TiO2 Nanomaterials a Future Prospect

$20.00

TiO2 Nanomaterials a Future Prospect

N.V. Sajith, B.N. Soumya, J. Sheethu, P. Pradeepan

As a potential candidate for various applications such as self- cleaning coatings, electrode material for Li ion battery, dye sensitized solar cells, photo catalytic hydrogen generation, water purification etc. TiO2 nanomaterials becomes an interesting topic for research all over the world. This review focuses on recent progresses in structure, methods of synthesis, morphological variety and applications of TiO2 nanomaterials.

Keywords
Nanomaterials, TiO2, Photocatalyst, Self-cleaning Coatings, Hydrogen Generation, Water Purification

Published online 2/25/2018, 47 pages

DOI: https://dx.doi.org/10.21741/9781945291593-1

Part of Photocatalytic Nanomaterials for Environmental Applications

References
[1] O. Carp, C.L. Huisman, A. Reller. Photoinduced reactivity of titanium dioxide, Prog. Solid State Chem. 32 (2004) 33-177. https://doi.org/10.1016/j.progsolidstchem.2004.08.001
[2] P.T. Anastas, M.M. Kirchhoff. Origins, current status, and future challenges of green chemistry, Acc. Chem. Res. 35 (2002) 686-94. https://doi.org/10.1021/ar010065m
[3] M. Momirlan, T. Veziroglu. Current status of hydrogen energy, Renew. Sustain. Energ. Rev. 6 (2002) 141-79. https://doi.org/10.1016/S1364-0321(02)00004-7
[4] X. Hu, G. Li, J.C. Yu. Design, fabrication, and modification of nanostructured semiconductor materials for environmental and energy applications, Langmuir. 26 (2009) 3031-9. https://doi.org/10.1021/la902142b
[5] S. Chaturvedi, P.N. Dave, N. Shah. Applications of nano-catalyst in new era, J. Saudi Chem. Soc. 16 (2012) 307-25.
[6] G. Rottman. Measurement of total and spectral solar irradiance. Solar Variability and Planetary Climates: Springer; 2006. p. 39-51. https://doi.org/10.1016/j.jscs.2011.01.015
[7] https://solarcellcentral.com/solar_page.html.
[8] P.V. Kamat. Meeting the clean energy demand: nanostructure architectures for solar energy conversion, J. Phys. Chem. C. 111 (2007) 2834-60. https://doi.org/10.1021/jp066952u
[9] Z.L. Wang, W. Wu. Nanotechnology‐enabled energy harvesting for self‐powered micro‐/nanosystems, Angew. Chem. Int. Ed. 51 (2012) 11700-21. https://doi.org/10.1002/anie.201201656
[10] A.K. Hussein. Applications of nanotechnology in renewable energies—A comprehensive overview and understanding, Renew. Sustain. Energ. Rev. 42 (2015) 460-76. https://doi.org/10.1016/j.rser.2014.10.027
[11] N. Armaroli, V. Balzani. Solar electricity and solar fuels: status and perspectives in the context of the energy transition, Chem. A Eur. J. 22 (2016) 32-57. https://doi.org/10.1002/chem.201503580
[12] J.C. Colmenares, R. Luque. Heterogeneous photocatalytic nanomaterials: prospects and challenges in selective transformations of biomass-derived compounds, Chem. Soc. Rev. 43 (2014) 765-78. https://doi.org/10.1039/C3CS60262A
[13] W.Y. Teoh, J.A. Scott, R. Amal. Progress in heterogeneous photocatalysis: from classical radical chemistry to engineering nanomaterials and solar reactors, J. Phys. Chem. Lett. 3 (2012) 629-39. https://doi.org/10.1021/jz3000646
[14] K. An, G.A. Somorjai. Nanocatalysis I: Synthesis of Metal and Bimetallic Nanoparticles and Porous Oxides and Their Catalytic Reaction Studies, Catal. Lett. 145 (2015) 233-48. https://doi.org/10.1007/s10562-014-1399-x
[15] E.W. McFarland, H. Metiu. Catalysis by doped oxides, Chem. Rev. 113 (2013) 4391-427. https://doi.org/10.1021/cr300418s
[16] M. Miyauchi, A. Nakajima, T. Watanabe, K. Hashimoto. Photocatalysis and photoinduced hydrophilicity of various metal oxide thin films, Chem. Mater. 14 (2002) 2812-6. https://doi.org/10.1021/cm020076p
[17] S.G. Kumar, K.K. Rao. Comparison of modification strategies towards enhanced charge carrier separation and photocatalytic degradation activity of metal oxide semiconductors (TiO2, WO3 and ZnO), Appl. Surf. Sci. 391 (2017) 124-48. https://doi.org/10.1021/cm020076p
[18] X. Liu, J. Iocozzia, Y. Wang, X. Cui, Y. Chen, S. Zhao, et al. Noble metal–metal oxide nanohybrids with tailored nanostructures for efficient solar energy conversion, photocatalysis and environmental remediation, Energ. Environ. Sci. 10 (2017) 402-34. https://doi.org/10.1039/C6EE02265K
[19] R. Gusain, P. Kumar, O. P. Sharma, S.L. Jain, O.P. Khatri. Reduced graphene oxide–CuO nanocomposites for photocatalytic conversion of CO2 into methanol under visible light irradiation, Appl. Catal. B- Environ. 181 (2016) 352-62. https://doi.org/10.1039/C6EE02265K
[20] A.S. Aricò, P. Bruce, B. Scrosati, J.-M. Tarascon, W. Van Schalkwijk. Nanostructured materials for advanced energy conversion and storage devices, Nat. Mater. 4 (2005) 366-77. https://doi.org/10.1038/nmat1368
[21] B.J. Eliasson, G. Moddel. Metal-oxide electron tunneling device for solar energy conversion. Google Patents; 2003.
[22] F.-t. Li, J. Ran, M. Jaroniec, S. Z. Qiao. Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion, Nanoscale. 7 (2015) 17590-610. https://doi.org/10.1039/C5NR05299H
[23] Z. Wang, C.-J. Liu. Preparation and application of iron oxide/graphene based composites for electrochemical energy storage and energy conversion devices: current status and perspective, Nano Energ. 11 (2015) 277-93. https://doi.org/10.1016/j.nanoen.2014.10.022
[24] X. Xia, J. Tu, Y. Zhang, X. Wang, C. Gu, X.-b. Zhao, et al. High-quality metal oxide core/shell nanowire arrays on conductive substrates for electrochemical energy storage, ACS nano. 6 (2012) 5531-8. https://doi.org/10.1021/nn301454q
[25] J. Wang, Q. Zhang, X. Li, B. Zhang, L. Mai, K. Zhang. Smart construction of three-dimensional hierarchical tubular transition metal oxide core/shell heterostructures with high-capacity and long-cycle-life lithium storage, Nano Energ. 12 (2015) 437-46. https://doi.org/10.1016/j.nanoen.2015.01.003
[26] H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han, Z. Nie, et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions, Nat. Energy. 1 (2016) 16039. https://doi.org/10.1038/nenergy.2016.39
[27] D.R. Miller, S.A. Akbar, P.A. Morris Nanoscale metal oxide-based heterojunctions for gas sensing: a review, Sensors and Actuat B- Chem. 204 (2014) 250-72. https://doi.org/10.1016/j.snb.2014.07.074
[28] S.G. Chatterjee, S. Chatterjee, A.K. Ray, A.K. Chakraborty. Graphene–metal oxide nanohybrids for toxic gas sensor: A review. Sensors and Actuat. B- Chem. 221 (2015) 1170-81. https://doi.org/10.1016/j.snb.2015.07.070
[29] A. Mirzaei, S. Leonardi, G. Neri. Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: A review, Ceram. Int. 42 (2016) 15119-41. https://doi.org/10.1016/j.ceramint.2016.06.145
[30] J. Bai, B. Zhou. Titanium dioxide nanomaterials for sensor applications, Chem. Rev. 114 (2014) 10131-76. https://doi.org/10.1021/cr400625j
[31] S.J. Patil, A.V. Patil, C.G. Dighavkar, K.S. Thakare, R.Y. Borase, S.J. Nandre, et al. Semiconductor metal oxide compounds based gas sensors: A literature review, Front. Mater. Sci. 9 (2015) 14-37. https://doi.org/10.1007/s11706-015-0279-7
[32] N. Masson, R. Piedrahita, M. Hannigan, Approach for quantification of metal oxide type semiconductor gas sensors used for ambient air quality monitoring, Sensors and Actuat. B- Chem. 208 (2015) 339-45. https://doi.org/10.1016/j.snb.2014.11.032
[33] S. Roy, S. Kar, B. Bagchi, S. Das, Development of transition metal oxide–kaolin composite pigments for potential application in paint systems, Appl. Clay Sci. 107 (2015) 205-12. https://doi.org/10.1016/j.clay.2015.01.029
[34] D.R. Swiler, T.J. Detrie, E.A. Axtell, Rare earth-transition metal oxide pigments. Google Patents; 2003.
[35] S. Forestier, I. Hansenne, Cosmetic composition containing a mixture of metal oxide nanopigments and melanine pigments. Google Patents; 1997.
[36] P. Jeevanandam, R. Mulukutla, M. Phillips, S. Chaudhuri, L. Erickson, K.K. Klabunde, Near infrared reflectance properties of metal oxide nanoparticles, J. Phys. Chem. C. 111 (2007) 1912-8. https://doi.org/10.1021/jp066363o
[37] A.I. Foster, M.L. Sims, D. Young, Protective metal oxide films on metal or alloy substrate surfaces susceptible to coking, corrosion or catalytic activity. Google Patents; 1981.
[38] D. Wang, G.P. Bierwagen, Sol–gel coatings on metals for corrosion protection, Prog. Org. Coat. 64 (2009) 327-38. https://doi.org/10.1016/j.porgcoat.2008.08.010
[39] Y.-S. Kwon, A.A. Gromov, J. I. Strokova, Passivation of the surface of aluminum nanopowders by protective coatings of the different chemical origin, Appl. Surf. Sci. 253 (2007) 5558-64. https://doi.org/10.1016/j.apsusc.2006.12.124
[40] A. Mostafaei, F. Nasirpouri, Epoxy/polyaniline–ZnO nanorods hybrid nanocomposite coatings: Synthesis, characterization and corrosion protection performance of conducting paints, Prog. Org. Coat. 77 (2014) 146-59. https://doi.org/10.1016/j.porgcoat.2013.08.015
[41] C. Clavero. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices, Nat. Photonics. 8 (2014) 95-103. https://doi.org/10.1038/nphoton.2013.238
[42] M. Prezioso, F. Merrikh-Bayat, B. Hoskins, G. Adam, K.K. Likharev, D.B. Strukov, Training and operation of an integrated neuromorphic network based on metal-oxide memristors, Nature. 521 (2015) 61-4. https://doi.org/10.1038/nature14441
[43] Z. Sun, T. Liao, Y. Dou, S. M. Hwang, M-S. Park, L. Jiang et al. Generalized self-assembly of scalable two-dimensional transition metal oxide nanosheets, Nat. Comm. 5 (2014) 3813. https://doi.org/10.1038/ncomms4813
[44] S. Park, K. . Kim, J.W. Jo, S. Sung, K.T. Kim, W.J. Lee et al. In‐Depth Studies on Rapid Photochemical Activation of Various Sol–Gel Metal Oxide Films for Flexible Transparent Electronics, Adv. Funct. Mat. 25 (2015) 2807-15. https://doi.org/10.1002/adfm.201500545
[45] L. Petti, N. Münzenrieder, C. Vogt, H. Faber, L. Büthe, G. Cantarella et al. Metal oxide semiconductor thin-film transistors for flexible electronics, Appl. Phys. Rev. 3 (2016) 021303. https://doi.org/10.1063/1.4953034
[46] S.A. Corr. Metal oxide nanoparticles. Nanoscience 2012. p. 180-207. https://doi.org/10.1039/9781849734844-00180
[47] J. Pelegrina, F. Gennari, A. Condó, A.F. Guillermet, Predictive Gibbs-energy approach to crystalline/amorphous relative stability of nanoparticles: Size-effect calculations and experimental test, J. Alloy Compd. 689 (2016) 161-8. https://doi.org/10.1016/j.jallcom.2016.07.284
[48] A. Khalajhedayati, Z. Pan, T.J. Rupert, Manipulating the interfacial structure of nanomaterials to achieve a unique combination of strength and ductility, Nat. Comm.. 7 (2016).
[49] A.P. Alivisatos. Perspectives on the physical chemistry of semiconductor nanocrystals, J. Phys. Chem. 100 (1996) 13226-39. https://doi.org/10.1021/jp9535506
[50] A.M. Smith, S. Nie, Semiconductor nanocrystals: structure, properties, and band gap engineering, Acc Chem Res. 43 (2010) 190-200. https://doi.org/10.1021/ar9001069
[51] G. Eda, T. Fujita, H. Yamaguchi, D. Voiry, M. Chen, M. Chhowalla, Coherent atomic and electronic heterostructures of single-layer MoS2, Acs Nano. 6 (2012) 7311-7. https://doi.org/10.1021/nn302422x
[52] V. N. Mochalin, O. Shenderova, D. Ho, Y. Gogotsi, The properties and applications of nanodiamonds, Nat. Nanotechnol. 7 (2012) 11-23. https://doi.org/10.1038/nnano.2011.209
[53] L. Yang, L. Li, M. Zhao, G. Li, Size-induced variations in bulk/surface structures and their impact on photoluminescence properties of GdVO 4: Eu3+ nanoparticles, Phys. Chem. Chem. Phys. 14 (2012) 9956-65. https://doi.org/10.1039/c2cp41136a
[54] R. Buonsanti, A. Llordes, S. Aloni, B.A. Helms, D.J. Milliron, Tunable infrared absorption and visible transparency of colloidal aluminum-doped zinc oxide nanocrystals, Nano Lett. 11 (2011) 4706-10. https://doi.org/10.1021/nl203030f
[55] M. Ma, F.W. Mont, X. Yan, J. Cho, E.F. Schubert, G. B. Kim et al. Effects of the refractive index of the encapsulant on the light-extraction efficiency of light-emitting diodes, Opt. Express. 19 (2011) A1135-A40. https://doi.org/10.1364/OE.19.0A1135
[56] V. Etacheri, C. Di Valentin, J. Schneider, D. Bahnemann, S.C. Pillai, Visible-light activation of TiO2 photocatalysts: advances in theory and experiments, J. Photoch. Photobio. C. 25 (2015) 1-29. https://doi.org/10.1016/j.jphotochemrev.2015.08.003
[57] A. Barnard, P. Zapol, L. Curtiss, Modeling the morphology and phase stability of TiO2 nanocrystals in water, J. Chem. Theory and Computation. 1 (2005) 107-16. https://doi.org/10.1021/ct0499635
[58] H. Shi, Magaye R., Castranova V., Zhao J. Titanium dioxide nanoparticles: a review of current toxicological data, Particle and fibre toxicology. 10 (2013) 15. https://doi.org/10.1186/1743-8977-10-15
[59] P. Tao, Y. Li, A. Rungta, A. Viswanath, J. Gao, B. C. Benicewicz et al. TiO2 nanocomposites with high refractive index and transparency, J. Mater. Chem.. 21 (2011) 18623-9. https://doi.org/10.1039/c1jm13093e
[60] D.O. Scanlon, C.W. Dunnill, J. Buckeridge, S.A. Shevlin, A.J. Logsdail, S.M. Woodley et al. Band alignment of rutile and anatase TiO2, Nat. Mater.. 12 (2013) 798-801. https://doi.org/10.1038/nmat3697
[61] N. Serpone. Is the band gap of pristine TiO2 narrowed by anion-and cation-doping of titanium dioxide in second-generation photocatalysts? : ACS Publications; 2006.
[62] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature. 238 (1972) 37-8. https://doi.org/10.1038/238037a0
[63] R. Li, Y. Weng, X. Zhou, X. Wang, Y. Mi, R. Chong et al. Achieving overall water splitting using titanium dioxide-based photocatalysts of different phases, Energy Environ. Sci. 8 (2015) 2377-82. https://doi.org/10.1039/C5EE01398D
[64] J. Yu, J. Fan, L. Kangle. Anatase TiO2 nanosheets with exposed (001) facets: improved photoelectric conversion efficiency in dye-sensitized solar cells, Nanoscale. 2 (2010) 2144-9. https://doi.org/10.1039/c0nr00427h
[65] I.P. Parkin, R.G. Palgrave, Self-cleaning coatings, J. Mater. Chem. 15 (2005) 1689-95. https://doi.org/10.1039/b412803f
[66] J. Li, W. Wan, H. Zhou, J. Li, D. Xu, Hydrothermal synthesis of TiO2 (B) nanowires with ultrahigh surface area and their fast charging and discharging properties in Li-ion batteries, Chem. Comm. 47 (2011) 3439-41. https://doi.org/10.1039/c0cc04634e
[67] R. Levinson, P. Berdahl, H. Akbari, Solar spectral optical properties of pigments—Part I: model for deriving scattering and absorption coefficients from transmittance and reflectance measurements, Sol. Energy Mater. Sol. Cells. 89 (2005) 319-49. https://doi.org/10.1016/j.solmat.2004.11.012
[68] P. Moriarty, D. Honnery, What is the global potential for renewable energy?, Renew. Sustain. Energ. Rev. 16 (2012) 244-52. https://doi.org/10.1016/j.rser.2011.07.151
[69] N. Lior. Sustainable energy development: the present (2009) situation and possible paths to the future, Energy. 35 (2010) 3976-94. https://doi.org/10.1016/j.energy.2010.03.034
[70] A. Blakers. Sustainable energy options, Asian Perspective. 39 (2015) 559-90.
[71] V. Balzani, A. Credi, M. Venturi, Photochemical conversion of solar energy, ChemSusChem. 1 (2008) 26-58. https://doi.org/10.1002/cssc.200700087
[72] S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future, Nature. 488 (2012) 294. https://doi.org/10.1038/nature11475
[73] J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo et al. Understanding TiO2 photocatalysis: mechanisms and materials, Chem. Rev. 114 (2014) 9919-86. https://doi.org/10.1021/cr5001892
[74] F. Zhang, J. Zhao, T. Shen, H. Hidaka, E. Pelizzetti, N. Serpone, TiO2-assisted photodegradation of dye pollutants II. Adsorption and degradation kinetics of eosin in TiO2 dispersions under visible light irradiation, Appl. Catal. B-Environ. 15 (1998) 147-56. https://doi.org/10.1016/S0926-3373(97)00043-X
[75] C. Chen, X. Li, W. Ma, J. Zhao, H. Hidaka, N. Serpone, Effect of transition metal ions on the TiO2-assisted photodegradation of dyes under visible irradiation: a probe for the interfacial electron transfer process and reaction mechanism, J. Phys. Chem. B. 106 (2002) 318-24. https://doi.org/10.1021/jp0119025
[76] W. Li, D. Li, Y. Lin, P. Wang, W. Chen, X. Fu et al. Evidence for the active species involved in the photodegradation process of methyl orange on TiO2, J. Phys. Chem. C. 116 (2012) 3552-60. https://doi.org/10.1021/jp209661d
[77] R. Asahi, Morikawa T., Irie H., Ohwaki T. Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects, Chem. Rev. 114 (2014) 9824-52. https://doi.org/10.1021/cr5000738
[78] S.A. Ansari, M. M. Khan, M.O. Ansari, M.H. Cho, Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis, New J. Chem. 40 (2016) 3000-9. https://doi.org/10.1039/C5NJ03478G
[79] G. Li, L. Chen, N.M. Dimitrijevic, K.A. Gray. Visible light photocatalytic properties of anion-doped TiO2 materials prepared from a molecular titanium precursor, Chem. Phys. Lett. 451 (2008) 75-9. https://doi.org/10.1016/j.cplett.2007.11.071
[80] H. Wang, J. Lewis, Second-generation photocatalytic materials: anion-doped TiO2, J. Phys. Conden. Matter. 18 (2005) 421. https://doi.org/10.1088/0953-8984/18/2/006
[81] S. Anderson, E.C. Constable, MP. Dare-Edwards, J.B. Goodenough, A. Hamnett, K. R. Seddon et al. Chemical modification of a titanium (IV) oxide electrode to give stable dye sensitisation without a supersensitiser, Nature. 280 (1979) 571-3. https://doi.org/10.1038/280571a0
[82] B. O’regan, M. Grfitzeli, A low-cost, high-efficiency solar cell based on dye-sensitized, Nature. 353 (1991) 737-40. https://doi.org/10.1038/353737a0
[83] M. Zhang, C. Chen, W. Ma, J. Zhao, Visible‐Light‐Induced Aerobic Oxidation of Alcohols in a Coupled Photocatalytic System of Dye‐Sensitized TiO2 and TEMPO, Angew. Chem. 120 (2008) 9876-9. https://doi.org/10.1002/ange.200803630
[84] Z. Wang, H. Wang, B. Liu, W. Qiu, J. Zhang, S. Ran et al. Transferable and flexible nanorod-assembled TiO2 cloths for dye-sensitized solar cells, photodetectors, and photocatalysts, ACS nano. 5 (2011) 8412-9. https://doi.org/10.1021/nn203315k
[85] Y. Shengyuan, Z. Peining, A.S. Nair, S. Ramakrishna, Rice grain-shaped TiO2 mesostructures—synthesis, characterization and applications in dye-sensitized solar cells and photocatalysis, J. Mater. Chem. 21 (2011) 6541-8. https://doi.org/10.1039/c0jm04512h
[86] P. Chowdhury, J. Moreira, H. Gomaa, A.K. Ray, Visible-solar-light-driven photocatalytic degradation of phenol with dye-sensitized TiO2: parametric and kinetic study, Ind. Eng. Chem. Res. 51 (2012) 4523-32. https://doi.org/10.1021/ie2025213
[87] Z. Li, Y. Fang, S. Xu, Squaraine dye sensitized TiO2 nanocomposites with enhanced visible-light photocatalytic activity, Mater. Lett. 93 (2013) 345-8. https://doi.org/10.1016/j.matlet.2012.11.135
[88] D. Y. Leung, X. Fu, C. Wang, M. Ni, M. K. Leung, X. Wang et al. Hydrogen Production over Titania‐Based Photocatalysts, ChemSusChem. 3 (2010) 681-94. https://doi.org/10.1002/cssc.201000014
[89] J. Cao, J-Z. Sun, H-Y. Li, J. Hong, M. Wang, A facile room-temperature chemical reduction method to TiO2@ CdS core/sheath heterostructure nanowires, J. Mater. Chem. 14 (2004) 1203-6. https://doi.org/10.1039/b313541a
[90] H. Tada, T. Kiyonaga, S. Naya, Rational design and applications of highly efficient reaction systems photocatalyzed by noble metal nanoparticle-loaded titanium (IV) dioxide, Chem. Soc. Rev. 38 (2009) 1849-58. https://doi.org/10.1039/b822385h
[91] X. Chen, L. Liu, Y.Y. Peter, S.S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals, Science. 331 (2011) 746-50. https://doi.org/10.1126/science.1200448
[92] Z-L. Lu, E. Lindner, H. A. Mayer, Applications of sol− gel-processed interphase catalysts, Chem. Rev. 102 (2002) 3543-78. https://doi.org/10.1021/cr010358t
[93] R.A. Caruso, M. Antonietti, Sol− gel nanocoating: an approach to the preparation of structured materials, Chem. Mater. 13 (2001) 3272-82. https://doi.org/10.1021/cm001257z
[94] S. Mann, S.L. Burkett, S.A. Davis, C.E. Fowler, N.H. Mendelson, S.D. Sims et al. Sol− gel synthesis of organized matter, Chemistry of Materials. 9 (1997) 2300-10. https://doi.org/10.1021/cm970274u
[95] B. Liu, E.S. Aydil, Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells, J Am. Chem. Soc. 131 (2009) 3985-90. https://doi.org/10.1021/ja8078972
[96] C.J. Brinker, G.W. Scherer, SOL-GEL SCIENCE. In: George W. Scherer CJB, editor. Boston San Diego New York: Academic Press, INC; 1990.
[97] C.-C. Wang, J.Y. Ying, Sol− gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals, Chem. Mater. 11 (1999) 3113-20. https://doi.org/10.1021/cm990180f
[98] X. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications, Chem. Rev. 107 (2007) 2891-959. https://doi.org/10.1021/cm990180f
[99] A. Chemseddine, T. Moritz, Nanostructuring titania: control over nanocrystal structure, size, shape, and organization, Eur. J. Inorg. Chem. 1999 (1999) 235-45. https://doi.org/10.1002/(SICI)1099-0682(19990202)1999:2%3C235::AID-EJIC235%3E3.0.CO;2-N
[100] T. Sugimoto, K. Okada, H. Itoh, Synthetic of uniform spindle-type titania particles by the gel–sol method. J. Colloid. Interface Sci. 1997. https://doi.org/10.1006/jcis.1997.5037
[101] T. Sugimoto, X. Zhou, A. Muramatsu, Synthesis of uniform anatase TiO2 nanoparticles by gel–sol method: 4. Shape control, J. Colloid Interface Sci. 259 (2003) 53-61. https://doi.org/10.1016/S0021-9797(03)00035-3
[102] T. Sugimoto, X. Zhou, Synthesis of uniform anatase TiO2 nanoparticles by the Gel–Sol method: 2. adsorption of OH− ions to Ti (OH)4 gel and TiO2 particles, J. Colloid Interface Sci. 252 (2002) 347-53. https://doi.org/10.1006/jcis.2002.8480
[103] T. Sugimoto, X. Zhou, A. Muramatsu, Synthesis of Uniform Anatase TiO2 Nanoparticles by Gel–Sol Method, J. Colloid Interface Sci. 252 (2002) 347-53. https://doi.org/10.1006/jcis.2002.8480
[104] B. Naufal, P. Jaseela, P. Periyat, Direct Sunlight Active Sm3+ Doped TiO2 Photocatalyst. Proc Materials Science Forum: Trans Tech Publ; 2016. p. 33-44.
[105] M. Andersson, L. Österlund, S. Ljungström, A. Palmqvist, Preparation of nanosize anatase and rutile TiO2 by hydrothermal treatment of microemulsions and their activity for photocatalytic wet oxidation of phenol, J. Phys. Chem. B. 106 (2002) 10674-9. https://doi.org/10.1021/jp025715y
[106] J. Yang, S. Mei, J.M. Ferreira, Hydrothermal synthesis of nanosized titania powders: influence of peptization and peptizing agents on the crystalline phases and phase transitions, J. Am. Ceram. Soc. 83 (2000) 1361-8. https://doi.org/10.1111/j.1151-2916.2000.tb01394.x
[107] J. Yang, S. Mei, J.M. Ferreira, Hydrothermal synthesis of nanosized titania powders: influence of tetraalkyl ammonium hydroxides on particle characteristics, J. Am. Ceram. Soc. 84 (2001) 1696-702. https://doi.org/10.1111/j.1151-2916.2001.tb00901.x
[108] J. Yang, S. Mei, J.M. Ferreira, Hydrothermal synthesis of well-dispersed TiO2 nano-crystals, J. Mater. Res. 17 (2002) 2197-200. https://doi.org/10.1557/JMR.2002.0323
[109] J. Yang, S. Mei, J.M. Ferreira, In situ preparation of weakly flocculated aqueous anatase suspensions by a hydrothermal technique, J. Colloid Interface Sci. 260 (2003) 82-8. https://doi.org/10.1016/S0021-9797(02)00190-X
[110] S.Y. Chae, M.K. Park, S.K. Lee, T.Y. Kim, S.K. Kim, W.I. Lee, Preparation of size-controlled TiO2 nanoparticles and derivation of optically transparent photocatalytic films, Chem. Mater. 15 (2003) 3326-31. https://doi.org/10.1021/cm030171d
[111] F. Cot, A. Larbot, G. Nabias, L. Cot, Preparation and characterization of colloidal solution derived crystallized titania powder, J. Eur. Ceram. Soc. 18 (1998) 2175-81. https://doi.org/10.1016/S0955-2219(98)00143-5
[112] Y. Zhang, G. Li, Y. Jin, Y. Zhang, J. Zhang, L. Zhang, Hydrothermal synthesis and photoluminescence of TiO2 nanowires, Chem. Phys. Lett. 365 (2002) 300-4. https://doi.org/10.1016/S0009-2614(02)01499-9
[113] M. Wei, Y. Konishi, H. Zhou, H. Sugihara, H. Arakawa A simple method to synthesize nanowires titanium dioxide from layered titanate particles, Chem. Phys. Lett. 400 (2004) 231-4. https://doi.org/10.1016/j.cplett.2004.10.114
[114] J. Xu, J. P. Ge, Y. D. Li, Solvothermal synthesis of monodisperse PbSe nanocrystals, J. Phys. Chem. B. 110 (2006) 2497-501. https://doi.org/10.1021/jp056521w
[115] B. Gersten, Solvothermal synthesis of nanoparticles, Chemfiles. 5 (2005) 11-2.
[116] M.M. Byranvand, A.N. Kharat, L. Fatholahi, Z.M. Beiranvand, A review on synthesis of nano-TiO2 via different methods, J. Nanostruct. 3 (2013) 1-9.
[117] C. Xu, D. Nie, H. Chen, G. Zhao, Y. Liu, Fabrication of cobalt hollow microspheres via a PVP-assisted solvothermal process, Mater. Lett. 110 (2013) 87-90. https://doi.org/10.1016/j.matlet.2013.08.010
[118] B.M. Wen, C. Y. Liu, Y. Liu, Solvothermal synthesis of ultralong single-crystalline TiO2 nanowires, New J. Chem. 29 (2005) 969-71. https://doi.org/10.1039/b502604k
[119] B. Wen, C. Liu, Y. Liu, Bamboo-shaped Ag-doped TiO2 nanowires with heterojunctions, Inorg. Chem. 44 (2005) 6503-5.
[120] X. Wang, J. Zhuang, Q. Peng, Y. Li, A general strategy for nanocrystal synthesis, Nature. 437 (2005) 121. https://doi.org/10.1038/nature03968
[121] C.S. Kim, B. K. Moon, J. H. Park, B. C. Choi, H. J. Seo, Solvothermal synthesis of nanocrystalline TiO2 in toluene with surfactant, J.Cryst. Growth. 257 (2003) 309-15. https://doi.org/10.1016/S0022-0248(03)01468-4
[122] Y. Cao, L. Zong, Q. Li, C. Li, J. Li, J. Yang, Solvothermal synthesis of TiO2 nanocrystals with {001} facets using titanic acid nanobelts for superior photocatalytic activity, Appl. Surf. Sci. 391 (2017) 311-7. https://doi.org/10.1016/j.apsusc.2016.06.198
[123] J. Li, C. Wang, P. Zheng, L. Zhang, G. Chen, C. Tang, et al Solvothermal preparation of micro/nanostructured TiO2 with enhanced lithium storage capability, Mater. Chem. Phys. 190 (2017) 202-8. https://doi.org/10.1016/j.matchemphys.2016.12.049
[124] A. Sherman. Chemical vapor deposition for microelectronics: principles, technology, and applications, (1987).
[125] G.E.J. Poinern. A laboratory course in nanoscience and nanotechnology: CRC Press, 2014.
[126] L. Lei, H.P. Chu, X. Hu, P.L. Yue, Preparation of heterogeneous photocatalyst (TiO2/alumina) by metallo-organic chemical vapor deposition, Ind. Eng. Chem. Res. 38 (1999) 3381-5. https://doi.org/10.1021/ie980677j
[127] K. Schrijnemakers, N. Impens, E. Vansant, Deposition of a titania coating on silica by means of the chemical surface coating, Langmuir. 15 (1999) 5807-13. https://doi.org/10.1021/la9812469
[128] D.C. Gilmer, D.G. Colombo, C.J. Taylor, J. Roberts, G. Haugstad, S.A. Campbell, et al. Low Temperature CVD of Crystalline Titanium Dioxide Films Using Tetranitratotitanium (IV), Chem. Vap. Deposition. 4 (1998) 9-11.
[129] Z. Ding, X. Hu, P.L. Yue, G.Q. Lu, P.F. Greenfield, Synthesis of anatase TiO2 supported on porous solids by chemical vapor deposition, Catal. Today. 68 (2001) 173-82. https://doi.org/10.1016/S0920-5861(01)00298-X
[130] S. Seifried, M. Winterer, H. Hahn, Nanocrystalline titania films and particles by chemical vapor synthesis, Chem. Vap. Deposition. 6 (2000) 239-44.
[131] D. Guo, A. Ito, T. Goto, R. Tu, C. Wang, Q. Shen, et al. Preparation of rutile TiO2 thin films by laser chemical vapor deposition method, J. Adv. Ceram. 2 (2013) 162-6. https://doi.org/10.1007/s40145-013-0056-y
[132] D.S. Jayakrishnan. Electrodeposition: The versatile technique for nanomaterials 2012.
[133] S. Liu, K. Huang, Straightforward fabrication of highly ordered TiO2 nanowire arrays in AAM on aluminum substrate, Sol. Energ. Mater. Sol. Cells. 85 (2005) 125-31.
[134] M. Gopal, W. M. Chan, L. De Jonghe, Room temperature synthesis of crystalline metal oxides, J. Mater. Sci. 32 (1997) 6001-8. https://doi.org/10.1023/A:1018671212890
[135] T.P. Feist, P.K. Davies, The soft chemical synthesis of TiO2 (B) from layered titanates, J.Solid State Chem. 101 (1992) 275-95. https://doi.org/10.1016/0022-4596(92)90184-W
[136] Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han, C. Li, Titanium dioxide-based nanomaterials for photocatalytic fuel generations, Chem. Rev. 114 (2014) 9987-10043. https://doi.org/10.1021/cr500008u
[137] A.L. Linsebigler, G. Lu, J.T. Yates Jr, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chem. Rev. 95 (1995) 735-58. https://doi.org/10.1021/cr00035a013
[138] H. Zhang, J.F. Banfield, Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from TiO2, J. Phys. Chem. B. 104 (2000) 3481-7. https://doi.org/10.1021/jp000499j
[139] W.H. Baur. Atomabstände und bindungswinkel im brookit, TiO2, Acta Crystallogr. 14 (1961) 214-6. https://doi.org/10.1107/S0365110X61000747
[140] Z. Yanqing, S. Erwei, C. Suxian, L. Wenjun, H. Xingfang, Hydrothermal preparation and characterization of brookite-type TiO2 nanocrystallites, J. Mater. Sci. Lett. 19 (2000) 1445-8. https://doi.org/10.1023/A:1011010306699
[141] P. Periyat, D.E. McCormack, S.J. Hinder, S.C. Pillai, One-pot synthesis of anionic (nitrogen) and cationic (sulfur) codoped high-temperature stable, visible light active, anatase photocatalysts, J. Phys. Chem. C. 113 (2009) 3246-53. https://doi.org/10.1021/jp808444y
[142] P. Periyat, B. Naufal, S.G. Ullattil, A review on high temperature stable anatase TiO2 photocatalysts. Proc Materials Science Forum: Trans Tech Publ; 2016. p. 78-93.
[143] P.I. Gouma, M.J. Mills, Anatase‐to‐Rutile Transformation in Titania Powders, J. Am. Ceram.Soc. 84 (2001) 619-22. https://doi.org/10.1111/j.1151-2916.2001.tb00709.x
[144] G. Riegel, J. R. Bolton, Photocatalytic efficiency variability in TiO2 particles, J. Phys. Chem. 99 (1995) 4215-24. https://doi.org/10.1021/j100012a050
[145] R. Asahi, Y. Taga, W. Mannstadt, A. J. Freeman, Electronic and optical properties of anatase TiO2, Phys. Rev. B. 61 (2000) 7459. https://doi.org/10.1103/PhysRevB.61.7459
[146] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science. 293 (2001) 269-71. https://doi.org/10.1126/science.1061051
[147] N.G. Park, J. Van de Lagemaat, A. Frank, Comparison of dye-sensitized rutile-and anatase-based TiO2 solar cells, J. Phys. Chem. B. 104 (2000) 8989-94. https://doi.org/10.1021/jp994365l
[148] J.C. Yu, J. Lin, R.W. Kwok, Ti1-xZrxO2 Solid Solutions for the Photocatalytic Degradation of Acetone in Air, J. Phys. Chem. B. 102 (1998) 5094-8. https://doi.org/10.1021/jp980332e
[149] M. Dahl, Y. Liu, Y. Yin, Composite titanium dioxide nanomaterials, Chem. Rev. 114 (2014) 9853-89. https://doi.org/10.1021/cr400634p
[150] W. Li, Z. Wu, J. Wang, A. A. Elzatahry, D. Zhao, A perspective on mesoporous TiO2 materials, Chem. Mater. 26 (2013) 287-98. https://doi.org/10.1021/cm4014859
[151] N. Serpone, D. Lawless, R. Khairutdinov, Size effects on the photophysical properties of colloidal anatase TiO2 particles: size quantization versus direct transitions in this indirect semiconductor, J. Phys. Chem. 99 (1995) 16646-54. https://doi.org/10.1021/j100045a026
[152] H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, J. Ye, Nano‐photocatalytic materials: possibilities and challenges, Adv. Mater. 24 (2012) 229-51. https://doi.org/10.1002/adma.201102752
[153] T. Sasaki, M. Watanabe, Semiconductor nanosheet crystallites of quasi-TiO2 and their optical properties, J. Phys. Chem. B. 101 (1997) 10159-61. https://doi.org/10.1021/jp9727658
[154] Y. Bessekhouad, D. Robert, J.V. Weber, N. Chaoui, Effect of alkaline-doped TiO2 on photocatalytic efficiency, J. Photochem. Photobiol. A-Chem. 167 (2004) 49-57. https://doi.org/10.1016/j.jphotochem.2003.12.001
[155] J.G. Ma, C.R. Zhang, J.J. Gong, Y.Z. Wu, S.Z. Kou, H. Yang, et al. The Electronic Structures and Optical Properties of Alkaline-Earth Metals Doped Anatase TiO2: A Comparative Study of Screened Hybrid Functional and Generalized Gradient Approximation, Materials. 8 (2015) 5508-25. https://doi.org/10.3390/ma8085257
[156] J. Son, J. Chattopadhyay, D. Pak, Electrocatalytic performance of Ba-doped TiO2 hollow spheres in water electrolysis, Int. J. Hydrogen Energy. 35 (2010) 420-7. https://doi.org/10.1016/j.ijhydene.2009.10.096
[157] S. Liu, Z. Min, D. Hu, Y. Liu, Synthesis of calcium doped TiO2 nanomaterials and their visible light degradation property. Proc International Conference on Material and Environmental Engineering (ICMAEE 2014): Atlantis Press; 2014. https://doi.org/10.2991/icmaee-14.2014.12
[158] K. Nagaveni, M. Hegde, G. Madras, Structure and Photocatalytic Activity of Ti1-xMxO2±δ (M= W, V, Ce, Zr, Fe, and Cu) Synthesized by Solution Combustion Method, J. Phys. Chem. B. 108 (2004) 20204-12. https://doi.org/10.1021/jp047917v
[159] F. Gracia, J. Holgado, A. Caballero, A. Gonzalez-Elipe, Structural, Optical, and Photoelectrochemical Properties of Mn+−TiO2 Model Thin Film Photocatalysts, J. Phys. Chem. B. 108 (2004) 17466-76. https://doi.org/10.1021/jp0484938
[160] X. Wang, J. . Li, H. Kamiyama, M. Katada, N. Ohashi, Y. Moriyoshi, et al. Pyrogenic iron (III)-doped TiO2 nanopowders synthesized in RF thermal plasma: phase formation, defect structure, band gap, and magnetic properties, J. Am. Chem. Soc. 127 (2005) 10982-90. https://doi.org/10.1021/ja051240n
[161] W. Sangchay. Photocatalytic and antibacterial activity of Ag-doped TiO2 nanoparticles, Asia-Pac. J. Sci. Tech. 18 (2017) 731-8.
[162] N. Shetti, D. Nayak, S. . Malode, R. Kulkarni, Electrochemical sensor based upon ruthenium doped TiO2 nanoparticles for the determination of flufenamic acid, J. Electrochem. Soc. 164 (2017) B3036-B42. https://doi.org/10.1149/2.0031705jes
[163] B. Liu, H. Chen, C. Liu, S. Andrews, C. Hahn, P. Yang, Large-scale synthesis of transition-metal-doped TiO2 nanowires with controllable overpotential, J. Am. Chem. Soc. 135 (2013) 9995-8. https://doi.org/10.1021/ja403761s
[164] M. García-Mota, A. Vojvodic, F. Abild-Pedersen, J.K. Nørskov Electronic origin of the surface reactivity of transition-metal-doped TiO2 (110), J. Phys. Chem. C. 117 (2012) 460-5. https://doi.org/10.1021/jp310667r
[165] F. Li, X. Li, M. Hou, Photocatalytic degradation of 2-mercaptobenzothiazole in aqueous La3+–TiO2 suspension for odor control, Appl. Catal. B-Environ. 48 (2004) 185-94. https://doi.org/10.1016/j.apcatb.2003.10.003
[166] A.W. Xu, Y. Gao, H.Q. Liu, The preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO2 nanoparticles, J. Catal. 207 (2002) 151-7. https://doi.org/10.1006/jcat.2002.3539
[167] X.P. Zhao, J.B. Yin, Preparation and electrorheological characteristics of rare-earth-doped TiO2 suspensions, Chem. Mater. 14 (2002) 2258-63. https://doi.org/10.1021/cm011522w
[168] J. Zhao, J. Yu, Y. Xie, Z. Le, X. Hong, S. Ci, et al. Lanthanum and neodymium doped barium ferrite-TiO2/MCNTs/poly (3-methyl thiophene) composites with nest structures: preparation, characterization and electromagnetic microwave absorption properties, Sci. Rep. 6 (2016). https://doi.org/10.1038/srep20496
[169] P. Mazierski, W. Lisowski, T. Grzyb, M. J. Winiarski, T. Klimczuk, A. Mikołajczyk, et al. Enhanced photocatalytic properties of lanthanide-TiO2 nanotubes: An experimental and theoretical study, Appl. Catal. B- Environ. 205 (2017) 376-85. https://doi.org/10.1016/j.apcatb.2016.12.044
[170] M. Chang, Y. Song, Y. Sheng, J. Chen, H. Guan, Z. Shi, et al. Photoluminescence and Photocatalysis Properties of Dual-Functional Eu3+-Doped Anatase Nanocrystals, J. Phys. Chem. C. 121 (2017) 2369-79. https://doi.org/10.1021/acs.jpcc.6b11013
[171] N. Yan, Z. Zhu, J. Zhang, Z. Zhao, Q. Liu. Preparation and properties of Ce-doped TiO2 photocatalyst, Mater. Res. Bul. 47 (2012) 1869-73. https://doi.org/10.1016/j.materresbull.2012.04.077
[172] [172] C.M. Malengreaux, S.L. Pirard, G. Léonard, J.G. Mahy, M. Herlitschke, B. Klobes, et al. Study of the photocatalytic activity of Fe3+, Cr3+, La3+ and Eu3+ single-doped and co-doped TiO2 catalysts produced by aqueous sol-gel processing, J. Alloy. Compd. 691 (2017) 726-38. https://doi.org/10.1016/j.jallcom.2016.08.211
[173] Y. Zhang, H. Zhang, Y. Xu, Y. Wang, Significant effect of lanthanide doping on the texture and properties of nanocrystalline mesoporous TiO2, J. Solid State Chem. 177 (2004) 3490-8. https://doi.org/10.1016/j.jssc.2004.05.026
[174] M. Ye, J. Jia, Z. Wu, C. Qian, R. Chen, P.G. O’Brien et al. Synthesis of Black TiOx Nanoparticles by Mg Reduction of TiO2 Nanocrystals and their Application for Solar Water Evaporation, Adv. Energ. Mater. 7 (2017).
[175] J.D. Bryan, S.M. Heald, S A. Chambers, D.R. Gamelin, Strong room-temperature ferromagnetism in Co2+-doped TiO2 made from colloidal nanocrystals, J Am. Chem. Soc. 126 (2004) 11640-7. https://doi.org/10.1021/ja047381r
[176] S.G. Ullattil, A.V. Thelappurath, S.N. Tadka, J. Kavil, B.K. Vijayan, P. Periyat, A Sol-solvothermal Processed ‘Black TiO2’as Photoanode Material in Dye Sensitized Solar Cells, Solar Energy. 155 (2017) 490-5. https://doi.org/10.1016/j.solener.2017.06.059
[177] D.J. Reidy, J.D. Holmes, C. Nagle, M.A. Morris, A highly thermally stable anatase phase prepared by doping with zirconia and silica coupled to a mesoporous type synthesis technique, J. Mater. Chem. 15 (2005) 3494-500. https://doi.org/10.1039/b503395k
[178] S. Yin,Y. Aita, M. Komatsu, T. Sato, Visible-light-induced photocatalytic activity of TiO2− xNy prepared by solvothermal process in urea–alcohol system, J Eur. Ceram. Soc. 26 (2006) 2735-42. https://doi.org/10.1016/j.jeurceramsoc.2005.05.012
[179] S.C. Pillai, P. Periyat, R. George, D. E. McCormack, M.K. Seery, H. Hayden et al. Synthesis of high-temperature stable anatase TiO2 photocatalyst, J. Phys. Chem. C. 111 (2007) 1605-11. https://doi.org/10.1021/jp065933h
[180] G. Yang, Z. Yan, T. Xiao, Low-temperature solvothermal synthesis of visible-light-responsive S-doped TiO 2 nanocrystal, Appl. Surf. Sci. 258 (2012) 4016-22. https://doi.org/10.1016/j.apsusc.2011.12.092
[181] H.-F. Yu, Phase development and photocatalytic ability of gel-derived P-doped TiO 2, J. Mater. Res. 22 (2007) 2565-72. https://doi.org/10.1557/jmr.2007.0316
[182] D. Li, N. Ohashi, S. Hishita, T. Kolodiazhnyi, H. Haneda, Origin of visible-light-driven photocatalysis: a comparative study on N/F-doped and N–F-codoped TiO2 powders by means of experimental characterizations and theoretical calculations, J. Solid State Chem.. 178 (2005) 3293-302. https://doi.org/10.1016/j.jssc.2005.08.008
[183] W. Choi, A. Termin, M. R. Hoffmann, The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics, J. Phys. Chem. 98 (1994) 13669-79. https://doi.org/10.1021/j100102a038
[184] A. Naldoni, M. Allieta, S. Santangelo, M. Marelli, F. Fabbri, S. Cappelli et al. Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles, J. Am. Chem. Soc. 134 (2012) 7600-3. https://doi.org/10.1021/ja3012676
[185] M. Kapilashrami, Y. Zhang, Y-S. Liu, A. Hagfeldt, J. Guo, Probing the optical property and electronic structure of TiO2 nanomaterials for renewable energy applications, Chem. Rev. 114 (2014) 9662-707. https://doi.org/10.1021/cr5000893
[186] T. Umebayashi, T. Yamaki, H. Itoh, K. Asai, Analysis of electronic structures of 3d transition metal-doped TiO 2 based on band calculations, J. Phys. Chem. Solids. 63 (2002) 1909-20. https://doi.org/10.1016/S0022-3697(02)00177-4
[187] T. Nishikawa, Y. Shinohara, T. Nakajima, M. Fujita, S. Mishima, Prospect of activating a photocatalyst by sunlight-A quantum chemical study of isomorphically substituted titania, Chem. Lett. 28 (1999) 1133-4. https://doi.org/10.1246/cl.1999.1133
[188] X. Chen, C. Burda, The electronic origin of the visible-light absorption properties of C-, N-and S-doped TiO2 nanomaterials, J. Am. Chem. Soc. 130 (2008) 5018-9. https://doi.org/10.1021/ja711023z
[189] X. Chen, S. Shen, L. Guo, S.S. Mao, Semiconductor-based photocatalytic hydrogen generation, Chemical reviews. 110 (2010) 6503-70. https://doi.org/10.1021/cr1001645
[190] J. Zhang, W.Dang, Z. Ao, S.K.Cushing, N. Wu, Band gap narrowing in nitrogen-doped La2Ti2O7 predicted by density-functional theory calculations, Phys. Chem. Chem. Phys. 17 (2015) 8994-9000. https://doi.org/10.1039/C5CP00157A
[191] J.-Y. Lee, J. Park, J-H. Cho, Electronic properties of N-and C-doped TiO2, Appl. Phys. Lett. 87 (2005) 011904. https://doi.org/10.1063/1.1991982
[192] W. Ho, J. C. Yu, J. Lin, J. Yu, P. Li, Preparation and photocatalytic behavior of MoS2 and WS2 nanocluster sensitized TiO2, Langmuir. 20 (2004) 5865-9. https://doi.org/10.1021/la049838g
[193] D. Fitzmaurice, H. Frei, J. Rabani, Time-Resolved Optical Study on the Charge Carrier Dynamics in a TiO2/AgI Sandwich Colloid, J. Phys. Chem. 99 (1995) 9176-81. https://doi.org/10.1021/j100022a034
[194] P. Hoyer, R. Könenkamp, Photoconduction in porous TiO2 sensitized by PbS quantum dots, Appl. Phys. Lett. 66 (1995) 349-51. https://doi.org/10.1063/1.114209
[195] R. Vogel, P. Hoyer, H. Weller, Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors, J. Phys. Chem. 98 (1994) 3183-8. https://doi.org/10.1021/j100063a022
[196] M.K. Nazeeruddin, P. Pechy, T. Renouard, S.M. Zakeeruddin, R. Humphry-Baker, P. Comte et al. Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells, J. Am. Chem. Soc. 123 (2001) 1613-24. https://doi.org/10.1021/ja003299u
[197] J. Hensel, G. Wang, Y. Li, J.Z. Zhang, Synergistic effect of CdSe quantum dot sensitization and nitrogen doping of TiO2 nanostructures for photoelectrochemical solar hydrogen generation, Nano Lett. 10 (2010) 478-83. https://doi.org/10.1021/nl903217w
[198] F. Shen, W. Que, Y. Liao, X. Yin, Photocatalytic activity of TiO2 nanoparticles sensitized by CuInS2 quantum dots, Ind. Eng. Chem. Res. 50 (2011) 9131-7. https://doi.org/10.1021/ie2007467
[199] Q. Xiang, J. Yu, M. Jaroniec, Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles, J. Am. Chem. Soc. 134 (2012) 6575-8. https://doi.org/10.1021/ja302846n
[200] Q. Kang, S. Liu, L. Yang, Q. Cai, C. A. Grimes, Fabrication of PbS nanoparticle-sensitized TiO2 nanotube arrays and their photoelectrochemical properties, ACS Appl. Mater. Interfaces. 3 (2011) 746-9. https://doi.org/10.1021/am101086t
[201] M. Murdoch, G. Waterhouse, M. Nadeem, J. Metson, M. Keane, R. Howe et al. The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO2 nanoparticles, Nat. Chem. 3 (2011) 489-92. https://doi.org/10.1038/nchem.1048
[202] S. Min, G. Lu, Sites for high efficient photocatalytic hydrogen evolution on a limited-layered MoS2 cocatalyst confined on graphene sheets―the role of graphene, The J. Phys. Chem. C. 116 (2012) 25415-24. https://doi.org/10.1021/jp3093786
[203] X. Pan, Y-J. Xu, Defect-mediated growth of noble-metal (Ag, Pt, and Pd) nanoparticles on TiO2 with oxygen vacancies for photocatalytic redox reactions under visible light, J. Phys. Chem. C. 117 (2013) 17996-8005. https://doi.org/10.1021/jp4064802
[204] W. Zhou, T. Li, J. Wang, Y. Qu, K. Pan, Y. Xie et al. Composites of small Ag clusters confined in the channels of well-ordered mesoporous anatase TiO2 and their excellent solar-light-driven photocatalytic performance, Nano Res. 7 (2014) 731. https://doi.org/10.1007/s12274-014-0434-y
[205] X. Wei, P.S. Nbelayim, G. Kawamura, H. Muto, A. Matsuda, Ag nanoparticle-filled TiO2 nanotube arrays prepared by anodization and electrophoretic deposition for dye-sensitized solar cells, Nanotechnology. 28 (2017) 135207. https://doi.org/10.1088/1361-6528/aa5f11
[206] H. Sun, Q. He, P. She, S. Zeng, K. Xu, J. Li et al. One-pot synthesis of Au@ TiO2 yolk-shell nanoparticles with enhanced photocatalytic activity under visible light, J. Colloid Interface Sci. 505 (2017) 884-91. https://doi.org/10.1016/j.jcis.2017.06.072
[207] M. Ye, Gong J., Lai Y., Lin C., Lin Z. High-efficiency photoelectrocatalytic hydrogen generation enabled by palladium quantum dots-sensitized TiO2 nanotube arrays, Journal of the American Chemical Society. 134 (2012) 15720-3. https://doi.org/10.1021/ja307449z
[208] A. L. Luna, D. Dragoe, K. Wang, P. Beaunier, E. K. Kowalska, B. Ohtani et al. Photocatalytic Hydrogen Evolution Using Ni-Pd/TiO2: Correlation of Light Absorption, Charge-Carrier Dynamics and Quantum Efficiency, J. Phys. Chem. C. (2017). https://doi.org/10.1021/acs.jpcc.7b01167
[209] N. Singhal, U. Kumar, Noble metal modified TiO2: selective photoreduction of CO 2 to hydrocarbons, Mol. Cat. 439 (2017) 91-9. https://doi.org/10.1016/j.mcat.2017.06.031
[210] X. Chen, L. Liu, Huang F. Black titanium dioxide (TiO2) nanomaterials, Chem. Soc. Rev. 44 (2015) 1861-85. https://doi.org/10.1039/C4CS00330F
[211] X. Liu, G. Zhu, X. Wang, X. Yuan, T. Lin, F. Huang, Progress in black titania: a new material for advanced photocatalysis, Adv. Energ. Mater. 6 (2016).
[212] S. Banerjee, D. D. Dionysiou, S. C. Pillai, Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis, Appl. Catal. B-Environ. 176 (2015) 396-428. https://doi.org/10.1016/j.apcatb.2015.03.058
[213] A. Marmur. The lotus effect: superhydrophobicity and metastability, Langmuir. 20 (2004) 3517-9. https://doi.org/10.1021/la036369u
[214] Y. Zhang, H. Wu, X. Yu, F. Chen, J. Wu, Microscopic observations of the lotus leaf for explaining the outstanding mechanical properties, J. Bionic Eng. 9 (2012) 84-90. https://doi.org/10.1016/S1672-6529(11)60100-5
[215] I. Kartini, S. J. Santosa, E. Febriyanti, O. R. Nugroho, H. Yu, L. Wang, Hybrid assembly of nanosol titania and dodecylamine for superhydrophobic self-cleaning glass, J. Nanopart. Res. 16 (2014) 2514. https://doi.org/10.1007/s11051-014-2514-z
[216] X. Wang, Z. Li, J. Shi, Y. Yu. One-dimensional titanium dioxide nanomaterials: nanowires, nanorods, and nanobelts, Chem. Rev. 114 (2014) 9346-84. https://doi.org/10.1021/cr400633s
[217] R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura et al. Light-induced amphiphilic surfaces, Nature. 388 (1997) 431. https://doi.org/10.1038/41233
[218] M.O. Guler, O. Cevher, T. Cetinkaya, U. Tocoglu, H. Akbulut, High capacity TiO2 anode materials for Li-ion batteries, Energy Convers. Management. 72 (2013) 111-6. https://doi.org/10.1016/j.enconman.2012.11.026
[219] Y. Cai, H-E. Wang, S-Z. Huang, M. F. Yuen, H-H. Cai, C. Wang et al. Porous TiO2 urchins for high performance Li-ion battery electrode: facile synthesis, characterization and structural evolution, Electrochim. Acta. 210 (2016) 206-14. https://doi.org/10.1016/j.electacta.2016.05.140
[220] A.G. Dylla, G. Henkelman, K.J. Stevenson, Lithium insertion in nanostructured TiO2 (B) architectures, Acc. Chem. Res. 46 (2013) 1104-12. https://doi.org/10.1021/ar300176y
[221] J. Zhong, Q. Wang, Y. Yu, Solvothermal preparation of Ag nanoparticles sensitized TiO2 nanotube arrays with enhanced photoelectrochemical performance, J. Alloy Compd. 620 (2015) 168-71. https://doi.org/10.1016/j.jallcom.2014.08.205
[222] M. A. Hossain, S. Oh, S. Lim, Fabrication of dye-sensitized solar cells using a both-ends-opened TiO2 nanotube/nanoparticle hetero-nanostructure, J. Ind. and Eng. Chem. 51 (2017) 122-8. https://doi.org/10.1016/j.jiec.2017.02.022
[223] B.-X. Lei, J-Y. Liao, R. Zhang, J. Wang, C-Y. Su, D-B. Kuang. Ordered crystalline TiO2 nanotube arrays on transparent FTO glass for efficient dye-sensitized solar cells, J. Phys. Chem. C. 114 (2010) 15228-33. https://doi.org/10.1021/jp105780v
[224] A. G. Niaki, A. Bakhshayesh, M. Mohammadi, Double-layer dye-sensitized solar cells based on Zn-doped TiO2 transparent and light scattering layers: improving electron injection and light scattering effect, Sol. Energy. 103 (2014) 210-22. https://doi.org/10.1016/j.solener.2014.01.041
[225] X. C. Lau, Z. Wang, S. A. Mitra, C70-carbon nanotube complex for bulk heterojunction photovoltaic cells, Appl. Phys. Lett. 103 (2013) 243108. https://doi.org/10.1063/1.4847376
[226] J. Xia, N. Masaki, K. Jiang, S. Yanagida, Sputtered Nb2O5 as a novel blocking layer at conducting glass/TiO2 interfaces in dye-sensitized ionic liquid solar cells, The J. Phys. Chem. C. 111 (2007) 8092-7. https://doi.org/10.1021/jp0707384
[227] J. Yang, G. Wang, D. Wang, C. Liu, Z. Zhang, A self-cleaning coating material of TiO2 porous microspheres/cement composite with high-efficient photocatalytic depollution performance, Mater. Lett. 200 (2017) 1-5. https://doi.org/10.1016/j.matlet.2017.04.090
[228] C. G. Granqvist. Handbook of inorganic electrochromic materials: Elsevier, 1995.
[229] M. Diasanayake, G. Senadeera, H. Sarangika, P. Ekanayake, C. Thotawattage, H. Divarathne et al. TiO2 as a Low Cost, Multi Functional Material, Mater. Today: Proc. 3 (2016) S40-S7. https://doi.org/10.1016/j.matpr.2016.01.006
[230] N.N. Dinh, N.M. Quyen, D.N. Chung, M. Zikova, V-V. Truong, Highly-efficient electrochromic performance of nanostructured TiO2 films made by doctor blade technique, Sol. Energ. Mater. Sol. C. 95 (2011) 618-23. https://doi.org/10.1016/j.solmat.2010.09.028
[231] S. Berger, A. Ghicov, Y-C. Nah, P. Schmuki, Transparent TiO2 nanotube electrodes via thin layer anodization: fabrication and use in electrochromic devices, Langmuir. 25 (2009) 4841-4. https://doi.org/10.1021/la9004399
[232] Y.-C. Nah, A. Ghicov, D. Kim, S. Berger, P. Schmuki, TiO2− WO3 composite nanotubes by alloy anodization: growth and enhanced electrochromic properties, J. Am. Chem. Soc. 130 (2008) 16154-5. https://doi.org/10.1021/ja807106y
[233] M. Ni, M. K. Leung, D. Y. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production, Renew. Sustain. Energ. Rev. 11 (2007) 401-25. https://doi.org/10.1016/j.rser.2005.01.009
[234] H. Pan. Principles on design and fabrication of nanomaterials as photocatalysts for water-splitting, Renew. Sustain. Energ. Rev. 57 (2016) 584-601. https://doi.org/10.1016/j.rser.2015.12.117
[235] A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev. 38 (2009) 253-78. https://doi.org/10.1039/B800489G
[236] R. Abe, K. Sayama, K. Domen, H. Arakawa, A new type of water splitting system composed of two different TiO2 photocatalysts (anatase, rutile) and a IO3−/I− shuttle redox mediator, Chem. Phys. Lett.. 344 (2001) 339-44. https://doi.org/10.1016/S0009-2614(01)00790-4
[237] W. Ren, Y. Yan, L. Zeng, Z. Shi, A. Gong, P. Schaaf et al. A near infrared light triggered hydrogenated black TiO2 for cancer photothermal therapy, Adv. healthcare mater. 4 (2015) 1526-36. https://doi.org/10.1002/adhm.201500273
[238] C. Zhang, H. Yu, Y. Li, Y. Gao, Y. Zhao, W. Song et al. Supported Noble Metals on Hydrogen‐Treated TiO2 Nanotube Arrays as Highly Ordered Electrodes for Fuel Cells, ChemSusChem. 6 (2013) 659-66. https://doi.org/10.1002/cssc.201200828
[239] Q. Wang, Z. Wen, J. Li, A hybrid supercapacitor fabricated with a carbon nanotube cathode and a TiO2–B nanowire anode, Adv. Funct. Mater.. 16 (2006) 2141-6. https://doi.org/10.1002/adfm.200500937
[240] L. Zhang, T. Kanki, N. Sano, A. Toyoda, Development of TiO2 photocatalyst reaction for water purification, Sep. Purif. Techn. 31 (2003) 105-10. https://doi.org/10.1016/S1383-5866(02)00157-0
[241] S. Nishimoto, A. Kubo, K. Nohara, X. Zhang, N. Taneichi, T. Okui et al. TiO2-based superhydrophobic–superhydrophilic patterns: Fabrication via an ink-jet technique and application in offset printing, Appl. Surf. Sc. 255 (2009) 6221-5. https://doi.org/10.1016/j.apsusc.2009.01.084
[242] W.-D. Zhu, C-W. Wang, J-B. Chen, D-S. Li, F. Zhou, H-L. Zhang. Enhanced field emission from hydrogenated TiO2 nanotube arrays, Nanotechnology. 23 (2012) 455204. https://doi.org/10.1088/0957-4484/23/45/455204
[243] T. Xia, C. Zhang, N. A. Oyler, X. Chen, Hydrogenated TiO2 nanocrystals: a novel microwave absorbing material, Adv. Mater. 25 (2013) 6905-10. https://doi.org/10.1002/adma.201303088