Electrochemical Super Capacitors Fabricated by the Layer-by-Layer (LbL) Technique

$20.00

Electrochemical Super Capacitors Fabricated by the Layer-by-Layer (LbL) Technique

C. Moganapriya, P. Sathish Kumar, Samir Kumar Pal, P. Kanagarajan, R. Rajasekar

This chapter provides an overview of current research on electrochemical supercapacitor materials fabricated by the layer-by-layer assembly technique. Emphasis has been given towards the basic principle of supercapacitors and various electrode materials suitable for high-performance supercapacitor applications. The chapter is a detailed discourse regarding the layer-by-layer fabrication technique with their performance and stability. Electrode materials such as metal oxides/hydroxides and conducting polymers exhibit pseudocapacitive behavior whereas carbon-based materials show electrical double layer capacitance. Electrode materials such as, graphene, graphene oxide, carbon nanotubes, polyaniline, and carbon nanofibers, provide high surface area for the layer-by-layer deposition of metal oxides, metal hydroxides, conducting polymers that aid the effective ion diffusion and which in turn enhances the specific capacitance with excellent cyclic stability.

Keywords
Layer-by-Layer, Supercapacitor, Energy Storage, Graphene

Published online 2/25/2018, 27 pages

DOI: https://dx.doi.org/10.21741/9781945291579-8

Part of Electrochemical Capacitors

References
[1] S. Bose, T. Kuila, A.K. Mishra, R. Rajasekar, N.H. Kim, J.H. Lee, Carbon-based nanostructured materials and their composites as supercapacitor electrodes, J. Mater. Chem. 22 (2012) 767-784. https://doi.org/10.1039/C1JM14468E
[2] M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Graphene-based ultracapacitors, Nano Lett. 8 (2008) 3498–3502. https://doi.org/10.1021/nl802558y
[3] J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P.L. Taberna, Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer, Science 313 (2006) 1760–1763. https://doi.org/10.1126/science.1132195
[4] J.K. Chang, C.H. Huang, W.T. Tsai, M.J. Deng, I.W. Sun, Ideal pseudocapacitive performance of the Mn oxide anodized from the nanostructured and amorphous Mn thin film electrodeposited in BMP–NTf2 ionic liquid, J. Power Sources 179 (2008) 435–440. https://doi.org/10.1016/j.jpowsour.2007.12.084
[5] L.L. Zhang, R. Zhou, X.S. Zhao, Graphene-based materials as supercapacitor electrodes, J. Mater. Chem. 20 (2010) 5983–5992. https://doi.org/10.1039/c000417k
[6] H. Pan, J. Li, Y.P. Feng, Carbon nanotubes for supercapacitor, Nanoscale Res. Lett. 5 (2010) 654–668. https://doi.org/10.1007/s11671-009-9508-2
[7] X. Zhang, W. Yang, D.G. Evans, Layer-by-layer self-assembly of manganese oxide nanosheets/polyethylenimine multilayer films as electrodes for supercapacitors, J. Power Sources 184 (2008) 695–700. https://doi.org/10.1016/j.jpowsour.2008.01.021
[8] S.C. Pang, M.A. Anderson, T.W. Chapman, Novel electrode materials for thin‐film ultracapacitors: Comparison of electrochemical properties of sol‐gel‐derived and electrodeposited manganese dioxide, J. Electrochem. Soc. 147 (2000) 444-450. https://doi.org/10.1149/1.1393216
[9] S.C. Pang, M.A. Anderson, Novel electrode materials for electrochemical capacitors: Part II. Material characterization of sol-gel-derived and electrodeposited manganese dioxide thin films, J. Mater. Res. 15 (2000) 2096-2106. https://doi.org/10.1557/JMR.2000.0302
[10] S.F. Chin, S.C. Pang, M.A. Anderson, Material and electrochemical characterization of tetrapropylammonium manganese oxide thin films as novel electrode materials for electrochemical capacitors, J. Electrochem. Soc. 149 (2002) A379-A384. https://doi.org/10.1149/1.1453406
[11] J.K. Chang, W.T. Tsai, Material characterization and electrochemical performance of hydrous manganese oxide electrodes for use in electrochemical pseudocapacitors, J. Electrochem. Soc. 150 (2003) A1333-A1338. https://doi.org/10.1149/1.1605744
[12] M. Nakayama, A. Tanaka, Y. Sato, T. Tonosaki, K. Ogura, Electrodeposition of manganese and molybdenum mixed oxide thin films and their charge storage properties, Langmuir 21 (2005) 5907-5913. https://doi.org/10.1021/la050114u
[13] N. Nagarajan, H. Humadi, I. Zhitomirsky, Cathodic electrodeposition of MnOx films for electrochemical supercapacitors, Electrochimica. Acta 51 (2006) 3039-3045. https://doi.org/10.1016/j.electacta.2005.08.042
[14] T. Xue, C.L. Xu, D.D. Zhao, X.H. Li, H.L. Li, Electrodeposition of mesoporous manganese dioxide supercapacitor electrodes through self-assembled triblock copolymer templates, J. Power Sources 164 (2007) 953-958. https://doi.org/10.1016/j.jpowsour.2006.10.100
[15] M. Nakayama, T. Kanaya, R. Inoue, Anodic deposition of layered manganese oxide into a colloidal crystal template for electrochemical supercapacitor, Electrochem. Commun. 9 (2007) 1154-1158. https://doi.org/10.1016/j.elecom.2007.01.021
[16] Y. Dai, K. Wang, J. Zhao, J. Xie, Manganese oxide film electrodes prepared by electrostatic spray deposition for electrochemical capacitors from the KMnO4 solution, J. Power Sources 161 (2006) 737-742. https://doi.org/10.1016/j.jpowsour.2006.04.098
[17] K.W. Nam, K.B. Kim, Manganese oxide film electrodes prepared by electrostatic spray deposition for electrochemical capacitors, J. Electrochem. Soc. 153 (2006) A81-A88. https://doi.org/10.1149/1.2131821
[18] J. Hong, S.W. Kang, Carbon decorative coatings by dip-, spin-, and spray-assisted layer-by-layer assembly deposition, J. Nanosci. Nanotechnol. 11 (2011) 7771–7776. https://doi.org/10.1166/jnn.2011.4737
[19] M. Olek, J. Ostrander, S. Jurga, H. Mohwald, N. Kotov, K. Kempa, M. Giersig, Layer-by-layer assembled composites from multiwall carbon nanotubes with different morphologies, Nano Lett. 4 (2004) 1889-1895. https://doi.org/10.1021/nl048950w
[20] G. Decher, Fuzzy nanoassemblies: Toward layered polymeric multicomposites, Science 277 (1997) 1232-1237. https://doi.org/10.1126/science.277.5330.1232
[21] P.T. Hammond, Form and function in multilayer assembly: new applications at the nanoscale, Adv. Mater. 16 (2004) 1271-1293. https://doi.org/10.1002/adma.200400760
[22] K.C. Krogman, J.L. Lowery, N.S. Zacharia, G.C. Rutledge, P.T. Hammond, Spraying asymmetry into functional membranes layer-by-layer, Nat. Mater. 8 (2009) 512-518. https://doi.org/10.1038/nmat2430
[23] F.X. Zhang, M.P. Srinivasan, Multilayered gold-nanoparticle/polyimide composite thin film through layer-by-layer assembly, Langmuir 23 (2007) 10102. https://doi.org/10.1021/la0635045
[24] P. Podsiadlo, M. Michel, K. Critchley, S. Srivastava, M. Qin, J.W. Lee, E. Verploegen, A.J. Hart, Y. Qi, N.A. Kotov, Diffusional self-organization in exponential layer-by-layer films with micro- and nanoscale periodicity, Angewandte Chemie Int. Edit. 48 (2009) 7073-7077. https://doi.org/10.1002/anie.200901720
[25] S.S. Shiratori, M.F. Rubner, pH-dependent thickness behavior of sequentially adsorbed layers of weak polyelectrolytes, Macromolecules 33 (2000) 4213-4219. https://doi.org/10.1021/ma991645q
[26] D. Lee, M.F. Rubner, R.E. Cohen, All-nanoparticle thin-film coatings, Nano Lett. 6 (2006) 2305-2312. https://doi.org/10.1021/nl061776m
[27] R.B. Estevam, R.T. Ferreira, A.B.H. Bischof, F.S. DosSantos, C.S. Santos, S.T. Fujiwara, K. Wohnrath, S.R. Lazaro, J.R. Garcia, C.A. Pessoa, Preparation and characterization of LbL films based on graphene oxide nanoparticles interacting with 3-n-propylpyridinium silsesquioxane chloride, Surf. Coat. Tech. 275 (2015) 2–8. https://doi.org/10.1016/j.surfcoat.2015.03.053
[28] T.K. Hong, D.W. Lee, H.J. Choi, H.S. Shin, B.S. Kim, Transparent, flexible conducting hybrid multilayer thin films of multiwalled carbon nanotubes with graphene nanosheets, ACS Nano. 4 (2010) 3861–3868. https://doi.org/10.1021/nn100897g
[29] S. Pei, H.M. Cheng, The reduction of graphene oxide, Carbon 50 (2012) 3210–3228. https://doi.org/10.1016/j.carbon.2011.11.010
[30] M. Jin, H.K. Jeong, T.H. Kim, K.P. So, Y. Cui, W.J. Yu, E.J. Ra, Y.H. Lee, Synthesis and systematic characterization of functionalized graphene sheets generated by thermal exfoliation at low temperature, J. Phys. D: Appl. Phys. 43 (2010) 275402. https://doi.org/10.1088/0022-3727/43/27/275402
[31] H.K. Jeong, M.H. Jin, K.P. So, S.C. Lim, Y.H. Lee, Tailoring the characteristics of graphite oxides by different oxidation times, J. Phys. D: Appl. Phys. 42 (2009) 065418. https://doi.org/10.1088/0022-3727/42/6/065418
[32] Q. Zheng, Z. Li, J. Yang, J.K. Kim, Graphene oxide-based transparent conductive films, Prog. Mater. Sci. 64 (2014) 200–247. https://doi.org/10.1016/j.pmatsci.2014.03.004
[33] K. Parvez, Z.S. Wu, R. Li, Exfoliation of graphite into graphene in aqueous solutions of inorganic salts, J. Am. Chem. Soc. 136 (2014) 6083–6091. https://doi.org/10.1021/ja5017156
[34] D.W. Lee, T.K. Hong, D. Kang, J. Lee, M. Heo, J.Y. Kim, B.S. Kim, H.S. Shin, Highly controllable transparent and conducting thin films using layer-by-layer assembly of oppositely charged reduced graphene oxides, J. Mater. Chem. 21 (2011) 3438–3442. https://doi.org/10.1039/C0JM02270E
[35] J. Luo, Q. Ma, H. Gu, Y. Zheng, X. Liu, Three-dimensional graphene-polyaniline hybrid hollow spheres by layer-by-layer assembly for application in supercapacitor, Electrochimica Acta 173 (2015) 184–192. https://doi.org/10.1016/j.electacta.2015.05.053
[36] E. Coskun, E.A. Zaragoza-Contreras, H.J. Salavagione, Synthesis of sulfonated graphene/polyaniline composites with improved electroactivity, Carbon 50 (2012) 2235–2243. https://doi.org/10.1016/j.carbon.2012.01.041
[37] J.P. Cheng, L. Liu, K.Y. Ma, X. Wang, Q.Q. Li, J.S. Wu, F. Liu, Hybrid nanomaterial of α-Co(OH)2 nanosheets and few-layer graphene as an enhanced electrode material for supercapacitors, J. Colloid Interface Sci. 486 (2017) 344–350. https://doi.org/10.1016/j.jcis.2016.09.064
[38] M. Sevilla, R. Mokaya, Energy storage applications of activated carbons: supercapacitors and hydrogen storage, Energy Environ. Sci. 7 (2014) 1250–1280. https://doi.org/10.1039/C3EE43525C
[39] C. Nethravathi, C.R. Rajamathi, M. Rajamathi, X. Wang, U.K. Gautam, D. Golberg, Y. Bando, Cobalt hydroxide/oxide hexagonal ring–graphene hybrids through chemical etching of metal hydroxide platelets by graphene oxide: energy storage applications, ACS Nano 8 (2014) 2755–2765. https://doi.org/10.1021/nn406480g
[40] T. Bohnenberger, L.D. Rafailovic, C. Weilach, D. Hubmayr, U. Schmid, Thin films from functionalized carbon nanotubes using the layer-by-layer technique, Thin Solid Films 551 (2014) 68–73. https://doi.org/10.1016/j.tsf.2013.11.107
[41] Z. Niu, W. Zhou, J. Chen, G. Feng, H. Li, W. Ma, J. Li, H. Dong, Y. Ren, D. Zhao, S. Xie, Compact-designed supercapacitors using free-standing single-walled carbon nanotube films, Energy Environ. Sci. 4 (2011) 1440-1446. https://doi.org/10.1039/c0ee00261e
[42] Y. Ding, N. Zhang, J. Zhang, X. Wang, J. Jin, X. Zheng, Y. Fang, The additive-free electrode based on the layered MnO2 nanoflowers/reduced, graphene oxide film for high performance supercapacitor, Ceramics Int. 43 (2017) 5374–5381. https://doi.org/10.1016/j.ceramint.2016.10.032
[43] X. Wang, K. Gao, Z. Shao, X.Q. Peng, F. Wang, X. Wu, Layer-by-Layer assembled hybrid multilayer thin film electrodes based on transparent cellulose nanofibers paper for flexible supercapacitors applications, J. Power Sources 249 (2014) 148- 155. https://doi.org/10.1016/j.jpowsour.2013.09.130
[44] T. Saito, S. Kimura, Y. Nishiyama, A. Isogai, Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose, Biomacromolecules 8 (2007) 2485-2491. https://doi.org/10.1021/bm0703970
[45] W.A. Christinelli, R. Gonçalves, E.C. Pereira, A new generation of electrochemical supercapacitors based on layer-by-layer polymer films, J. Power Sources 303 (2016) 73-80. https://doi.org/10.1016/j.jpowsour.2015.10.077
[46] W.H. Khoh, J.D. Hong, Layer-by-layer self-assembled multilayer films composed of graphene/polyaniline bilayers: high-energy electrode materials for supercapacitors, Colloids and Surfaces A: Physicochem. Eng. Aspects 436 (2013) 104–112. https://doi.org/10.1016/j.colsurfa.2013.06.012
[47] N.L. Wu, S.Y. Wang, C.Y. Han, D.S. Wu, L.R. Shiue, Electrochemical capacitor of magnetite in aqueous electrolytes, J. Power Sources 113 (2003) 173–178. https://doi.org/10.1016/S0378-7753(02)00482-2
[48] J. Luo, S. Jiang, H. Zhang, J. Jiang, X. Liu, A novel non-enzymatic glucose sensor based on Cu nanoparticle modified graphene sheets electrode, Analytica Chimica Acta 709 (2012) 47–53. https://doi.org/10.1016/j.aca.2011.10.025
[49] W. Fan, C. Zhang, W.W. Tjiu, K.P. Pallathadka, C. He, T. Liu, Graphene-wrapped polyaniline hollow spheres as novel hybrid electrode materials for supercapacitor applications, ACS Appl. Mater. Inter. 5 (2013) 3382–3391. https://doi.org/10.1021/am4003827
[50] N.B. Trung, T.V. Tam, H.R. Kim, S.H. Hur, E.J. Kim, W.M. Choi, Three-dimensional hollow balls of graphene–polyaniline hybrids for supercapacitor applications, J. Chem. Eng. 255 (2014) 89–96. https://doi.org/10.1016/j.cej.2014.06.028
[51] M. Jana, S. Saha, P. Samanta, N.C. Murmu, N.H. Kim, T. Kuila, J.H. Lee, A successive ionic layer adsorption and reaction (SILAR) method to fabricate a layer-by-layer (LbL) MnO2-reduced graphene oxide assembly for supercapacitor application, J. Power Sources 340 (2017) 380-392. https://doi.org/10.1016/j.jpowsour.2016.11.096