhaoyue Liu, Ying Zhu and Lei Jiang Sonochemical synthesis and photocatalytic property of zinc oxide nanoparticles doped with magnesium(II), Materials Research Bulletin,46 (2011) 1638–1641.
[64] Jun Geng, Guang-Hui Song and Jun-Jie Zhu, Sonochemical Synthesis of Er3+-Doped ZnO Nanospheres with Enhanced up-conversion Photoluminescence, Hindawi Publishing Corporation, Journal of Nanomaterials, 2012 (2012) 1 – 5. https://doi.org/10.1155/2012/317857
[65] Deyang Yu, Baolin Liu and Bochun Wanga, The effect of ultrasonic waves on the nucleation of pure water and degassed water, Ultrasonics Sonochemistry, 19 (2012) 459–463. https://doi.org/10.1016/j.ultsonch.2011.08.005
[66] Hossein Kiani, Da-Wen Sun, Adriana Delgado and Zhihang Zhang, Investigation of the effect of power ultrasound on the nucleation of water during freezing of agar gel samples in tubing vials, Ultrasonics Sonochemistry, 19 (2012) 576–581.
[67] Liyan Liu, Yang Yang, Penghong Liu and Wei Tan, The influence of air content in water on ultrasonic cavitation field –Ultrasonics Sonochemistry 21 (2014) 566–571. https://doi.org/10.1016/j.ultsonch.2013.10.007
[68] Pankaj and Manju Chauhan, Sonochemical removal of hardness and sterilization of underground potable water, J Ind Council Chem. 23(1)(2006)38–40
[69] Shengpu Gao , Gillian D. Lewis , Muthupandian Ashokkumar , Yacine Hemar, Inactivation of microorganisms by low-frequency high-power ultrasound: 1. Effect of growth phase and capsule properties of the bacteria, Ultrasonics Sonochemistry Jan;21(1)(2014)446-453
[70] Hao Yu, Siping Chen and Ping Cao, Synergistic bactericidal effects and mechanisms of low intensity ultrasound and antibiotics against bacteria: A review, Ultrasonics Sonochemistry, 19(2012) 377–382. https://doi.org/10.1016/j.ultsonch.2011.11.010
[71] Basak Savun , Uwe Neis , Nilsun H. Ince and Orhan Yenigün , Pretreatment of Sewage Sludge by Low-frequency Ultrasoun, J. Adv. Oxid. Technol. 15(2)(2012)374-379.
[72] Alessandra Cesaro, Vincenzo Naddeo, Valeria Amodio and Vincenzo Belgiorno, Enhanced biogas production from anaerobic codigestion of solid waste by sonolysis, Ultrasonics Sonochemistry, 19 (2012) 596–600. https://doi.org/10.1016/j.ultsonch.2011.09.002
[73] SD Ruth Nithila, B Anandkumar, SC Vanithakumari, RP George, U Kamachi and RK Dayal, Studies to control biofilm formation by coupling ultrasonication of natural waters and anodisation of titanium, Ultrasonic Sonochemistry, 21(2014) 189 – 199. https://doi.org/10.1016/j.ultsonch.2013.06.010
[74] Meilan Xu, Xianghua Wen, Xia Huang, Zhiyong Yu and Min Zhu, Mechanisms of membrane fouling controlled by online ultrasound in an anaerobic membrane bioreactor for digestion of waste activated sludge, Journal of Membrane Science, 445 (2013) 119–126. https://doi.org/10.1016/j.memsci.2013.06.006
[75] Lin Maoa, Jia Liu, Shenmin Zhu, Di Zhang, Zhixin Chen and Chenxin Chen, Sonochemical fabrication of mesoporous TiO2 inside diat-om frustules for photocatalyst, Ultrasonics Sonochemistry, 21 (2014) 527–534. https://doi.org/10.1016/j.ultsonch.2013.09.001
[76] XiuzhenWeia, Huijuan Wanga, Guangfeng Zhua and Liping Zhub, Iron-doped TiO2 nanotubes with high photocatalytic activity under visible light synthesized by an ultrasonic-assisted sol-hydrothermal method, Ceramics International, 39 (2013) 4009–4016. https://doi.org/10.1016/j.ceramint.2012.10.251
[77] Shaofeng Xiong, Zhoulan Yin, Yuanjin Zhou, Xianzhong Peng, Wenbin Yan, Zhixiong Liu, and Xiangyu Zhang ,The Dual-frequency (20/40 kHz) Ultrasound Assisted Photocatalysis with the Active Carbon Fiber-loaded Fe3+-TiO2 as Photocatalyst for Degradation of Organic Dye, Bull. Korean Chem. Soc. 34(10)(2013)3039 – 3045. https://doi.org/10.5012/bkcs.2013.34.10.3039
[78] Vojka Zunicˇ, Marija Vukomanovic, Srecˇo D. Škapin, Danilo Suvorov and Janez Kovacˇ, Photocatalytic properties of TiO2 and TiO2/Pt: A sol-precipitation, sonochemical and hydrothermal approach, Ultrasonics Sonochemistry, 21(1)(2014)367-375. https://doi.org/10.1016/j.ultsonch.2013.05.018
[79] Hongtao Gao, Wenchao Liu , Bing Lu and Fangfang Liu, Photocatalytic Activity of La, Y Co-Doped TiO2 Nanoparticles Synthesized by Ultrasonic Assisted Sol–Gel Method, Nanoscience and Nanotechnology, 12(2012) 3959–3965. https://doi.org/10.1166/jnn.2012.5859
[80] X.-K. Wang, C. Wang and D. Zhang, Low temperature sonochemical synthesis of boron doped TiO2 nanoparticles with enhanced visible light induced photocatalytic activity, Materials Research Innovations, 16(6)(2012)395-399. https://doi.org/10.1179/1433075X11Y.0000000052
[81] M. Umadevi, M. Sangari, R. Parimaladevi, A. Sivanantham and J. Mayandi, Enhanced photocatalytic, antimicrobial activity and photovoltaic characteristics of fluorine doped TiO2 synthesized under ultrasound irradiation, Journal of Fluorine Chemistry, 156 (2013) 209–213. https://doi.org/10.1016/j.jfluchem.2013.10.011
[82] Bernaurdshaw Neppolian, Youngae Kim, Muthupandian Ashokkumar, Hiromi Yamashita and Heechul Choi, Preparation and properties of visible light responsive ZrTiO4/Bi2O3 photocatalysts for 4-chlorophenol decomposition, Journal of Hazardous Materials, 182 (2010) 557–562. https://doi.org/10.1016/j.jhazmat.2010.06.069
[83] Scott S.Dunkle, Richard J. Helmich, and Kenneth S. Suslick, BiVO4 as a Visible-Light Photocatalyst Prepared by Ultrasonic Spray Pyrolysis, The physical chemistry C letters, 113(2009)11980–11983.
[84] Man Ou, Qin Zhong, Shule Zhang and Lemeng Yu, Ultrasound assisted synthesis of heterogeneous g-C3N4/BiVO4 composites and their visible-light-induced photocatalytic oxidation of NO in gas phase, Journal of Alloys and Compounds, 626 (2015) 401–409. https://doi.org/10.1016/j.jallcom.2014.11.148
[85] Lisha Zhang, Wenzhong Wang, Jiong Yang a, Zhigang Chen, Wenqing Zhang, Lin Zhou and Shengwei Liu, Sonochemical synthesis of nanocrystallite Bi2O3 as a visible-light-driven photocatalyst, Applied Catalysis A: General, 308 (2006) 105–110. https://doi.org/10.1016/j.apcata.2006.04.016
[86] Dong Xie, Qingmei Su, Jun Zhang, Gaohui Du and Bingshe Xu, Graphite oxide-assisted sonochemical preparation of a-Bi2O3nanosheets and their high-efficiency visible light photocatalytic activity, J Mater Sci. 49 (2014) 218–224. https://doi.org/10.1007/s10853-013-7695-9
[87] Feng-Jun Zhang , Fa-Zhi Xie , Jin Liu , Wei Zhao and Kan Zhang , Rapid sonochemical synthesis of irregular nanolaminar-like Bi2WO6 as efficient visible-light-active photocatalysts, Ultrasonics Sonochemistry, 20 (2013) 209–215. https://doi.org/10.1007/s10853-013-7900-x
[88] Anamika Singh, Dimple P. Dutta, Mainak Roy, A.K. Tyagi and M. H. Fulekar, Sonochemical synthesis, characterization, and photocatalytic properties of Bi2-xSbxWO6 nanorods, J Mater Sci. 49 (2014) 2085–2097. https://doi.org/10.1007/s10853-013-7900-x
[89] Deliang Chen, Seung Hwa Yoo, Qingsong Huang, Ghafar Ali and Sung Oh Cho , Sonochemical Synthesis of Ag/AgCl Nanocubes and Their Efficient Visible-Light-Driven Photocatalytic Performance, Chemistry of a European journal, 18(17)(2012) 5192-5200. https://doi.org/10.1002/chem.201103787
[90] Gobinda Gyawali, Rajesh Adhikari, Bhupendra Joshi, Tae Ho Kim, Vicente Rodríguez-González and Soo Wohn Lee, Sonochemical synthesis of solar-light-driven Ag◦-PbMoO4 photocatalyst, Journal of Hazardous Materials, 263P (2013) 45– 51. https://doi.org/10.1016/j.jhazmat.2013.03.065
[91] Kamil Burak Dermenci, Bora Genc, Burcak Ebin, Tugba Olmez-Hanci and Sebahattin Gurmen, Photocatalytic studies of Ag/ZnO nanocomposite particles produced via ultrasonic spray pyrolysis method, Journals of Alloys and Compounds, 586(2014) 267-273. https://doi.org/10.1016/j.jallcom.2013.10.004
[92] Jinsong Xie, Difang Zhao, Changan Tian, Chengliang Han and Hui Zhang, Simple ultrasonic construction of AgBr/Ag3PO4 hybrid quasi-microcube with improved visible – driven photocatalytic property, Micro & Nano Letters, 8(7)(2013)353–356. https://doi.org/10.1049/mnl.2013.0141
[93] Jianhui Huang,Wahkit Cheuk, Yifan Wu, Lee, Frank S. C. and Wingkei Ho, Template-free synthesis of ternary sulfides submicrospheres as visible light photocatalysts by ultrasonic spray pyrolysis, Catalysis Science & Technology, 2( 9)(2012)1825-1827. https://doi.org/10.1039/c2cy20053h
[94] C. Karunakaran, S.Sakthi Raadha and P.Gomathisankar, Photocatalytic and bactericidal activities of hydrothermally and sonochemically prepared Fe2O3–SnO2 nanoparticles, Materials Science in Semiconductor Processing, 16(177) (2013)818-824. https://doi.org/10.1016/j.mssp.2012.12.030
[95] Nerina B. Lana, Paula Berton, Adrian Covaci, Adrián G. Atencio, Néstor F. Cioccoe and Jorgelina C. Altamiranoa, Ultrasound leaching–dispersive liquid–liquid microextraction based on solidification of floating organic droplet for determination of poly brominated diethyl ethers in sediment samples by gas chromatography-tandem mass spectrometry, Journal of Chromatography A, 1285(2013) 15-21. https://doi.org/10.1016/j.chroma.2013.02.027
[96] Vasil Andruch, Ioseph S. Balogh, Martin Burdel, Lívia Kocúrová and Jana Šandrejová, Application of ultrasonic irradiation and vortex agitation in solvent microextraction, TrAC Trends in Analytical Chemistry, 49(2013)1-19.
[97] Mohammad Hossain, Nigel Brunton, Ankit Patras, Brijesh Tiwari, C. O’Donnell, Optimization of Ultrasound Assisted Extraction of Antioxidant Compounds from Marjoram (Origanum majorana L.) Using Response Surface Methodology, Ultrasonics Sonochemistry, 19(3)(2012)582-590. https://doi.org/10.1016/j.ultsonch.2011.11.001
[98] Dandan Ge and Hian Kee Lee, A new 1-hexyl-3-methyl imidazoliumtris (pentafluoro ethyl) tri fluoro phosphate ionic liquid based ultrasound-assisted emulsification microextraction for the determination of organic ultraviolet filters in environmental water samples, Journal of Chromatography A, 1251 (2012) 27– 32. https://doi.org/10.1016/j.chroma.2012.06.048
[99] Yufeng Zhang and Hian Kee Lee, Application of ultrasound-assisted emulsification microextraction based on applying low-density organic solvent for the determination of organochlorine pesticides in water samples, Journal of Chromatography A, 1252 (2012) 67– 73. https://doi.org/10.1016/j.chroma.2012.06.065
[100] Senar Ozcan, Ali Tor and Mehmet Emin Aydin, Application of ultrasound-assisted emulsification-microextraction for the analysis of organochlorine pesticides in waters, water research, 43(2009) 4269-4277.
[101] Yaser Abdollahzadeh, Yadollah Yamini, Ali Jabbari, Ali Esrafili and Mohammad Rezaeec, Application of ultrasound-assisted emulsification microextraction followed by gas chromatography for determination of organophosphorus pesticides in water and soil samples, Anal. Methods, 4, (2012) 830 – 837. https://doi.org/10.1039/c2ay05653d
[102] Yi-Song Su and Jen-Fon Jen, Determination of organophosphorous pesticides in water using in-syringe ultrasound-assisted emulsification and gas chromatography with electron-capture detection, Journal of Chromatography A, 1217 (2010) 5043–5049. https://doi.org/10.1016/j.chroma.2010.06.006
[103] Jiaheng Zhang, Zhe Liang, Songqing Li, Yubo Li, Bing Peng, Wenfeng Zhou and Haixiang Gao, In-situ metathesis reaction combined with ultrasound-assisted ionic liquid dispersive liquid–liquid microextraction method for the determination of phenyl urea pesticides in water samples, Talanta, 98 (2012) 145–151. https://doi.org/10.1016/j.talanta.2012.06.062
[104] Liang Guo and Hian Kee Lee, Low-density solvent based ultrasound – assisted emulsification microextraction and on – column derivatization combined with gas chromatography – mass spectrometry for the determination of carbamate pesticides in environmental water samples, Journal of Chromatography A, 1235(2009)1-9. https://doi.org/10.1016/j.chroma.2012.02.045
[105] Shumin Cui, Qianxia Chen, Weiping Wang, Jigen Miao, Aijun Wang, and Jianrong Chen Ultra-Preconcentration and Determination of Multiple Pesticide Residues in Water Samples Using Ultrasound-Assisted Dispersive Liquid–Liquid Microextraction and GC-FID, Chromatographia, 76(2013) 671–678. https://doi.org/10.1007/s10337-013-2441-7
[106] Zhixi Gao, Yanhong Wu, Huajun, Zhao, Fangying Ji, Qiangz He and Si Li, Concentration determination of new fungicide in river water by ultrasound-assisted emulsification micro-extraction and reversed-phase high performance liquid chromatography, Anal. Methods, 4(2012) 2365–2368. https://doi.org/10.1039/c2ay25372k
[107] Mei-I. Leong and Shang-Da Huang, Determination of volatile organic compounds in water using ultrasound assisted emulsification microextraction followed by gas chromatography, J. Sep. Sci. 35(2012),688–694. https://doi.org/10.1002/jssc.201100610
[108] Ming-Wei Shu, Mei-I Leong, Ming-Ren Fuh and Shang-Da Huang, Determination of endocrine-disrupting phenols in water samples by a new manual shaking-enhanced, ultrasound-assisted emulsification microextraction method, Analyst, 137(2012)2143-2150. https://doi.org/10.1039/c2an16117f
[109] Wenbo Yuan, Bingren Xiang, Liyan Yu and Liangzhen Zhu, Feasibility study on ultrasound-assisted emulsification microextraction-near infrared spectroscopy technique for the determination of traces of nonylphenol in water samples, J. Near Infrared Spectrosc. 20(2012) 675-685. https://doi.org/10.1255/jnirs.1023
[110] Yu-Ying Chao, Yi-Ming Tu, Zhi-Xuan Jian , Hsaio-Wen Wang and Yeou-Lih Huang, Direct determination of chlorophenols in water samples through ultrasound-assisted hollow fiber liquid–liquid–liquid microextraction on-line coupled with high-performance liquid chromatography, Journal of Chromatography A, 1271 (2013) 41– 49. https://doi.org/10.1016/j.chroma.2012.11.039
[111] Abilasha Ramkumar, Vinoth Kumar Ponnusamy, Jen-Fon and Jen n, Rapid analysis of chlorinated anilines in environmental water samples using ultrasound assisted emulsification microextraction with solidification of floating organic droplet followed by HPLC-UV detection, Talanta, 97 (2012) 279–284. https://doi.org/10.1016/j.talanta.2012.04.031
[112] Ariel R. Fontana, Rodolfo G.Wuillouda, Luis D. Martínez and Jorgelina C. Altamiranoa, Simple approach based on ultrasound – assisted emulsification – microextraction for determination of polibrominated flame retardants in water samples by gas chromatography–mass spectrometry, Journal of Chromatography A, 1216 (2009) 147–153. https://doi.org/10.1016/j.chroma.2008.11.034
[113] Y. Moliner-Martínez, R.A. González-Fuenzalida, R. Herráez-Hernández, P. Campíns –Falcó and J. Verdú-Andrés, Cleaning sorbents used in matrix solid-phase dispersion with sonication: Application to the estimation of polycyclic aromatic hydrocarbons at ng/g levels in marine sediments, Journal of Chromatography A, 1263 (2012) 43– 50. https://doi.org/10.1016/j.chroma.2012.09.034
[114] Julen Bustamante, Patricia Navarro, Gorka Arana, Albertode Diego, Juan and Manuel Madariaga, Ultrasound assisted dialysis of semi-permeable membrane devices for the simultaneous analysis of a wide number of persistent organic pollutants, Talanta, 114(2013) 32–37. https://doi.org/10.1016/j.talanta.2013.03.076
[115] Marco Pietroletti, Serena Mattiello, Francesca Moscato, Federico Oteri and Mauro Mecozzi, One Step Ultrasound Extraction and Purification Method for the Gas Chromatographic Analysis of Hydrocarbons from Marine Sediments: Application to the Monitoring of Italian Coasts, Chromatographia, 75(2012) 961–971. https://doi.org/10.1007/s10337-011-2172-6
[116] Huidong Qiu and Guobing Luo, A simple and rapid method for determination of petroleum oils in sewage sludge samples with ultrasonic solvent extraction by infrared spectrophotometry under optimized analytical conditions, Anal. Methods, (2012) 4, 3891-3896. https://doi.org/10.1039/c2ay25910a
[117] Hou-Kung Shih, Chiao-Wen Lin, Vinoth Kumar Ponnusamy, Abilasha Ramkumaraand Jen-Fon Jen, Rapid analysis of triclosan in water samples using an in-tube ultrasonication assisted emulsification microextraction coupled with gas chromatography-electron capture detection, Anal. Methods, 5(2013), 2352-2359. https://doi.org/10.1039/c3ay40104a
[118] Yadollah Yamini, Abolfazl Saleh, Mohammad Rezaee, Leila Ranjbar and Morteza Moradi, Ultrasound- assisted emulsification microextraction of various preservatives from cosmetics, beverages, and water samples, Journal of Liquid Chromatography & Related Technologies, 35(2012) 2623–2642.
[119] Jorge Regueiro, Maria Llompart, Elefteria Psillakis , Juan C. Garcia-Monteagudo and Carmen Garcia-Jaresa,, Ultrasound-assisted emulsification–microextraction of phenolic preservatives in water, Talanta, 79 (2009) 1387–1397. https://doi.org/10.1016/j.talanta.2009.06.015
[120] M.M. Parrill Vázquez, P. Parrill Vázquez, M. Martínez Galer, M.D. Gil Garcí and A. Uclés, Ultrasound-assisted ionic liquid dispersive liquid–liquid microextraction coupled with liquid chromatography-quadrupole-linear ion trap-mass spectrometry for simultaneous analysis of pharmaceuticals in wastewaters, Journal of Chromatography A, 1291 (2013) 19– 26. https://doi.org/10.1016/j.chroma.2013.03.066
[121] Li Wanga, Linling Wang, Jing Chen, Wenjun Du, Guoliang Fan and Xiaohua Lu, Ultrasonic-assisted water extraction and solvent bar microextraction followed by gas chromatography–ion trap mass spectrometry for determination of chlorobenzenes in soil samples, Journal of Chromatography A, 1256 (2012) 9– 14. https://doi.org/10.1016/j.chroma.2012.07.044
[122] Ana I. Garcıa-Valcarcel, Esther Miguel and Jose L. Tadeo, Determination of ten perfluorinated compounds in sludge amended soil by ultrasonic extraction and liquid chromatography-tandem mass spectrometry, Anal. Methods, 4(2012)2462-2468. https://doi.org/10.1039/c2ay25387a
[123] M.M. Parrilla Vázquez, P. Parrilla Vázquez, M. Martínez Galera, M.D. Gil García, Determination of eight fluoroquinolones in groundwater samples with ultrasound-assisted ionic liquid dispersive liquid–liquid microextraction prior to high-performance liquid chromatography and fluorescence detection, Analytica Chimica Acta, 748 (2012) 20– 27. https://doi.org/10.1016/j.aca.2012.08.042
[124] Natalia Campillo, Juan Ignacio Cacho, Javier Marín, PilarViñas and Manuel Hernández-Córdoba, Ultrasound-assisted emulsification microextraction of organolead and organomanganese compounds from seawater, and their determination by GC-MS, Micro chim Acta, 181(2014)97–104.
[125] Xiaodong Wen, Lamei Kong, Meihui Chen, Qingwen Deng, Xia Zhao and Jie Guo, A new coupling of spectrophotometric determination with ultrasound-assisted emulsification dispersive liquid–liquid microextraction of trace silver, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 97 (2012) 782–787. https://doi.org/10.1016/j.saa.2012.07.078
[126] Hassan Sereshti, Yeganeh Entezari, and Heravi, Soheila Samadi, Optimized ultrasound-assisted emulsification microextraction for simultaneous trace multielement determination of heavy metals in real water samples by ICP-OES, Talanta, 97 (2012) 235–241. https://doi.org/10.1016/j.talanta.2012.04.024
[127] Gholamreza Khayatian and Shahed Hassanpoor, Ultrasound Assisted Emulsification Microextraction Based on dimethyl (E)-2-[(Z)-1-acetyl)-2-hydroxy-1-propenyl]-2-butenedioate for Determination of Total Amount of Iron in Water and Tea Samples, J. Chin. Chem. Soc. 59(5) (2012), 659-666. https://doi.org/10.1002/jccs.201100447
[128] Mahdi Hashemia, Seyed and Mosayeb Daryanavarda, Ultrasound-assisted cloud point extraction for speciation and indirect spectrophotometric determination of chromium (III) and (VI) in water samples, Spectrochimica Acta Part A, 92 (2012) 189– 193. https://doi.org/10.1016/j.saa.2012.02.073
[129] Hassan Sereshti, Ahmad Rohani Far and Soheila Samad, Optimized ultrasound- assisted emulsification- microextraction followed by ICP-OES for simultaneous determination of Lanthanum and Cerium in urine and water samples, Analytical Letters, 45(2012) 1426–1439. https://doi.org/10.1080/00032719.2012.675490
[130] Nahid Mashkouri Najafia, Hamed Tavakoli, Yaser Abdollahzadeh and Reza Alizadeh, Comparison of ultrasound-assisted emulsification and dispersive liquid–liquid microextraction methods for the speciation of inorganic selenium in environmental water samples using low density extraction solvents, Analytica Chimica Acta, 714 (2012) 82– 88. https://doi.org/10.1016/j.aca.2011.11.063
[131] Idalina Gonçalves, Madalena Martins, Ana Loureiro, Andreia Gomes, Artur Cavaco-Paulo and Carla Silva, Sonochemical and hydrodynamic cavitation reactors for laccase/hydrogen peroxide cotton bleaching, Ultrasonics Sonochemistry, 21(2) (2014) 774-781. https://doi.org/10.1016/j.ultsonch.2013.08.006
[132] Pankaj, Shikha Goyal and Prem Kishore Patnala, Degradation of Reactive, Acid and Basic textile dyes in the presence of Ultrasound and rare Earths [La and Pr ], Ultrasonics Sonochemistry, 21(6)(2014) 1994-2009.
[133] Pankaj Srivastava, Prem Kishore Patnala and Shikha Goyal, Sonolytic decolourisation of Reactive Orange 107 dye in the presence of Titanium dioxide and Rare Earths, International Journal of Innovative Research in Science & Engineering, 2(4) (2014) 140-148.
[134] Pankaj Srivastava, Shikha Goyal and Rajesh Tayade, Ultrasound-assisted adsorption of Reactive Blue 21 dye on TiO2 in the presence of some rare earths (La, Ce, Pr & Gd), Canadian Journal Chem Engg. 92(1)(2014) 41-51. https://doi.org/10.1002/cjce.21799
[135] Pankaj Srivastava, Prem Kishore Patnala and Shikha Goyal, Sonolytic decolourisation of Acid Red 88 dye in the presence of Titanium dioxide and Rare Earths, Journal of Applicable Chemistry, 2 (2013) 66-72.
[136] Pankaj, Shikha Goyal and Prem Kishore Patnala, Role of Ceric ion (Ce4+) in the Sonosorption of Acid Red 114, Reactive Blue 21 and Basic Violet 16 dyes on TiO2, J. Pure & Appl.Ultrasonics, 35(2013)129-132.
[137] Pankaj and Shikha Goyal, Sonochemical decolourisation of Reactive Blue 21 and Acid Red 114 in the presence of TiO2 and Rare Earths, Material Science Forum, Switzerland, 734 (2013) 237-247.
[138] Pankaj, Theoretical and Experimental Sonochemistry Involving Inorganic Systems in: “Aqueous Inorganic Sonochemistry”, Pankaj and M. Ashokkumar (Eds.), Springer, UK. Chapter 9, 2010, pp. 213 – 271.
[139] Pankaj, Manju Chauhan. “Sonochemical Study on Multivalent Cations (Fr, Cr & Mn)” in: Theoretical and Experimental Sonochemistry Involving Inorganic Systems, Pankaj and M. Ashokkumar (Eds.), Springer, UK, Chapter 10, 2010, pp. 273 – 285.
[140] Pankaj and Mayank Verma, “Sonochemical degradation of phenol in the presence of inorganic catalytic materials” in: Theoretical and Experimental Sonochemistry Involving Inorganic Systems, Pankaj and M. Ashokkumar (Eds.), Springer, UK. Chapter 11, 2010, pp.287 – 313.
[141] Mayank Verma and Pankaj, “Sono-photo-catalytic degradation of Amines In water” in: Theoretical and Experimental Sonochemistry Involving Inorganic Systems, Pankaj and M. Ashokkumar (Eds), Springer, UK, Chapter 12, 2010, pp.315 – 336.
[142] Pankaj and Mayank Verma, “Sonophotocatalytic behavior of cerium doped salts of Cu(II), Co(II) and Mn(II) in the degradation of phenol”, Indian J. Chem. 48A(2009)367-371.
[143] Pankaj,Mayank Verma and Himanshi Rikhy. “Sono-photo-catalytic behavior of Cerium in the Degradation of Potassium Iodide”, J. Pure & Appl. Ultrasonics, 31(3) (2009)105-109.
[144] Manisha V. Bagal and Parag R Gogate, Waste water treatment using hybrid treatment schemes based on cavitation and Fenton chemistry : A Review, Ultrasonics Sonochemistry, 21 (2014) 1 – 14. https://doi.org/10.1016/j.ultsonch.2013.07.009
[145] Vladimir O. Abramov, Anna V. Abramova, Petr P. Keremetin, Marat S. Mullakaev, Georgiy B. Vexler and Timothy J. Mason, Ultrasonically improved galvanochemical technology for the remediation of industrial wastewater, Ultrasonics Sonochemistry, 21 (2014) 812–818. https://doi.org/10.1016/j.ultsonch.2013.08.013