Silver Phosphate Based Photocatalysis: A Brief Review from Fundamentals to Applications

$20.00

Silver Phosphate Based Photocatalysis: A Brief Review from Fundamentals to Applications

A. Samal, A. Baral, D.P. Das

Attributable to the superior visible light active nature and high efficiency, silver phosphate (Ag3PO4) has attracted gigantic attention for decomposition of organic contaminants and fuel production. The photoresponsivity of Ag3PO4 hugely depends upon the morphology, method of fabrication, formation of hybrids and photocorrosive nature of it. The cause of high activity, activity based on morphology and various methods of synthesis of Ag3PO4 based photocatalysts to improve the stability of Ag3PO4 for applications towards energy and environment is the crux of the matter in this review. Important applications including photocatalytic pollutant degradation, O2/H2 production, and bacterial degradation are also addressed. Finally, summary and outlooks on the challenges and future perspectives of this emerging photocatalyst are presented.

Keywords
Photocatalysis, Dye Degradation, Water Splitting, Visible Light, Ag3PO4, Heterostructure, Electronic Structure, Pollutants

Published online 2/25/2018, 40 pages

DOI: https://dx.doi.org/10.21741/9781945291593-10

Part of Photocatalytic Nanomaterials for Environmental Applications

References
[1] A. Kudo, K. Omori, H. Kato, A Novel Aqueous Process for Preparation of Crystal Form-Controlled and Highly Crystalline BiVO4 Powder from Layered Vanadates at Room Temperature and Its Photocatalytic and Photophysical Properties, J. Am.Chem. Soc. 121 (1999) 11459-11467. https://doi.org/10.1021/ja992541y
[2] F.E. Osterloh, Inorganic Materials as Catalysts for Photochemical Splitting of Water, Chem. Mater. 20 (2008) 35-54. https://doi.org/10.1021/cm7024203
[3] F.E. Osterloh, Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting, Chem. Soc. Rev. 42 (2013) 2294–2320. https://doi.org/10.1039/C2CS35266D
[4] M.A. Henderson, A surface science perspective on TiO2 photocatalysis, Surf. Sci. Rep. 66 (2011) 185–297. https://doi.org/10.1016/j.surfrep.2011.01.001
[5] P.M. Forster, J. Eckert, J.S. Chang, S.E. Park, G. Ferey, A.K. Cheetham, Hydrogen Adsorption in Nanoporous Nickel(II) Phosphates, J. Am. Chem. Soc. 125 (2003) 1309-1312. https://doi.org/10.1021/ja028341v
[6] Y.C. Liao, C.H. Lin, S.L. Wang, Direct White Light Phosphor:  A Porous Zinc Gallophosphate with Tunable Yellow-to-White Luminescence, J. Am. Chem. Soc. 127 (2005) 9986-9987. https://doi.org/10.1021/ja0512879
[7] A.S. Arico, P. Bruce, B. Scrosati, J.M. Tarascon, W.V. Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices, Nat. Mater. 4 (2005) 366-377. https://doi.org/10.1038/nmat1368
[8] M.E. Davis, Ordered Porous Materials for Emerging Applications, Nature 417 (2002) 813-821. https://doi.org/10.1038/nature00785
[9] G.J. Hutchings, Vanadium phosphate: a new look at the active components of catalysts for the oxidation of butaneto maleic anhydride, J. Mater. Chem. 14 (2004) 3385–3395. https://doi.org/10.1039/b404610m
[10] E. Muneyama, A. Kunishige, K. Ohdan, M. Ai, Reduction and Reoxidation of Iron Phosphate and Its Catalytic Activity for Oxidative Dehydrogenation of Isobutyric Acid, J. Catal. 158 (1996) 378–384. https://doi.org/10.1006/jcat.1996.0039
[11] Y. Wang, X.X. Wang, Z. Su, Q. Guo, Q.H. Tang, Q.H. Zhang, H.L. Wan, SBA-15-supported iron phosphate catalyst for partial oxidation of methane to formaldehyde, Catal. Today 93–95 (2004) 155–161. https://doi.org/10.1016/j.cattod.2004.06.037
[12] R.H. Lin, Y.J. Ding, L.F. Gong, W.D. Dong, J.H. Wang, T. Zhang, Efficient and stable silica-supported iron phosphate catalysts for oxidative bromination of methane, J. Catal. 272 (2010) 65–73. https://doi.org/10.1016/j.jcat.2010.03.011
[13] X.Y. Tian, W. He, J.J. Cui, X.D. Zhang, W.J. Zhou, S.P. Yan, X.N. Sun, X.X. Han, S.S. Han, Y.Z. Yue, Mesoporous zirconium phosphate from yeast biotemplate, J. Colloid Interface Sci. 343 (2010) 344–349. https://doi.org/10.1016/j.jcis.2009.11.037
[14] [X.S. Li, A.R. Courtney, W. Yantasee, S.V. Mattigod, G.E. Fryxell, Templated synthesis of mesoporous titanium phosphates for the sequestration of radionuclides, Inorg. Chem. Commun. 9 (2006) 293–295. https://doi.org/10.1016/j.inoche.2005.11.014
[15] A. Dutta, A.K. Patra, A. Bhaumik, Porous organic–inorganic hybrid nickel phosphonate: Adsorption and catalytic applications, Micropor. Mesopor. Mater. 155 (2012) 208–214. https://doi.org/10.1016/j.micromeso.2012.01.017
[16] A. Samal, S. Swain, B. Satpati, D.P. Das, B.K. Mishra, 3 D Co3(PO4)2 -Reduced Graphene Oxide Flowers for Photocatalytic Water Splitting: A Type II Staggered Heterojunction System, ChemSusChem 9 (2016) 3150-3160. https://doi.org/10.1002/cssc.201601214
[17] M. Pramanik, R.R. Salunkhe, M. Imura, Y. Yamauchi, Phosphonate-Derived Nanoporous Metal Phosphates and Their Superior Energy Storage Application, ACS Appl. Mater. Interf. 8 (2016) 9790–9797. https://doi.org/10.1021/acsami.6b01012
[18] J. Wang, T. Zhu, G.W. Ho, Nature-Inspired Design of Artificial Solar-to-Fuel Conversion Systems Based on Copper Phosphate Microflowers, ChemSusChem 9 (2016) 1 – 5. https://doi.org/10.1002/cssc.201501673
[19] Z. Yi, J. Ye, N. Kikugawa, T. Kako, S. Ouyang, H. Stuart-Williams, H. Yang, J. Cao, W. Luo, Z. Li, An orthophosphate semiconductor with photooxidation properties under visible-light irradiation, Nat. Mat. 9 (2010) 559−564. https://doi.org/10.1038/nmat2780
[20] (a) X. Ma, B. Lu, D. Li, R. Shi, C. Pan, Y. Zhu, Origin of Photocatalytic Activation of Silver Orthophosphate from First-Principles, J. Phys. Chem. C 115 (2011) 4680−4687. (b) G. Botelho, J.C. Sczancoski, J. Andres, L. Gracia, E. Longo, Experimental and Theoretical Study on the Structure, Optical Properties, and Growth of Metallic Silver Nanostructures in Ag3PO4, J. Phys. Chem. C 119 (2015) 6293–6306. https://doi.org/10.1021/jp512111v
[21] J.M. Kahk, A.D.L. Sheridan, B.A.B. Kehoe, C.D.O. Scanlon, B.J. Morgan De, F.G.W. Watsonc, D.J. Payne, The electronic structure of silver orthophosphate: experiment and theory, J. Mater. Chem. A 2 (2014) 6092-6099. https://doi.org/10.1039/C3TA14191H
[22] J.J. Liu, X.L. Fu, S.F. Chen, Y.F. Zhu, Electronic structure and optical properties of Ag3PO4 photocatalyst calculated by hybrid density functional method, Appl. Phys. Lett. 99 (2011) 191903-191905. https://doi.org/10.1063/1.3660319
[23] L. Xu, W.-Q. Huang, L.-L. Wang, G.-F. Huang, P. Peng, Mechanism of Superior Visible-Light Photocatalytic Activity and Stability of Hybrid Ag3PO4/Graphene Nanocomposite, J. Phys. Chem. C 118 (2014) 12972–12979. https://doi.org/10.1021/jp5034273
[24] W.G. Wang, B. Cheng, J.G. Yu, G. Liu, W.H. Fan, Visible-Light Photocatalytic Activity and Deactivation Mechanism of Ag3PO4 Spherical Particles, Chem. Asian J. 7 (2012) 1902–1908. https://doi.org/10.1002/asia.201200197
[25] Y.P. Bi, H.Y. Hu, S.X. Ouyang, Z.B. Jiao, G.X. Lu, J.H. Ye, Selective Growth of Metallic Ag Nanocrystals on Ag3PO4 Submicro-Cubes for Photocatalytic Applications, Chem. Eur. J. 18 (2012) 14272–14275. https://doi.org/10.1002/chem.201201435
[26] Y.P. Liu, L. Fang, H.D. Lu, L.J. Liu, H. Wang, C.Z. Hu, Highly efficient and stable Ag/Ag3PO4 plasmonic photocatalyst in visible light, Catal. Commun. 17 (2012) 200–204. https://doi.org/10.1016/j.catcom.2011.11.001
[27] Y.P. Liu, L. Fang, H.D. Lu, Y.W. Li, C.Z. Hu, H.G. Yu, One-pot pyridine-assisted synthesis of visible-light-driven photocatalyst Ag/Ag3PO4, Appl. Catal. B 115-116 (2012) 245–252. https://doi.org/10.1016/j.apcatb.2011.12.038
[28] H. Wang, Y.S. Bai, J.T. Yang, X.F. Lang, J.H. Li, L. Guo, A Facile Way to Rejuvenate Ag3PO4 as a Recyclable Highly Efficient Photocatalyst, Chem. Eur. J. 18 (2012) 5524–5529. https://doi.org/10.1002/chem.201103189
[29] W.F. Yao, B. Zhang, C.P. Huang, C. Ma, X.L. Song, Q.J. Xu, Synthesis and characterization of high efficiency and stable Ag3PO4/TiO2 visible light photocatalyst for the degradation of methylene blue and rhodamine B solutions, J. Mat. Chem. 22 (2012) 4050–4055. https://doi.org/10.1039/c2jm14410g
[30] R.Y. Liu, P.G. Hu, S.W. Chen, Photocatalytic activity of Ag3PO4 nanoparticle/TiO2nanobelt heterostructures, Appl. Surf. Sci. 258 (2012) 9805–9809. https://doi.org/10.1016/j.apsusc.2012.06.033
[31] S.B. Rawal, S.D. Sung, W.I. Lee, Novel Ag3PO4/TiO2 composites for efficient decomposition of gaseous 2-propanol under visible-light irradiation, Catal. Commun. 17 (2012) 131–135. https://doi.org/10.1016/j.catcom.2011.10.034
[32] Y.P. Bi, S.X. Ouyang, J.Y.Cao, J.H. Ye, Facile synthesis of rhombic dodecahedral AgX/Ag3PO4 (X = Cl, Br, I) heterocrystals with enhanced photocatalytic properties and stabilities, Phys. Chem. Chem. Phys. 13 (2011) 10071–10075. https://doi.org/10.1039/c1cp20488b
[33] J. Cao, B.D. Luo, H.L. Lin, B.Y. Xu, S.F. Chen, Visible light photocatalytic activity enhancement and mechanism of AgBr/Ag3PO4 hybrids for degradation of methyl orange, J. Hazar. Mat. 217 (2012) 107–115. https://doi.org/10.1016/j.jhazmat.2012.03.002
[34] G. Li, L. Mao, Magnetically separable Fe3O4–Ag3PO4 sub-micrometre composite: facile synthesis, high visible light-driven photocatalytic efficiency, and good recyclability, RSC Adv. 2 (2012) 5108−5111. https://doi.org/10.1039/c2ra20504a
[35] J. Guo, S. Ouyang, H. Zhou, T. Kako, J. Ye, Ag3PO4/In(OH)3 Composite Photocatalysts with Adjustable Surface-Electric Property for Efficient Photodegradation of Organic Dyes under Simulated Solar-Light Irradiation, J. Phy. Chem. C 117 (2013) 17716−17724. https://doi.org/10.1021/jp4062972
[36] W. Zhai, G. Li, P. Yu, L. Yang, L. Mao, Silver Phosphate/Carbon Nanotube-Stabilized Pickering Emulsion for Highly Efficient Photocatalysis, J. Phys. Chem. C 117 (2013) 15183−15191. https://doi.org/10.1021/jp404456a
[37] X. Yang, H. Cui, Y. Li, J. Qin, R. Zhang, H. Tang, Fabrication of Ag3PO4-Graphene Composites with Highly Efficient and Stable Visible Light Photocatalytic Performance, ACS Catal. 3 (2013) 363−369.
[38] J. Tang, W. Gong, T. Cai, T. Xie, C. Deng, Z. Peng, Q. Deng, Novel visible light responsive Ag@(Ag2S/Ag3PO4) photocatalysts: synergistic effect between Ag and Ag2S for their enhanced photocatalytic activity, RSC Adv. 3 (2013) 2543−2547. https://doi.org/10.1021/cs3008126
[39] I. Lee, M.A. Albiter, Q. Zhang, J. Ge, Y. Yin, F. Zaera, New nanostructured heterogeneous catalysts with increased selectivity and stability, Phys. Chem. Chem. Phys. 13 (2011) 2449−2456. https://doi.org/10.1039/C0CP01688H
[40] Y. Hou, F. Zuo, Q. Ma, C. Wang, L. Bartels, P. Feng, Ag3PO4 Oxygen Evolution Photocatalyst Employing Synergistic Action of Ag/AgBr Nanoparticles and Graphene Sheets, J. Phys. Chem. C 116 (2012) 20132−20139. https://doi.org/10.1021/jp303219j
[41] H.C Yu, Z.G Jiao, H.Y Hu, G.X Lu, J.H Ye, Y.P. Bi, Fabrication of Ag3PO4–PAN composite nanofibers for photocatalytic applications, CrystEngComm 15 (2013) 4802−4805. https://doi.org/10.1039/c3ce00073g
[42] B. Wang, X. Gu, Y. Zhao, Y. Qiang, A comparable study on the photocatalytic activities of Ag3PO4, AgBr and AgBr/Ag3PO4 hybrid microstructures, App. Surf. Sci. 283 (2013) 396– 401. https://doi.org/10.1016/j.apsusc.2013.06.121
[43] Y. He, L. Zhang, B. Teng, M. Fan, New Application of Z-Scheme Ag3PO4/g-C3N4 Composite in Converting CO2 to Fuel, Environ. Sci. Technol. 49 (2015) 649-656. https://doi.org/10.1021/es5046309
[44] X. Yang, H. Tang, J. Xu, M. Antonietti, M. Shalom, Silver Phosphate/Graphitic Carbon Nitride as an Efficient Photocatalytic Tandem System for Oxygen Evolution, ChemSusChem 8 (2015) 1350 – 1358. https://doi.org/10.1002/cssc.201403168
[45] J. Xu, Z. Da Gao, K. Han, Y. Liu, and Y. Yan Song, Synthesis of Magnetically Separable Ag3PO4/TiO2/Fe3O4 Heterostructure with Enhanced Photocatalytic Performance under Visible Light for Photoinactivation of Bacteria, ACS Appl. Mater. Interf. 6 (2014) 15122–15131. https://doi.org/10.1021/am5032727
[46] P. Reunchan, N. Umezawa, Sulfur and silicon doping in Ag3PO4, J. Phys. Chem. C 119 (2015) 2284–2289. https://doi.org/10.1021/jp509715b
[47] Y. Bu and Z. Chen, Role of Polyaniline on the Photocatalytic Degradation and Stability Performance of the Polyaniline/Silver/Silver Phosphate Composite under Visible Light, ACS Appl. Mater. Interf. 6 (2014) 17589−17598. https://doi.org/10.1021/am503578s
[48] B. Chai, J. Li, Q. Xu, Magnetically Separable ZnFe2O4–Graphene Catalyst and its High Photocatalytic Performance under Visible Light Irradiation, Ind. Eng. Chem. Res. 53 (2014) 8744−8752. https://doi.org/10.1021/ie4041065
[49] C. Jin, G. Liu, L. Zu, Y. Qin, J. Yang, Preparation of Ag@Ag3PO4@ZnO ternary heterostructures for photocatalytic studies, J. Coll. Interf. Sci. 453 (2015) 36–41. https://doi.org/10.1016/j.jcis.2015.03.066
[50] H. Ago, T. Kugler, F. Cacialli, W.R. Salaneck, M.S. Shaffer, A.H. Windle, R.H. Friend, Work Functions and Surface Functional Groups of Multiwall Carbon Nanotubes, J. Phys. Chem. B 103 (1999) 8116–8121. https://doi.org/10.1021/jp991659y
[51] M. Shiraishi, M. Ata, Work function of carbon nanotubes, Carbon 39 (2001) 1913–1917. https://doi.org/10.1016/S0008-6223(00)00322-5
[52] H. Tang, C.M. Hessel, J. Wang, N. Yang, R. Yu, H. Zhao, D. Wang, Two-dimensional carbon leading to new photoconversion processes, Chem. Soc. Rev.43 (2014) 4281–4299. https://doi.org/10.1039/C3CS60437C
[53] Z. Bian, T. Tachikawa, P. Zhang, M. Fujitsuka, T. Majima, Au/TiO2 Superstructure-Based Plasmonic Photocatalysts Exhibiting Efficient Charge Separation and Unprecedented Activity, J. Am. Chem. Soc. 136 (2013) 458–465. https://doi.org/10.1021/ja410994f
[54] L. Liu, P. Li, B. Adisak, S. Ouyang, N. Umezawa, J. Ye, R. Kodiyath, T. Tanabe, G.V. Ramesh, S. Ueda, H. Abe, Gold photosensitized SrTiO3 for visible-light water oxidation induced by Au interband transitions, J. Mater. Chem. A 2 (2014) 9875–9882. https://doi.org/10.1039/c4ta01988a
[55] X. Guan, L. Guo, Cocatalytic Effect of SrTiO3 on Ag3PO4 toward Enhanced Photocatalytic Water Oxidation, ACS Catal. 4 (2014) 3020–3026. https://doi.org/10.1021/cs5005079
[56] C. Li, P. Zhang, R. Lv, J. Lu, T. Wang, S. Wang, H. Wang, J. Gong, Selective Deposition of Ag3PO4 on Monoclinic BiVO4(040) for Highly Efficient Photocatalysis Small 9 (2013) 3951–3956.
[57] S.B. Rawal, A.K. Chakraborty, W.I. Lee, FeOOH/TiO2 Heterojunction for Visible Light Photocatalyst Heterojunction of FeOOH and TiO2 for the Formation of Visible Light Photocatalyst, Bull. Korean Chem. Soc. 30 (2009) 2613–2616. https://doi.org/10.5012/bkcs.2009.30.11.2613
[58] J.A. Seabold, K.-S. Choi, Efficient and Stable Photo-Oxidation of Water by a Bismuth Vanadate Photoanode Coupled with an Iron Oxyhydroxide Oxygen Evolution Catalyst, J. Am. Chem. Soc. 134 (2012) 2186–2192. https://doi.org/10.1021/ja209001d
[59] H. Wang, Y. Bai, J. Yang, X. Lang, J. Li, L. Guo, A Facile Way to Rejuvenate Ag3PO4 as a Recyclable Highly Efficient Photocatalyst, Chem. Eur. J. 18 (2012) 5524–5529. https://doi.org/10.1002/chem.201103189
[60] Z. Yi, R.L. Withers, Y. Liu, A two-step approach towards solar-driven water splitting, Electrochem. Commun. 13 (2011) 28–30. https://doi.org/10.1016/j.elecom.2010.11.004
[61] S.J.A. Moniz, S.A. Shevlin, D.J. Martin, Z.X. Guo, J. Tang, Visible-light driven heterojunction photocatalysts for water splitting – a critical review, Ener. Environ. Sci. 8 (2015) 731–759. https://doi.org/10.1039/C4EE03271C
[62] A. Samal, D.P. Das, K.K. Nanda, B.K. Mishra, J. Das, A. Dash, Reduced Graphene Oxide–Ag3PO4 Heterostructure: A Direct Z-Scheme Photocatalyst for Augmented Photoreactivity and Stability, Chem. Asian J. 11 (2016) 584 – 595. https://doi.org/10.1002/asia.201501286
[63] D. Cao-Thang, N. Thanh-Dinh, F. Kleitz, D. Trong-On, Large-scale synthesis of uniform silver orthophosphate colloidal nanocrystals exhibiting high visible light photocatalytic activity, Chem. Commun. 47 (2011) 7797–7799. https://doi.org/10.1039/c1cc12014j
[64] Q. Xiang, D. Lang, T. Shen, F. Liu, Graphene-modified nanosized Ag3PO4 photocatalysts for enhanced visible-light photocatalytic activity and stability, Appl. Catal. B 162 (2015) 196–203. https://doi.org/10.1016/j.apcatb.2014.06.051
[65] Q. Liang, W. Ma, Y. Shi, Z. Li and X. Yang, Hierarchical Ag3PO4 porous microcubes with enhanced photocatalytic properties synthesized with the assistance of trisodium citrate, CrystEngComm 14 (2012) 2966–2973. https://doi.org/10.1039/c2ce06425a
[66] P. Dong, Y. Wang, H. Li, H. Li, X. Ma, L. Han, Shape-controllable synthesis and morphology-dependent photocatalytic properties of Ag3PO4 crystals, J. Mater. Chem. A 1 (2013) 4651–4656. https://doi.org/10.1039/c3ta00130j
[67] Y. Bi, H. Hu, Z. Jiao, H. Yu, G. Lu, J. Ye, Two-dimensional dendritic Ag3PO4 nanostructures and their photocatalytic properties, Phys. Chem. Chem. Phys. 14 (2012) 14486–14488. https://doi.org/10.1039/c2cp42822a
[68] Y. Bi, S. Ouyang, N. Umezawa, J. Cao, J. Ye, Facet Effect of Single-Crystalline Ag3PO4 Sub-microcrystals on Photocatalytic Properties, J. Am. Chem. Soc. 133 (2011) 6490–6492. https://doi.org/10.1021/ja2002132
[69] B. Zheng, X. Wang, C. Liu, K. Tan, Z. Xie, L. Zheng, High-efficiently visible light-responsive photocatalysts: Ag3PO4 tetrahedral microcrystals with exposed {111} facets of high surface energy, J. Mater. Chem. A 1 (2013) 12635–12640. https://doi.org/10.1039/c3ta12946b
[70] Z. Jiao, Y. Zhang, H. Yu, G. Lu, J. Ye, Y. Bi, Concave trisoctahedral Ag3PO4 microcrystals with high-index facets and enhanced photocatalytic properties, Chem. Commun. 49 (2013) 636–638. https://doi.org/10.1039/C2CC37324F
[71] Y. Bi, H. Hu, S. Ouyang, Z. Jiao, G. Lu, J. Ye, Selective Growth of Metallic Ag Nanocrystals on Ag3PO4 Submicro-Cubes for Photocatalytic Applications, Chem. Eur. J. 18 (2012) 14272–14275. https://doi.org/10.1002/chem.201201435
[72] Y. Bi, H. Hu, S. Ouyang, Z. Jiao, G. Lu, J. Ye, Selective growth of Ag3PO4 submicro-cubes on Ag nanowires to fabricate necklace-like heterostructures for photocatalytic applications, J. Mater. Chem. 22 (2012) 14847–14850. https://doi.org/10.1039/c2jm32800c
[73] W.S. Wang, H. Du, R.-X. Wang, T. Wen, A.-W. Xu, Heterostructured Ag3PO4/AgBr/Ag plasmonic photocatalyst with enhanced photocatalytic activity and stability under visible light, Nanoscale 5 (2013) 3315–3321. https://doi.org/10.1039/c3nr00191a
[74] X. Yang, H. Cui, Y. Li, J. Qin, R. Zhang, H. Tang, Fabrication of Ag3PO4-Graphene Composites with Highly Efficient and Stable Visible Light Photocatalytic Performance, ACS Catal. 3 (2013) 363–369. https://doi.org/10.1021/cs3008126
[75] S. Bai, X. Shen, H. Lv, G. Zhu, C. Bao, Y. Shan, Assembly of Ag3PO4 nanocrystals on graphene-based nanosheets with enhanced photocatalytic performance, J. Coll. Interf. Sci. 405 (2013) 1–9. https://doi.org/10.1016/j.jcis.2013.05.023
[76] J. Guo, H. Zhou, S. Ouyang, T. Kako, J. Ye, An Ag3PO4/nitridized Sr2Nb2O7 composite photocatalyst with adjustable band structures for efficient elimination of gaseous organic pollutants under visible light irradiation, Nanoscale 6 (2014) 7303–7311. https://doi.org/10.1039/C4NR00537F
[77] S. Zhang, S. Zhang and L. Song, Super-high activity of Bi3+ doped Ag3PO4 and enhanced photocatalytic mechanism, Appl. Cat. B 152 (2014) 129–139. https://doi.org/10.1016/j.apcatb.2014.01.020
[78] J.K. Liu, C.X. Luo, J.D. Wang, X.H. Yang, X.H. Zhong, Controlled synthesis of silver phosphate crystals with high photocatalytic activity and bacteriostatic activity, CrystEngComm 14 (2012) 8714−8721. https://doi.org/10.1039/c2ce25604e
[79] Q. Liang, W. Ma, Y. Shi, Z. Li, X. Yang, Hierarchical Ag3PO4 porous microcubes with enhanced photocatalytic properties synthesized with the assistance of trisodium citrate, CrystEngComm 14 (2012) 2966−2973. https://doi.org/10.1039/c2ce06425a
[80] H. Hu, Z. Jiao, H. Yu, G. Lu, J. Ye, Y. Bi, Facile synthesis of tetrahedral Ag3PO4 submicro-crystals with enhanced photocatalytic properties, J Mater. Chem. A 1 (2013) 2387−2390. https://doi.org/10.1039/c2ta01151d
[81] Y.S. Xu, W. Zhang, Morphology-controlled synthesis of Ag3PO4 microcrystals for high performance photocatalysis, CrystEngComm 15 (2013) 5407−5411. https://doi.org/10.1039/c3ce40172c
[82] R. Que, High-yield synthesized silver orthophosphate nanowires and their application in photoswitch, Front. Optoelectr. China 4 (2011) 176−180. https://doi.org/10.1007/s12200-011-0160-y
[83] J. Wang, F. Teng, M. Chen, J. Xu, Y. Song, X. Zhou, Facile synthesis of novel Ag3PO4 tetrapods and the {110} facets-dominated photocatalytic activity, CrystEngComm 15 (2013) 39−42. https://doi.org/10.1039/C2CE26060C
[84] S.E. Skrabalak, Y. Xia, Pushing Nanocrystal Synthesis toward Nanomanufacturing, ACS Nano 3 (2009) 10−15. https://doi.org/10.1021/nn800875p
[85] L. Dong, P. Wang, S. Wang, P. Lei, Y. Wang, A simple way for Ag3PO4 tetrahedron and tetrapod microcrystals with high visible-light-responsive activity, Mater. Lett. 134 (2014) 158–161. https://doi.org/10.1016/j.matlet.2014.07.094
[86] L. Wang, N. Li, Q. Zhang, S. Lou, Y. Zhao, M. Chen, F. Teng, An innovative glycine complexing approach to silver phosphate myriapods with improved photocatalytic activity, CrystEngComm 16 (2014) 9326-9330. https://doi.org/10.1039/C4CE01296H
[87] D.J. Martin, N, Umezawa, X. Chen, J. Ye, J. Tang, Facet engineered Ag3PO4 for efficient water photooxidation, Ener. Environ. Sci. 6 (2013) 3380-3386. https://doi.org/10.1039/c3ee42260g