Metal Oxides/Hydroxides Composite Electrodes for Supercapacitors

$20.00

Metal Oxides/Hydroxides Composite Electrodes for Supercapacitors

Rajendran Ramachandran, Murugan Saranya, Fei Wang

Supercapacitors (Electrochemical capacitors) are promising energy storage devices and have attracted significant attention as ‘bridges’ for the energy/power gap between traditional capacitors and batteries. The performance of supercapacitors is essentially determined by its electrode material. Among various supercapacitor electrodes, transition metal oxides/hydroxides usually exhibit high specific capacitance and energy densities. This chapter discusses the advantages and disadvantages of the supercapacitor and the supercapacitor performance of various metal oxide/hydroxides. Also, this review focus on the development and challenges of metal oxide/hydroxide based electrode materials.

Keywords
Specific Capacitance, Metal Oxides/Hydroxides, Current Density, Ruthenium Oxide

Published online 2/25/2018, 41 pages

DOI: https://dx.doi.org/10.21741/9781945291579-2

Part of Electrochemical Capacitors

References
[1] B. E. Conway, Electrochemical Supercapacitors: Scientific fundamentals and technological applications, Kluwer Academic/Plenum, New York, 1999. https://doi.org/10.1007/978-1-4757-3058-6
[2] C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zheng, J. Zhang, A review of electrolyte materials and compositions for electrochemical supercapacitors, Chem. Soc. Rev. 44 (2015) 7484-7539. https://doi.org/10.1039/C5CS00303B
[3] R. Ramachandran, M. Saranya, A. Grace, F. Wang, MnS nanocomposites based on doped graphene: simple synthesis by a wet chemical route and improved electrochemical properties as an electrode material for supercapacitors, RSC Adv. 7 (2017) 2249-257. https://doi.org/10.1039/C6RA25457H
[4] Z. Zhou and X. F. Wu, Graphene-beaded carbon nanofibers for use in supercapacitor electrodes: Synthesis and electrochemical characterization, J. Power Sources 222 (2013) 410–416. https://doi.org/10.1016/j.jpowsour.2012.09.004
[5] C. Meng, O.Z. Gall, P.P. Irazoqui, A flexible super-capacitive solid-state power supply for miniature implantable medical devices, Biomedical Microdevices, 15 (2013) 973-983. https://doi.org/10.1007/s10544-013-9789-1
[6] A. Schneuwly, R. Gallay, Properties and applications of supercapacitors from the state-of-the-art to future trends, Proceedings PCIM (2000) 1-10.
[7] A.N. Grace, R. Ramachandran, Advanced materials for supercapacitors, eco-friendly nano-hybrid materials for advanced engineering applications. (Apple Academic Press) (2016) 99 -128.
[8] A. Pandolfo, A. Hollenkamp, Carbon properties and their role in supercapacitors, J Power Sources 157 (2016) 11–27. https://doi.org/10.1016/j.jpowsour.2006.02.065
[9] M. Jayalakshmi, K. Balasubramanian, Single step solution combustion synthesis of zno/carbon composite and its electrochemical characterization for supercapacitor application, Int. J. Electrochem. Sci. 3 (2008) 96-103.
[10] L. Zhang, X. S. Zhao, Carbon-based materials as supercapacitor electrodes, Chem. Soc. Rev. 38 (2009) 2520-2531. https://doi.org/10.1039/b813846j
[11] R. Ramachandran, M. Saranya, V. Velmurugan, B.P.C. Ragupathy, S.K. Jeong, A.N. Grace, Effect of reducing agent on graphene synthesis and its influence on charge storage towards supercapacitor applications, Appl. Energy 153 (2015) 22–31 https://doi.org/10.1016/j.apenergy.2015.02.091
[12] R. Ramachandran, M. Saranya, P. Kollu, B.P.C. Ragupathy, S.K. Jeong, A.N. Grace, Solvothermal synthesis of Zinc sulfide decorated Graphene (ZnS/G) nanocomposites for novel Supercapacitor electrodes, Electrochimica Acta 178 (2015) 647–657. https://doi.org/10.1016/j.electacta.2015.08.010
[13] A. Burke, R&D considerations for the performance and application of electrochemical capacitors, Electrochem. Acta 53 (2007) 1083-1091. https://doi.org/10.1016/j.electacta.2007.01.011
[14] F. Zhang, T. Zhang, X. Yang, L. Zhang, K. Leng, Y. Huang, Y. Chen, A high-performance supercapacitor-battery hybrid energy storage device based on graphene-enhanced electrode materials with ultrahigh energy density, Energy Environ. Sci. 6 (2013) 1623-1632. https://doi.org/10.1039/c3ee40509e
[15] P. Simon, K. Naoi, new materials and new configurations for advanced electrochemical capacitors, Electrochem. Soc. (2008) 34-38.
[16] Z.S. Iro, C. Subramani, S.S. Dash, A brief review on electrode materials for supercapacitor, Int. J. Electrochem. Sci. 11 (2016) 10628 – 10643. https://doi.org/10.20964/2016.12.50
[17] V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.L. Taberna, S.H. Tolbert, H.D. Abruna, P. Simon, B. Dunn, High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance, Nat. Mater. 12 (2013) 518–522. https://doi.org/10.1038/nmat3601
[18] C. Daniel, J. O. Besenhard, Handbook of battery materials, Wiley-VCH Verlag GmbH & Co. KGaA, 2nd edn, 2011 ch. 5, print-ISBN: 9783527326952, online-ISBN: 9783527637188.
[19] Y. Wang, Y. Song, Y. Xia, Electrochemical capacitors: mechanism, materials,systems, characterization and applications, Chem. Soc. Rev. 45 (2016) 5925-5950. https://doi.org/10.1039/C5CS00580A
[20] H. Lindstrom, S. Sodergren, A. Solbrand, H. Rensmo, J. Hjelm, A. Hagfeldt, S. E. Lindquist, Lithium intercalation in nanoporous anatase TiO2 studied with XPS, J. Phys. Chem. B 101 (1997) 7717–7722
[21] A. J. Bard, L. R. Faulkner, Electrochemical Methods Fundamentals and Applications, John Wiley, Inc., New York, 2nd edn, 6 (2001) 233, 235.
[22] T. Brezesinski, J. Wang, S. H. Tolbert, B. Dunn, Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors, Nat. Mater. 9 (2010) 146–151. https://doi.org/10.1038/nmat2612
[23] M. Uzunoglu, M. S. Alam, Modeling and Analysis of an FC/UC Hybrid Vehicular Power System Using a Novel-Wavelet-Based Load Sharing Algorithm IEEE Trans. Energy Convers., 23 (2008) 263-272. https://doi.org/10.1109/TEC.2007.908366
[24] Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li, L. Zhang, Progress of electrochemical capacitor electrode materials: A review, Int. J. Hydrogen Energy 34 (2009) 4889-4899. https://doi.org/10.1016/j.ijhydene.2009.04.005
[25] A. Burke, Ultracapacitors: why, how, and where is the technology J. Power Sources 91 (2000) 37-50. https://doi.org/10.1016/S0378-7753(00)00485-7
[26] J. R. Miller, A. F. Burke, Electrochemical capacitors: Challenges and opportunities for real-world applications, Electrochem. Soc. Interface, 17 (2008) 53-57.
[27] H. Chen, T. N. Cong, W. Yang, C. Tan, Y. Li, Y. Ding, Progress in electrical energy storage system: A critical review, Prog. Nat. Sci. 19 (2009) 291-312. https://doi.org/10.1016/j.pnsc.2008.07.014
[28] A. S. Arico, P. Bruce, B. Scrosati, J. Tarascon, W. V. Chalkwijk, Nanostructured materials for advanced energy conversion and storage devices, Nat. Mater. 4 (2005) 366-377. https://doi.org/10.1038/nmat1368
[29] J. Zheng, P. Cygan, T. Jow, Hydrous ruthenium oxide as an electrode material for electrochemical capacitors. J. Electrochem. Soc. 142 (1995) 2699–2703. https://doi.org/10.1149/1.2050077
[30] S.L. Brock, N. Duan, Z.R. Tian, O. Giraldo, H. Zhou, S.L. Suib, A review of porous manganese oxide materials. Chem. Mater. 10 (1998) 2619–2628. https://doi.org/10.1021/cm980227h
[31] T. Brousse, M. Toupin, R. Dugas, L. Athouel, O.Crosnier, D. Belanger, Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors. J. Electrochem. Soc. 153 (2006) A2171-A2180. https://doi.org/10.1149/1.2352197
[32] G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41 (2012) 797–828. https://doi.org/10.1039/C1CS15060J
[33] C. Liu, F. Li, L.P. Ma, H.M. Cheng, Advanced materials for energy storage. Adv. Mater. 22 (2010) E28–E62. https://doi.org/10.1002/adma.200903328
[34] W. Sugimoto, K. Yokoshima, Y. Murakami, Y. Takasu, Charge storage mechanism of nanostructured anhydrous and hydrous ruthenium-based oxides, Electrochim. Acta 52 (2006) 1742–1748. https://doi.org/10.1016/j.electacta.2006.02.054
[35] Y. Gao, S. Chen, D. Cao, G. Wang, J. Yin, Electrochemical capacitance of Co3O4 nanowire arrays supported on nickel foam. J. Power Sources 195 (2010) 1757–1760. https://doi.org/10.1016/j.jpowsour.2009.09.048
[36] Z. Lu, Z. Chen, J. Liu, X. Sun, Stable ultra high specific capacitance of NiO nanorod arrays. Nano Res. 4 (2011) 658–665. https://doi.org/10.1007/s12274-011-0121-1
[37] H. Du, L. Jiao, Q. Wang, J. Yang, L. Guo, Y. Si, Y. Wang, H. Yuan, Facile carbonaceous microsphere templated synthesis of Co3O4 hollow spheres and their electrochemical performance in supercapacitors. Nano Res. 6 (2013) 87–98. https://doi.org/10.1007/s12274-012-0283-5
[38] Z. Qi, A. Younis, D. Chu, S. Li, A facile and template-free on e-pot synthesis of Mn3O4 nanostructures as electrochemical supercapacitors. Nano-Micro Lett. 8 (2016) 165–173. https://doi.org/10.1007/s40820-015-0074-0
[39] J. Yang, L. Lian, H. Ruan, F. Xie, M. Wei, Nanostructured porous MnO2 on Ni foam substrate with a high mass loading via a CV electrodeposition route for supercapacitor application. Electrochimica Acta 136 (2014) 189–194. https://doi.org/10.1016/j.electacta.2014.05.074
[40] I. H. Kim, K. B. Kim, Electrochemical characterization of hydrous ruthenium oxide thin-film electrodes for electrochemical capacitor applications, J. Electrochem. Soc. 153 (2006) A383–A389. https://doi.org/10.1149/1.2147406
[41] P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Nat. Mater. 7 (2008) 845–854. https://doi.org/10.1038/nmat2297
[42] N. Wu, S. Kuo, M. Lee, Preparation and optimization of RuO2-impregnated SnO2 xerogel supercapacitor, J. Power Sources 104 (2002) 62-65. https://doi.org/10.1016/S0378-7753(01)00873-4
[43] J. K. Lee, H. M. Pathan, K. D. Jung and O. S. Joo, Electrochemical capacitance of nanocomposite films formed by loading carbon nanotubes with ruthenium oxide, J. Power Sources 159 (2006) 1527-1531. https://doi.org/10.1016/j.jpowsour.2005.11.063
[44] K. E. Swider, C. I. Merzbacher, P. L. Hagans, D. R. Rolison, Synthesis of ruthenium dioxide−titanium dioxide aerogels:  redistribution of electrical properties on the nanoscale, Chem. Mater.9 (1997) 1248–1255. https://doi.org/10.1021/cm960622c
[45] T. C. Liu, W. G. Pell, B. E. Conway, Self-discharge and potential recovery phenomena at thermally and electrochemically prepared RuO2 supercapacitor electrodes, Electrochimica Acta 42 (1997) 3541-3552. https://doi.org/10.1016/S0013-4686(97)81190-5
[46] F. Shi, L. Li, X.L. Wang, C. Gu, J.P. Tu, Metal oxide/hydroxide-based materials for supercapacitors, RSC Adv. 4 (2014) 41910–41921. https://doi.org/10.1039/C4RA06136E
[47] J.P. Zheng, P.J. Cygan, T.R. Jow, Hydrous ruthenium oxide as an electrode material for electrochemical capacitors, J. Electrochem. Soc. 142 (1995) 2699-2703. https://doi.org/10.1149/1.2050077
[48] X. M. Liu, X. G. Zhang, NiO-based composite electrode with RuO2 for electrochemical capacitors, Electrochimica Acta 49 (2004) 229–232. https://doi.org/10.1016/j.electacta.2003.08.005
[49] F. Pico, J. Ibanez, T. A. Centeno, C. Pecharroman, R. M. Rojas, J. M. Amarilla, J. M. Rojo, RuO2·xH2O/NiO composites as electrodes for electrochemical capacitors: Effect of the RuO2 content and the thermal treatment on the specific capacitance, Electrochimica Acta 51 (2006) 4693–4700. https://doi.org/10.1016/j.electacta.2005.12.040
[50] C. J. Zhang, H. H. Zhou, X. Q. Yu, D. Shan, T. T. Ye, Z. Y. Huang, Y. F. Kuang, Synthesis of RuO2 decorated quasi graphene nanosheets and their application in supercapacitors, RSC Adv. 4 (2014) 11197–11205. https://doi.org/10.1039/c3ra47641c
[51] W. Sugimoto, T. Shibutani, Y. Murakami, Y. Takasu, Charge storage capabilities of rutile-type ruo2-vo2 solid solution for electrochemical supercapacitors, Electrochem. Solid-State Lett. 5 (2002) A170-A172. https://doi.org/10.1149/1.1483155
[52] C. Yuan, B. Gao, X. Zhang, Electrochemical capacitance of NiO/Ru0.35V0.65O2 asymmetric electrochemical capacitor, J. Power Sources 173 (2007) 606-612. https://doi.org/10.1016/j.jpowsour.2007.04.034
[53] Y. Wang, X. Zhang, Preparation and electrochemical capacitance of RuO2/TiO2 nanotubes composites, Electrochimica Acta 49 (2004) 1957-1962. https://doi.org/10.1016/j.electacta.2003.12.023
[54] G. H. Deng, X. Xiao, J. H. Chen, X. B. Zeng, D. L. He, Y. F. Kuang, A new method to prepare RuO2·xH2O/carbon nanotube composite for electrochemical capacitors, Carbon 43 (2005) 1557-1563. https://doi.org/10.1016/j.carbon.2004.12.031
[55] Y. Yang, Y. Liang, Y. Zhang, Z. Zhang, Z. Li, Z. Hu, Three-dimensional graphene hydrogel supported ultrafine RuO2 nanoparticles for supercapacitor electrodes, New. J. Chem. 39 (2015) 4035-4040. https://doi.org/10.1039/C5NJ00062A
[56] V.K.A. Muniraj, C.K. Kamaja, M.V. Shelke, RuO2.nH2O nanoparticles anchored on carbon nano-onions: An efficient electrode for solid state flexible electrochemical supercapacitors, ACS Sustainable Chem. Eng. 4 (2016) 2528-2534. https://doi.org/10.1021/acssuschemeng.5b01627
[57] C. Lin, J. A. Ritter, B. N. Popov, Development of carbon-metal oxide supercapacitors from sol-gel derived carbon-ruthenium xerogels, J. Electrochem. Soc. 46 (1999) 3155-3160. https://doi.org/10.1149/1.1392448
[58] M. Min, K. Machida, J. H. Jang, K. Naoi, Hydrous RuO2/carbon black nanocomposites with 3d porous structure by novel incipient wetness methodfor supercapacitors, J. Electrochem. Soc. 153 (2006) A334-A338. https://doi.org/10.1149/1.2140677
[59] M. Ramani, B. S. Haran, R. E. White, B. N. Popov, Synthesis and characterization of hydrous ruthenium oxide-carbon supercapacitors, J. Electrochem. Soc. 148 (2001) A374-A380. https://doi.org/10.1149/1.1357172
[60] V. Barranco, F. Pico, J. Iban ez, M. A. Lillo-Rodenas, A. Linares-Solano, M. Kimura, A. Oya, R. M. Rojas, J. M. Amarilla, J. M. Rojo, Amorphous carbon nanofibres inducing high specific capacitance of deposited hydrous ruthenium oxide, Electrochimica Acta 54 (2009) 7452-7457. https://doi.org/10.1016/j.electacta.2009.07.080
[61] J. F. Zang, S. J. Bao, C. M. Li, H. J. Bian, X. Q. Cui, Q. L. Bao, C. Q. Sun, J. Guo, K. R. Lian, Well-aligned cone-shaped nanostructure of polypyrrole/RuO2 and its electrochemical supercapacitor, J. Phys. Chem. C 112 (2008) 14843-14847. https://doi.org/10.1021/jp8049558
[62] R. Liu, J. Duay, T. Lane, S. B. Lee, Synthesis and characterization of RuO2/poly(3,4-ethylenedioxythiophene) composite nanotubes for supercapacitors, Phys. Chem. Chem. Phys. 12 (2010) 4309-4316. https://doi.org/10.1039/b918589p
[63] Y. Zhu, X. Ji, C. Pan, Q. Sun, W. Song, L. Fang, Q. Chena, C. E. Banks, A carbon quantum dot decorated RuO2 network: outstanding supercapacitances under ultrafast charge and discharge, Energy Environ. Sci. 6 (2013) 3665–3675. https://doi.org/10.1039/c3ee41776j
[64] F. Z. Amir, V. H. Pham, J. H. Dickerson, Facile synthesis of ultra-small ruthenium oxide nanoparticles anchored on reduced graphene oxide nanosheets for high-performance supercapacitors, RSC Adv. 5 (2015) 67638–67645. https://doi.org/10.1039/C5RA11772K
[65] B. Shen, X. Zhang, R. Guo, J. Lang, J. Chen, X. Yan, Carbon encapsulated RuO2 nano-dots anchoring on graphene as an electrode for asymmetric supercapacitors with ultralong cycle life in an ionic liquid electrolyte, J. Mater. Chem. A 4 (2016) 8180–8189. https://doi.org/10.1039/C6TA02473D
[66] J. C. Chou, Y. L.Chen, M. H. Yang, Y. Z. Chen, C. C. Lai, H. T. Chiu, C. Y. Lee, Y. L. Chueh, J. Y. Gan, RuO2/MnO2 core–shell nanorods for supercapacitors, J. Mater. Chem. A 1 (2013) 8753–8758. https://doi.org/10.1039/c3ta11027c
[67] D. Gong, J. Zhu, B. Lu, RuO2@Co3O4 heterogeneous nanofibers: A highperformance electrode material for supercapacitors, RSC Adv. 6 (2016) 49173–49178. https://doi.org/10.1039/C6RA04884F
[68] C. Yuan, L.Chen, B. Gao, L. Su, X. Zhang, Synthesis and utilization of RuO2.xH2O nanodots well dispersed on poly(sodium 4-styrene sulfonate) functionalized multi-walled carbon nanotubes for supercapacitors, J. Mater. Chem. 19 (2009) 246–252. https://doi.org/10.1039/B811548F
[69] P. R. Deshmukh, R. N. Bulakhe, S. N. Pusawale, S. D. Sartale, C. D. Lokhand, Polyaniline–RuO2 composite for high performance supercapacitors: chemical synthesis and properties, RSC Adv. 5 (2015) 28687–28695. https://doi.org/10.1039/C4RA16969G
[70] J. K. Chang, M. T. Lee, W. T. Tsai, Amorphous MnO2 supported on 3D-Ni nanodendrites for large areal capacitance supercapacitors, J. Power Sources 160 (2007) 590. https://doi.org/10.1016/j.jpowsour.2007.01.036
[71] C. Wei, H. Pang, B. Zhang, Q. Lu, S. Liang, F. Gao, Two-Dimensional β-MnO2 nanowire network with enhanced electrochemical capacitance, Sci. Rep. 3 (2013) 2193-2197. https://doi.org/10.1038/srep02193
[72] A. Sarkar, A. K. Satpati, V. Kumar, S. Kumar, Sol-gel synthesis of manganese oxide films and their predominant electrochemical properties, Electrochim. Acta 167 (2015) 126–131. [73] X. Zhang, X. Sun, H. Zhang, D. Zhang, Y. Ma, Microwave-assisted reflux rapid synthesis of MnO2 nanostructures and their application in supercapacitors, Electrochimica Acta 87 (2013) 637–644. https://doi.org/10.1016/j.electacta.2012.10.022
[74] A. Bello, O. Fashedemi, M. Fabiane, J. Lekitima, K. Ozoemena, N. Manyala, Microwave assisted synthesis of MnO2 on nickel foam-graphene for electrochemical capacitor, Electrochimica Acta 114 (2013) 48–53. https://doi.org/10.1016/j.electacta.2013.09.134
[75] B. Ming, J. Li, F. Kang, G. Pang, Y. Zhang, L. Chen, J. Xu, X. Wang, Microwave–hydrothermal synthesis of birnessite-type MnO2 nanospheres as supercapacitor electrode materials, J. Power Sources 198 (2012) 428–431. https://doi.org/10.1016/j.jpowsour.2011.10.003
[76] S. C. Pang, M. A. Anderson, T. W. Chapman, Preparation of Manganese dioxide for electrochemical supercapacitors, J. Electrochem. Soc. 147 (2000) 444-450. https://doi.org/10.1149/1.1393216
[77] B. Babakhani, D. G. Ivey, Improved capacitive behavior of electrochemically synthesized Mn oxide/PEDOT electrodes utilized as electrochemical capacitors, Electrochimica Acta 55 (2010) 4014–4024. https://doi.org/10.1016/j.electacta.2010.02.030
[78] H. Kim, B. N. Popov, Synthesis and characterization of mno2-based mixed oxides as supercapacitors, J. Electrochem. Soc. 150 (2003) D56-D62. https://doi.org/10.1149/1.1541675
[79] L. Li, Z. Y. Qin, L. F. Wang, H. J. Liu and M. F. Zhu, Anchoring alpha-manganese oxide nanocrystallites on multi-walled carbon nanotubes as electrode materials for supercapacitor, J. Nanopart. Res. 12 (2010) 2349-2353. https://doi.org/10.1007/s11051-010-9980-8
[80] J. Yan, Z. Fan, T. Wei, W. Qian, M. Zhang, F. Wei, Fast and reversible surface redox reaction of graphene–MnO2 composites as supercapacitor electrodes, Carbon 48 (2010) 3825-3833. https://doi.org/10.1016/j.carbon.2010.06.047
[81] M. Liu, W. W. Tjiu, J. Pan, C. Zhang, W. Gao, T. Liu, One-step synthesis of graphene nanoribbon–MnO2 hybrids and their all-solid-state asymmetric supercapacitors, Nanoscale 6 (2014) 4233–4242. https://doi.org/10.1039/c3nr06650a
[82] M. Liu, L. Gan, W. Xiong, Z. Xu, D. Zhu and L. Chen, Development of MnO2/porous carbon microspheres with a partially graphitic structure for high performance supercapacitor electrodes, J. Mater. Chem. A 2 (2014) 2555–2562. https://doi.org/10.1039/C3TA14445C
[83] J. G. Wang, Y. Yang, Z.-H. Huang, F. Kang, A high-performance asymmetric supercapacitor based on carbon and carbon–MnO2 nanofiber electrodes, Carbon 61 (2013) 190–199 https://doi.org/10.1016/j.carbon.2013.04.084
[84] R. I. Jafri, A. K. Mishra, S. Ramaprabhu, Polyaniline–MnO2 nanotube hybrid nanocomposite as supercapacitor electrode material in acidic electrolyte, J. Mater. Chem., 21(2011) 17601–17605. https://doi.org/10.1039/c1jm13191e
[85] J. Han, L. Li, P. Fang, R. Guo, Ultrathin MnO2 nanorods on conducting polymer nanofibers as a new class of hierarchical nanostructures for high-performance supercapacitors, J. Phys. Chem. C 116 (2012) 15900–15907. https://doi.org/10.1021/jp303324x
[86] R. Liu, J. Duay, S. B. Lee, Electrochemical formation mechanism for the controlled synthesis of heterogeneous MnO2/poly(3,4-ethylenedioxythiophene) nanowires, ACS Nano 5 (2011) 5608–5619. https://doi.org/10.1021/nn201106j
[87] A. Bahloul, B. Nessark, E. Briot, H. Groult, A. Mauger, K. Zaghi, C. M. Julien, Polypyrrole-covered MnO2 as electrode material for hydrid supercapacitor, J. Power Sources 240 (2013) 267–272. https://doi.org/10.1016/j.jpowsour.2013.04.013
[88] C. Wang, Y. Zhan, L. Wu, Y. Li, J. Liu, High-voltage and high-rate symmetric supercapacitor based on MnO2-polypyrrole hybrid nanofilm, Nanotechnol. 25 (2014) 305401. https://doi.org/10.1088/0957-4484/25/30/305401
[89] J. X. Zhu, W. H. Shi, N. Xiao, X. H. Rui, H. T. Tan, X. H. Lu, H. H. Hng, J. Ma, Q. Y. Yan, Oxidation-etching preparation of MnO2 tubular nanostructures for high-performance supercapacitors, ACS Appl. Mater. Interfaces 4 (2012) 2769–2774. https://doi.org/10.1021/am300388u
[90] S. Maiti, A. Pramanik, S. Mahanty, Influence of imidazolium-based ionic liquidelectrolytes on the performance of nanostructured MnO2 hollow spheres as electrochemical supercapacitor, RSC Adv. 5 (2015) 41617–41626. https://doi.org/10.1039/C5RA05514H
[91] N. Phattharasupakun, J. Wutthiprom, P. Chiochan, P. Suktha, M.Suksomboon, S. Kalasina, M. Sawangphruk, Turning conductive carbon nanospheres into nanosheets for high-performance supercapacitors of MnO2 nanorods, Chem. Commun. 52 (2016) 2585-2588. https://doi.org/10.1039/C5CC09648K
[92] H. Zhang, G. Cao, Z. Wang, Y. Yang, Z. Shi, Z. Gu, Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rateelectrochemical capacitive energy storage, Nano Lett. 8 (2008) 2664–2668. https://doi.org/10.1021/nl800925j
[93] K. Dai, L. Lu, C. Liang, J. Dai, Q. Liu, Y. Zhang, G. Zhu, Z. Liu, In situ assembly of MnO2 nanowires/graphene oxide nanosheets composite with high specific capacitance, Electrochimica Acta 116 (2014) 111–117. https://doi.org/10.1016/j.electacta.2013.11.036
[94] S. Zhu, H. Zhang, P. Chen, L.H. Nie, C.H. Li, S.K. Li, Self-assembled three-dimensional hierarchical graphene hybrid hydrogels with ultrathin -MnO2 nanobelts for high performance supercapacitors, J. Mater. Chem. A 3 (2015) 1540–1548. https://doi.org/10.1039/C4TA04921G
[95] L. Wang, Y. Zheng, S. Chen, Y. Ye, F. Xu, H. Tan, Z. Li, H. Hou, Y. Song, Three-dimensional kenaf stem-derived porous carbon/mno2 for high-performance supercapacitors, Electrochimica Acta 135 (2014) 380–387. https://doi.org/10.1016/j.electacta.2014.05.044
[96] H. Jiang, J. Ma, C. Li, Polyaniline–MnO2 coaxial nanofiber with hierarchical structure for high-performance supercapacitors, J. Mater. Chem. 22 (2012) 16939–16942. https://doi.org/10.1039/c2jm33249c
[97] P. Tang, L. Han, L. Zhang, S. Wang, W. Feng, G. Xu, L. Zhang, Controlled construction of hierarchical nanocomposites consisting of MnO2 and PEDOT for high-performance supercapacitor applications, Chem. Electro. Chem. 2 (2015) 949–957.
[98] A. Q. Zhang, Y. H. Xiao, L. Z. Lu, L. Z. Wang, F. Li, Polypyrrole/MnO2 composites and their enhanced electrochemical capacitance, J. Appl. Polym. Sci. 128 (2013) 1327–1331.
[99] H. Chen, S. Zhou, L. Wu, Porous nickel hydroxide−manganese dioxide-reduced graphene oxide ternary hybrid spheres as excellent supercapacitor electrode materials, ACS Appl. Mater. Interfaces 6 (2014) 8621–8630. https://doi.org/10.1021/am5014375
[100] M. S. Wu, Y. A. Huang, J. J. Jow, W. D. Yang, C. Y. Hsieh, H. M. Tsai, Int. J. Hydrogen Energy 33 (2008) 2921–2926. https://doi.org/10.1016/j.ijhydene.2008.04.012
[101] V. Srinivasan, J. W. Weidner, An electrochemical route for making porous nickel oxide electrochemical capacitors, J. Electrochem. Soc. 144 (1997) L210–L213. https://doi.org/10.1149/1.1837859
[102] J. Cheng, G. P. Cao, Y. S. Yang, Characterization of sol–gel-derived NiOx xerogels as supercapacitors, J. Power Sources 159 (2006) 734-741. https://doi.org/10.1016/j.jpowsour.2005.07.095
[103] M. S. Wu, M. J. Wang, J. J. Jow, Fabrication of porous nickel oxide film with open macropores by electrophoresis and electrodeposition for electrochemical capacitors, J. Power Sources 195 (2010) 3950–3955. https://doi.org/10.1016/j.jpowsour.2009.12.136
[104] Y. Y. Xi, D. Li, A. B. Djurišića, M. H. Xie, K. Y. K. Man, W. K. Chan, Hydrothermal synthesis vs electrodeposition for high specific capacitance nanostructured NiO films, Electrochem. Solid-State Lett. 11 (2008) D56-D59. https://doi.org/10.1149/1.2903345
[105] K. C. Liu, M. A. Anderson, Porous nickel oxide/nickel films for electrochemical capacitors, J. Electrochem. Soc. 143 (1996) 124-130. https://doi.org/10.1149/1.1836396
[106] G. W. Yang, C. L. Xu, H. L. Li, Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance, Chem. Commun. (2008) 6537–6539. https://doi.org/10.1039/b815647f
[107] V. Gupta, T. Kawaguchi, N. Miura, Synthesis and electrochemical behavior of nanostructured cauliflower-shape Co–Ni/Co–Ni oxides composites, Mater. Res. Bull. 44 (2009) 202-206. https://doi.org/10.1016/j.materresbull.2008.04.020
[108] Y. Shan, L. Gao, Formation and characterization of multi-walled carbon nanotubes/Co3O4 nanocomposites for supercapacitors, Mater. Chem. Phys. 103 (2007) 206–210. https://doi.org/10.1016/j.matchemphys.2007.02.038
[109] L. Wang, X. Liu, X. Wang, X. Yang, L. Lu, Preparation and electrochemical properties of mesoporous Co3O4 crater-like microspheres as supercapacitor electrode materials, Curr. Appl. Phys. 10 (2010) 1422-1426. https://doi.org/10.1016/j.cap.2010.05.007
[110] X. H. Xia, J. P. Tu, Y. Q. Zhang, Y. J. Mai, X. L. Wang, C. D. Gu, X. B. Zhao, Self-supported hydrothermal synthesized hollow Co3O4 nanowire arrays with high supercapacitor capacitance, RSC Adv. (2012) 1835–1841.
[111] X. C. Dong, H. Xu, X. W. Wang, Y. X. Huang, M. B. Chan Park, H. Zhang, L.-H. Wang, W. Huang, P. Chen, 3D graphene–cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection, ACS Nano 6 (2012) 3206–3213. https://doi.org/10.1021/nn300097q
[112] V. Gupta, T. Kusahara, H. Toyama, S. Gupta, N. Miura, Potentiostatically deposited nanostructured α-Co(OH)2: A high performance electrode material for redox-capacitors, Electrochem. Commun. 9 (2007) 2315–2319. https://doi.org/10.1016/j.elecom.2007.06.041
[113] X. H. Xia, Y. Q. Zhang, D. L. Chao, G. Cao, Y. J. Zhang, L. Li, X. Ge, I. M. Bacho, J. P. Tu, H. J. Fan, Solution synthesis of metal oxides for electrochemical energy storage applications, Nanoscale 6 (2014)5008–5048. https://doi.org/10.1039/C4NR00024B
[114] H. Y. Lee and J. B. Goodenough, Ideal supercapacitor behavior of amorphous v2o5·nh2o in potassium chloride (kcl) aqueous solution, Solid State Chem. 148 (1999) 81-84. https://doi.org/10.1006/jssc.1999.8367
[115] M. Jayalakshmi, M. Mohan Rao, N. Venugopal, K. B. Kim, Hydrothermal synthesis of SnO2–V2O5 mixed oxide and electrochemical screening of carbon nano-tubes (CNT), V2O5, V2O5–CNT, SnO2–V2O5–CNT electrodes for supercapacitor applications, J. Power Sources 166 (2007) 578-583. https://doi.org/10.1016/j.jpowsour.2006.11.025
[116] K. R. Prasad, N. Miura, Electrochemical synthesis and characterization of nanostructured tin oxide for electrochemical redox supercapacitors, Electrochem. Commun. 6 (2004) 849-852. https://doi.org/10.1016/j.elecom.2004.06.009
[117] X. Zhao, C. Johnston, P. S. Grant, A novel hybrid supercapacitor with a carbon nanotube cathode and an iron oxide/carbon nanotube composite anode, J. Mater. Chem. 19 (2009) 8755-8760. https://doi.org/10.1039/b909779a
[118] H. Zhu, D. Yang, L. Zhu, Hydrothermal growth and characterization of magnetite (Fe3O4) thin films, Surf. Coat. Technol. 201 (2007) 5870. https://doi.org/10.1016/j.surfcoat.2006.10.037
[119] Y. Q. Zhang, X. H. Xia, J. P. Tu, Y. J. Mai, S. J. Shi, X. L. Wang, C. D. Gu, Self-assembled synthesis of hierarchically porous NiO film and its application for electrochemical capacitors, J. Power Sources 199 (2012) 413–417. https://doi.org/10.1016/j.jpowsour.2011.10.065
[120] Y. Han, S. Zhang, N. Shen, D. Li, X. Li, MOF-derived porous NiO nanoparticle architecture for high-performance supercapacitors, Mater. Lett. 188 (2017) 1–4. https://doi.org/10.1016/j.matlet.2016.09.051
[121] H. L. Wang, H. S. Casalongue, Y. Y. Liang, H. J. Dai, Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials, J. Am. Chem. Soc. 132 (2010) 7472–7477. https://doi.org/10.1021/ja102267j
[122] H. Pang, X. Li, Q. Zhao, H. Xue, W.Y. Lai, Z. Hu, W. Huang, One-pot synthesis of heterogeneous Co3O4-Nanocube/Co(OH)2-nanosheet hybrids for high-performance flexible asymmetric all-solid-state supercapacitors, Nano Energy 35 (2017) 138-145. https://doi.org/10.1016/j.nanoen.2017.02.044
[123] M. Gopalakrishnan, G. Srikesh, A. Mohan, V. Arivazhagan, In-situ synthesis of Co3O4/graphite nanocomposite for high-performance supercapacitor electrode applications, Appl. Surf. Sci. 403 (2017) 578–583. https://doi.org/10.1016/j.apsusc.2017.01.092
[124] L. Y. Liu, X. Zhang, H. X. Li, B. Liu, J. W. Lang, L. B. Kong, X. B. Yan, Synthesis of Co–Ni oxide microflowers as a superior anode for hybrid supercapacitors with ultralong cycle life, Chinese Chem. Lett. 28 (2017) 206–212. https://doi.org/10.1016/j.cclet.2016.07.027
[125] N. V. Hoa, T. T. H. Quyen, N. H. Nghia, N.V. Hieu, J. J. Shim, In situ growth of flower-like V2O5 arrays on graphene@nickel foam as high-performance electrode for supercapacitors, J. Alloy. Compds. 702 (2017) 693-699. [126] N. G. Prakash, M. Dhananjaya, B. P. Reddy, K. S. Ganesh, A. L. Narayana, O. M. Hussain, Molybdenum doped V2O5 thin films electrodes for supercapacitors, Materials Today: Proceedings 3 (2016) 4076–4081.
[127] X. Wang, C. Zuo, L. Jia, Q. Liu, X. Guo, X. Jing, Synthesis of sandwich-like vanadium pentoxide/carbon nanotubes composites for high performance supercapacitor electrodes, J. Alloy. Compds. 708 (2017) 134-140. https://doi.org/10.1016/j.jallcom.2017.02.306