Advanced Supercapacitors for Alternating Current Line Filtering

$20.00

Advanced Supercapacitors for Alternating Current Line Filtering

Rajib Paul, Mohd. Khalid

Ripples in alternating current circuits are very common in domestic and industrial sectors which must be filtered out to increase the lifetime of electronic devices connected in ac-networked circuits. Supercapacitors (SCs) are comparatively more suitable than aluminum electrode capacitors for ac line filtering due to smaller size and volume with 2-5 order higher specific capacitance. Although different types of SCs have been used so far, the proper combination of higher specific capacitance with excellent filtering efficiency is yet to be realized. Here, various SCs for ac line filtering are discussed and summarized to find ways for advancing available technology.

Keywords
Alternating Current Filtering, Supercapacitors, Graphene, Carbon Nanotubes, Polymer, Metal Oxide

Published online 2/25/2018, 32 pages

DOI: https://dx.doi.org/10.21741/9781945291579-5

Part of Electrochemical Capacitors

References
[1] X. Chen, R. Paul, L. Dai, Carbon-based supercapacitors for efficient energy storage, Nat. Sci. Rev. 4 (2017) 453-489. https://doi.org/10.1093/nsr/nwx009
[2] A. Dale, C. Brownson, C.E. Banks, Fabricating graphene supercapacitors: highlighting the impact of surfactants and moieties, Chem. Commun. 48 (2012) 1425-1427. https://doi.org/10.1039/C1CC11276G
[3] L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes, Chem. Soc. Rev. 38 (2009) 2520-2531. https://doi.org/10.1039/b813846j
[4] A.G. Pandolfo, A.F. Hollenkamp, Carbon properties and their role in supercapacitors, J. Power Sources 157 (2006) 11-27. https://doi.org/10.1016/j.jpowsour.2006.02.065
[5] J.R. Miller, R.A. Outlaw, B.C. Holloway, Graphene double-layer capacitor with ac line-filtering performance, Science 329 (2010) 1637-1639. https://doi.org/10.1126/science.1194372
[6] C. Niu, E.K. Sichel, R. Hoch et al, High power electrochemical capacitors based on carbon nanotube electrodes, Appl. Phys. Lett. 70 (1997) 1480-1482. https://doi.org/10.1063/1.118568
[7] J. Joseph, A. Paravannoor, S.V. Nair, Supercapacitors based on camphorderived meso/macroporous carbon sponge electrodes with ultrafast frequency response for ac line-filtering, J. Mater. Chem. A 3 (2015) 14105-14108. https://doi.org/10.1039/C5TA03012A
[8] K.X. Sheng, Y.Q. Sun, C. Li, W.J. Yuan, G.Q. Shi, Ultrahigh-rate supercapacitors based on eletrochemically reduced graphene oxide for ac line-filtering, Sci. Rep. 2 (2012) 247. https://doi.org/10.1038/srep00247
[9] D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P. Taberna, P. Simon, Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon, Nat. Nanotechnol. 5 (2010) 651-654. https://doi.org/10.1038/nnano.2010.162
[10] D. N. Futaba, K. Hata, T. Yanada et al, Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes, Nat. Mater. 5 (2006) 987-994. https://doi.org/10.1038/nmat1782
[11] Y. Rangom, X. Tang, L.F. Nazar, Carbon nanotube-based supercapacitors with excellent ac line filtering and rate capability via improved interfacial impedance, ACS Nano 9 (2015) 7248-7255. https://doi.org/10.1021/acsnano.5b02075
[12] Y. Korenblit, M. Rose, E. Kockrick et al, High-rate electrochemical capacitors based on ordered mesoporous silicon carbide-derived carbon, ACS Nano 4 (2010) 1337-1344. https://doi.org/10.1021/nn901825y
[13] X. Lang, A. Hirata, T. Fujita et al, Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors, Nat. Nanotech. 6 (2011) 232-236. https://doi.org/10.1038/nnano.2011.13
[14] Y. Hou, Y. Cheng, T. Hobson et al, Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes, Nano Lett. 10 (2010) 2727-2733. https://doi.org/10.1021/nl101723g
[15] Z.S. Wu, X. Feng, H.M. Cheng, Recent advances in graphene-based planar micro-supercapacitors for on-chip energy storage, Nat. Sci. Rev. 1 (2014) 277-292. https://doi.org/10.1093/nsr/nwt003
[16] J. Lim, U.N. Maiti, N.Y. Kim et al, Dopant-specific unzipping of carbon nanotubes for intact crystalline graphene nanostructures, Nat. Commun. 7 (2016) 10364. https://doi.org/10.1038/ncomms10364
[17] H. Wei, S. Wei, W. Tian et al, Fabrication of thickness controllable freestanding sandwich-structured hybrid carbon film for high-rate and high-power supercapacitor, Sci. Rep. 4 (2014) 7050. https://doi.org/10.1038/srep07050
[18] M. Zhang, Q. Zhou, J. Chen, X. Yu, L. Huang, Y. Li, C. Li, G. Shi, An ultrahigh-rate electrochemical capacitor based on solution-processed highly conductive PEDOT:PSS films for AC line-filtering, Energy Environ. Sci. 9 (2016) 2005-2010. https://doi.org/10.1039/C6EE00615A
[19] D. Premathilake, R.A. Outlaw, S.G. Parler, S.M. Butler, J.R. Miller, Electric double layer capacitors for ac filtering made from vertically oriented graphene nanosheets on aluminum, Carbon 111 (2017) 231-237. https://doi.org/10.1016/j.carbon.2016.09.080
[20] R. Paul, V. Etacheri, V.G. Pol, J. Hu, T.S. Fisher, Highly porous three-dimensional carbon nanotube foam as a freestanding anode for a lithium-ion battery, RSC Adv. 6 (2016) 79734-79744. https://doi.org/10.1039/C6RA17815D
[21] R. Paul, D. Zemlyanov, A.A. Voevodin, A.K. Roy, T.S. Fisher, Methanol wetting enthalpy on few-layer graphene decorated hierarchical carbon foam for cooling applications, Thin Solid Films 572 (2014)169-175. https://doi.org/10.1016/j.tsf.2014.08.020
[22] Y. Yoo, M.S. Kim, J.K. Kim, Y.S. Kim, W. Kim, Fast-response supercapacitors with graphitic ordered mesoporous carbons and carbon nanotubes for AC line filtering, J. Mater. Chem. A 4 (2016) 5062-5068. https://doi.org/10.1039/C6TA00921B
[23] J. Joseph, A. Paravannoor, S.V. Nair, Z.J. Han, K. Ostrikov, A. Balakrishnan, Supercapacitors based on camphor-derived meso/macroporous carbon sponge electrodes with ultrafast frequency response for ac line-filtering, J. Mater. Chem. A 0 (2015) 1-5. https://doi.org/10.1039/C5TA03012A
[24] K. Sheng, Y. Sun, C. Li, W. Yuan, G. Shi, Ultrahigh-rate supercapacitors based on eletrochemically reduced graphene oxide for ac line-filtering, Sci. Rep. 2 (2012) 247 1-5. https://doi.org/10.1038/srep00247
[25] P. Huang, C. Lethien, S. Pinaud, K. Brousse, R. Laloo, V. Turq, M. Respaud, A. Demortière, B. Daffos, P.L. Taberna, B. Chaudret, Y. Gogotsi, P. Simon, On-chip and freestanding elastic carbon films for micro-supercapacitors, Science 351 (2016) 691-695. https://doi.org/10.1126/science.aad3345
[26] R.Z. Li, R. Peng, K.D. Kihm, S. Bai, D. Bridges, U. Tumuluri, Z. Wu, T. Zhang, G. Compagnini, Z. Feng, A. Hu, High-rate in-plane micro-supercapacitors scribed onto photo paper using in situ femtolaser-reduced graphene oxide/Au nanoparticle microelectrodes, Energy Environ. Sci. 9 (2016) 1458-1467. https://doi.org/10.1039/C5EE03637B
[27] N. Kurra, Q. Jiang, A. Syed, C. Xia, H.N. Alshareef, Micro-pseudocapacitors with Electroactive Polymer Electrodes: Towards Ac-Line Filtering Applications, ACS Appl. Mater. Interfaces 8 (2016) 12748-12755. https://doi.org/10.1021/acsami.5b12784
[28] N. Kurra, M.K. Hota, H.N. Alshareef, Conducting polymer micro-supercapacitors for flexible energy storage and Ac line-filtering, Nano Energy 13 (2015) 500-508. https://doi.org/10.1016/j.nanoen.2015.03.018
[29] C. Yang, K.S. Schellhammer, F. Ortmann, S. Sun, R. Dong, M. Karakus, Z. Mics, M. Lçffler, F. Zhang, X. Zhuang, E. Canovas, G. Cuniberti, M. Bonn, X. Feng, Coordination polymer framework based on-chip micro-supercapacitors with ac-line filtering performance, Angew. Chem. Int. Ed. 56 (2017) 3920-3924. https://doi.org/10.1002/anie.201700679
[30] J. Lin, C. Zhang, Z. Yan, Y. Zhu, Z. Peng, R.H. Hauge, D. Natelson, J.M. Tour, 3‑Dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance, Nano Lett. 13 (2013) 72-78. https://doi.org/10.1021/nl3034976
[31] M. Fukuhara, T. Kuroda, F. Hasegawa, Amorphous titanium-oxide supercapacitors, Sci. Rep. 6 (2016) 35870. https://doi.org/10.1038/srep35870
[32] T.M. Dinh, K. Armstrong, D. Guay, D. Pech, High-resolution on-chip supercapacitors with ultra-high scan rate ability, J. Mater. Chem. A 2 (2014) 7170-7174. https://doi.org/10.1039/C4TA00640B
[33] Y.J. Kang, Y. Yoo, W. Kim, 3‑V Solid-State flexible supercapacitors with ionic-liquid-based polymer gel electrolyte for ac line filtering, ACS Appl. Mater. Interfaces 8 (2016) 13909-13917. https://doi.org/10.1021/acsami.6b02690
[34] H. Wei, S. Wei, W. Tian, D. Zhu, Y. Liu, L. Yuan, X. Li, Fabrication of thickness controllable free-standing sandwich-structured hybrid carbon film for high-rate and high-power supercapacitor, Sci. Rep. 4 (2014) 7050. https://doi.org/10.1038/srep07050
[35] D.W. Wang, F. Li, Z.S. Wu, W. Ren, H.M. Cheng, Electrochemical interfacial capacitance in multilayer graphene sheets: Dependence on number of stacking layers, Electrochem. Commun. 11 (2009) 1729-1732. https://doi.org/10.1016/j.elecom.2009.06.034
[36] Z. Bo, W. Zhu, W. Ma, Z. Wen, X. Shuai, J. Chen, J. Yan, Z. Wang, K. Cen, X. Feng, Vertically oriented graphene bridging active-layer/current-collector interface for ultrahigh rate supercapacitors, Adv. Mater. 25 (2013) 5799-5806. https://doi.org/10.1002/adma.201301794
[37] J.H. Ahn, H.S. Kim, K.J. Lee, S. Jeon, S.J. Kang, Y.G. Sun, R.G. Nuzzo, J.A. Rogers, Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials, Science 314 (2006) 1754-1757. https://doi.org/10.1126/science.1132394
[38] J.S. Shi, C.X. Guo, M.B. Chan-Park, C.M. Li, All-printed carbon nanotube finFETs on plastic substrates for high-performance flexible electronics, Adv. Mater. 24 (2012) 358-361. https://doi.org/10.1002/adma.201103674
[39] S.H. Kim, K. Hong, W. Xie, K.H. Lee, S.P. Zhang, T.P. Lodge, C.D. Frisbie, Electrolyte-gated transistors for organic and printed electronics, Adv. Mater. 25 (2013) 1822-1846. https://doi.org/10.1002/adma.201202790
[40] M. Kaltenbrunner, M.S. White, E.D. Glowacki, T. Sekitani, T. Someya, N.S. Sariciftci, S. Bauer, Ultrathin and lightweight organic solar cells with high flexibility, Nat. Commun. 3 (2012) 770 1-7. https://doi.org/10.1038/ncomms1772
[41] Z.S. Wu, X.L. Feng, H.M. Cheng, Recent advances in graphene-based planar micro-supercapacitors for on-chip energy storage, Natl. Sci. Rev. 1 (2014) 277-292. https://doi.org/10.1093/nsr/nwt003
[42] Z.S. Wu, Z. Liu, K. Parvez, X. Feng, K. Müllen, Ultrathin printable graphene supercapacitors with ac line-filtering performance, Adv. Mater. 27 (2015) 3669-3675. https://doi.org/10.1002/adma.201501208
[43] T.N. Walleser, I.M. Lazar, M. Fabritius, F.J. Tolle, Q. Xia, B. Bruchmann, S.S. Venkataraman, M.G. Schwab, R. Mulhaupt, Adv. Funct. Mater. 24 (2014) 4706. https://doi.org/10.1002/adfm.201304151
[44] M.F. El-Kady, V. Strong, S. Dubin, R.B. Kaner, Laser scribing of high-performance and flexible graphene-based electrochemical capacitors, Science 335 (2012) 1326. https://doi.org/10.1126/science.1216744
[45] W. Gao, N. Singh, L. Song, Z. Liu, A.L.M. Reddy, L.J. Ci, R. Vajtai, Q. Zhang, B.Q. Wei, P.M. Ajayan, Direct laser writing of micro-supercapacitors on hydrated graphite oxide films, Nat. Nanotechnol. 6 (2011) 496-500. https://doi.org/10.1038/nnano.2011.110
[46] D. Pech, M. Brunet, P.L. Taberna, P. Simon, N. Fabre, F. Mesnilgrente, V. Conedera, H.J. Durou, Elaboration of a microstructured inkjet-printed carbon electrochemical capacitor, J. Power Sources 195 (2010) 1266-1269. https://doi.org/10.1016/j.jpowsour.2009.08.085
[47] C.S. Du, N. Pan, Supercapacitors using carbon nanotubes films by electrophoretic deposition, J. Power Sources 160 (2006) 1487-1494. https://doi.org/10.1016/j.jpowsour.2006.02.092