Sol-gel synthesis of transition metal oxides based electrode materials for supercapacitors

$20.00

Sol-gel synthesis of transition metal oxides based electrode materials for supercapacitors

Dhiraj Sud

Supercapacitors are electrochemical devices used for portable consumer electronics devices, electric devices, and large-scale grids. The advantageous features of supercapacitors are high power density, fast charge /discharge rate long life cycle, a wide range of operating temperature (-40 to 70oC), environment-friendly and low maintenance cost. Supercapacitors store the charge either by ion adsorption at the electrode/electrolyte interface (electrochemical double layer capacitors) or reversible Faradaic reactions (pseudocapacitors). Most of the commercial supercapacitors store energy by electric double layer formation and utilize the carbon as an electrode material. Carbon-based electrode materials have excellent cycling stability, high lifetime cycle and economic viability but low energy density (3-5Wh/Kg) and poor electrochemical stability are the limitations. Transition metal oxides have been considered suitable candidates for the energy storage by pseudocapacitance. The metal oxides also provide higher energy density and better electrochemical stability. Sol-gel is a simple and cheap method of synthesis which yields the products of high purity and good homogeneity. Sol-gel methods have been successfully developed to prepare many metal oxides such as TiO2, V2O5, Mn3O4, Fe3O4, Co3O4, NiO, Cu2O, ZnO as well as binary metal oxides. The process offers the advantages of formation of materials with diverse morphological structures and has also been successfully applied for the preparation of nanoparticles, films, and composites. The electrode material prepared by this technique exhibits high surface area and improved electrochemical behavior which can be further controlled by variation of surfactants, solvents, reaction time and temperature. Thus the sol-gel method is promising, an environment friendly technique to synthesize transition metal oxide based electrode materials with superior electrochemical properties for their use in supercapacitors.

Keywords
Supercapacitors, Electrostatic Capacitors, Pseudocapacitors, Charge Storage, Sol-Gel Synthesis, Transition Metal Oxides

Published online 1/15/2018, 31 pages

DOI: https://dx.doi.org/10.21741/9781945291531-7

Part of Nanocomposites for Electrochemical Capacitors

References
[1] G. E. Goikolea, J. A. Barrena, R. Mysyk, Review on supercapacitors: Technologies and materials, Renew. Sustain. Energ. Rev. 58 (2016) 1189–1206. https://doi.org/10.1016/j.rser.2015.12.249
[2] V.C. Lokhande, A. C. Lokhande, C. D. Lokhande, J. H. Kim, Supercapacitive composite metal oxide electrodes formed with carbon, metal oxides and conducting polymers, J. Alloy Comp. 682 (2016) 381-403. https://doi.org/10.1016/j.jallcom.2016.04.242
[3] H. Yu, Q. Tang, J. Wu, Y. Lin, L. Fan, M. Huang, J. Lin, Y. Li, F. Yu, Using eggshell membrane as a separator in supercapacitor, J. Power Sources 206 (2012) 463-468. https://doi.org/10.1016/j.jpowsour.2012.01.116
[4] A. K. Shukla, A. Banerjee, M. K. Ravikumar, A. Jalajakshi, Electrochemical capacitors: Technical challenges and prognosis for future markets, Electrochim. Acta 84 (2012) 165–173. https://doi.org/10.1016/j.electacta.2012.03.059
[5] J. Zhao, H. Lai, Z. Lyu, Y. Jiang, K. Xie, X. Wang, Q. Wu, L. Yang, Z. Jin, Y. Ma, J. Liu, Z. Hu, Hydrophilic hierarchical nitrogen-doped carbon nanocages for ultrahigh supercapacitive performance, Adv. Mater. 27 (2015) 3541–3545. https://doi.org/10.1002/adma.201500945
[6] Z. Ji, X. Shen, H. Zhou, K. Chen, Facile synthesis of reduced grapheme composites and their application in supercapacitors, Ceram. Int. 41 (2015) 8710–8716. https://doi.org/10.1016/j.ceramint.2015.03.089
[7] S. Vijayakumar, S. Nagamuthu, G. Muralidharan, Supercapacitor studies on NiO nanoflakes synthesized through a microwave route, ACS Appl. Mater. Interfaces 5 (2013) 2188–2196. https://doi.org/10.1021/am400012h
[8] E. Frackowiak, F. Beguin, Carbon materials for the electrochemical storage of energy in capacitors – review, Carbon 39 (2001) 937-950. https://doi.org/10.1016/S0008-6223(00)00183-4
[9] L. Wei, G. Yushin, Nanostructured activated carbons from natural precursors for electrical double layer capacitors – review, Nano Energy 1 (2012) 552-565. https://doi.org/10.1016/j.nanoen.2012.05.002
[10] Sk. Md. Moniruzzaman, C. Y. Yue, K. Ghosh, Rajeeb K. Jena, Review on advances in porous nanostructured nickel oxides and their composite electrodes for high-performance supercapacitors, J. Power Sourc. 308 (2016) 121-140. https://doi.org/10.1016/j.jpowsour.2016.01.056
[11] A. Arslan, E. Hür, Supercapacitor applications of polyaniline and poly(N-methylaniline) coated pencil graphite electrode, Int. J. Electrochem. Sci. 7 (2012) 12558–12572.
[12] N. A. Kumar, J. B. Baek, Electrochemical supercapacitors from conducting polyaniline–graphene platforms, Chem. Commun. 50 (2014) 6298–6308. https://doi.org/10.1039/c4cc01049c
[13] C. Yuan, H. B. Wu, Y. Xie, X. W. D. Lou, Mixed transition-metal oxides: Design, synthesis, and energy-related applications, Angew. Chem. Int. Ed. 53 (2014) 1488–1504. https://doi.org/10.1002/anie.201303971
[14] B. E. Conway, Electrochemical Supercapacitors: Scientific, Fundamentals, and Technological Applications, Kluwer, (New York), 1999. https://doi.org/10.1007/978-1-4757-3058-6
[15] Y. Cui, C. Wang, S. Wu, G. Liu, F. Zhang, T. Wang, Synthesis of hierarchical TiO2 nanotube arrays assembled by anatase single crystal nanoparticles, Cryst. Eng. Comm. 13 (2011) 930-934.
[16] M. Liu, J. Chang, J. Sun, L. Gao, Fabrication of porous carbon spheres for high-performance electrochemical capacitors, RSC Adv. 3 (2013) 8003-8008. https://doi.org/10.1039/c3ra23286g
[17] M. C. Liu, L. B. Kong, C. Lu, X. M. Li, Y. C. Luo, L. Kang, A sol–gel process for fabrication of NiO/NiCo2O4/Co3O4 composite with improved electrochemical behavior for electrochemical capacitors, ACS Appl. Mater. Interfaces 4 (2012) 4631-4636. https://doi.org/10.1021/am301010u
[18] J. M. Choi, S. Im, Ultraviolet enhanced Si-photodetector using p-NiO films, Appl. Surf. Sci. 244 (2005) 435-438. https://doi.org/10.1016/j.apsusc.2004.09.152
[19] L. Hu, L. Wu, M. Liao, X. Fang, High-Performance NiCo2O4 Nanofilm photodetectors fabricated by an interfacial self-assembly strategy, Adv. Mater. 23 (2011) 1988-1992. https://doi.org/10.1002/adma.201004109
[20] Mai, F. Yang, Y.-L. Zhao, X. Xu, L. Xu, Y.-Z. Luo, Hierarchical MnMoO4/CoMoO4 heterostructured nanowires with enhanced supercapacitor performance, Nat. Commun. 2 (2011) 381. https://doi.org/10.1038/ncomms1387
[21] K. C. Liu, M. A. Anderson, Porous nickel oxide/nickel films for electrochemical capacitors, J. Electrochem. Soc. 143 (1996) 124-130. https://doi.org/10.1149/1.1836396
[22] S. Vijayakumar, S. Nagamuthu, G. Muralidharan, Supercapacitor studies on NiO nanoflakes synthesized through a microwave route, ACS Appl. Mater. Interfaces 5 (2013) 2188-2196. https://doi.org/10.1021/am400012h
[23] Y. Q. Wu, X. Y. Chen, P. T. Ji, Q. Q. Zhou, Sol–gel approach for controllable synthesis and electrochemical properties of NiCo2O4 crystals as electrode materials for application in supercapacitors, Electrochimica Acta 56 (2011)7517–7522. https://doi.org/10.1016/j.electacta.2011.06.101
[24] S. I. Kim, J. S. Lee, H. J. Ahn, H. K. Song, J. H. Jang, Facile route to an efficient NiO supercapacitor with a three-dimensional nanonetwork morphology, ACS Appl. Mater. Interfaces 5 (2013) 1596-1603 https://doi.org/10.1021/am3021894
[25] T. Kokubu, Y. Oaki, E. Hosono, H. Zhou, H. Imai, Biomimetic solid-solution precursors of metal carbonate for nanostructured metal oxides: MnO/Co and MnO–CoO nanostructures and their electrochemical properties. Adv. Funct. Mater. 21 (2011) 3673–80. https://doi.org/10.1002/adfm.201101138
[26] X . Li, B .Zhang , C. Ju, X . Han, Y. Du, P. Xu, Morphology-controlled synthesis and electromagnetic properties of porous Fe3O4 nanostructures from iron alkoxide precursors, J. Phys. Chem. C 115 (2011) 12350–7. https://doi.org/10.1021/jp203147q
[27] B. Zhao, X. K. Ke, J. H. Bao, C. L. Wang, L. Dong, Y. W. Chen, Synthesis of flower-like NiO and effects of morphology on its catalytic properties, J. Phys. Chem. C 113 (2009) 14440–7. https://doi.org/10.1021/jp904186k
[28] K. M. Shaju, F. Jiao, A. Debart, P. G. Bruce. Mesoporous and nanowire Co3O4 as negative electrodes for rechargeable lithium batteries. Phys. Chem. Chem. Phys. 9 (2007) 1837–1842. https://doi.org/10.1039/B617519H
[29] C. H. Kuo, C. H. Chen, M. H. Huang. Seed-mediated synthesis of monodispersed Cu2O nanocubes with five different size ranges from 40 to 420 nm. Adv. Funct. Mater. 17 (2007) 3773–3780. https://doi.org/10.1002/adfm.200700356
[30] L. Spanhel, M. A. Anderson. Semiconductor clusters in the sol–gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids, J. Am. Chem. Soc. 113(1991) 2826–2833. https://doi.org/10.1021/ja00008a004
[31] H. Xu, W. Wang, W. Zhu, Shape evolution and size controllable synthesis of Cu2O octahedral and their morphology-dependent photocatalytic properties, J. Phys. Chem. B 110 (2006) 13829–34. https://doi.org/10.1021/jp061934y
[32] E. A. Meulenkamp. Synthesis and growth of ZnO nanoparticles, J. Phys. Chem. B 102 (1998) 5566–72. https://doi.org/10.1021/jp980730h
[33] N. Wang, L. Chen, X. Ma, J. Yue, F. Niu, H. Xu, Facile synthesis of hierarchically porous NiO micro-tubes as advanced anode materials for lithium-ion batteries, J. Mater. Chem. A 2 (2014) 16847–50. https://doi.org/10.1039/C4TA04321A
[34] A. Rumplecker, F. Kleitz, E. L. Salabas, F. Schuth, Hard templating pathways for the synthesis of nanostructured porous Co3O4, Chem. Mater. 19 (2007) 485–96. https://doi.org/10.1021/cm0610635
[35] M. Ramani, B. S. Haran, R. E. White, B. N. Popov, Synthesis and characterization of hydrous ruthenium oxide-carbon supercapacitors, J. Electrochem. Soc. 148 (2001) A374. https://doi.org/10.1149/1.1357172
[36] N. L. Wu, S. L Kuo, M. H. Lee, Preparation and optimization of RuO2 impregnated SnO2 xerogel supercapacitor, J. Power Sources 104 (2002) 62–5. https://doi.org/10.1016/S0378-7753(01)00873-4
[37] W. Sugimoto, H. Iwata, K. Yokoshima, Y. Murakami, Y. Takasu, Proton and electron conductivity in hydrous ruthenium oxides evaluated by electrochemical impedance spectroscopy: the origin of large capacitance, J. Phys. Chem. B 109 (2005) 7330–7338. https://doi.org/10.1021/jp044252o
[38] J. Long, K. Swider, C. Merzbacher, D. Rolison, Voltammetric characterization of ruthenium oxide-based aerogels and other RuO2 solids: the nature of capacitance in nanostructured materials, Langmuir 15 (1999) 780–785. https://doi.org/10.1021/la980785a
[39] Naoi K, Simon P. New materials and new configurations for advanced electrochemical capacitors, Electrochem. Soc. Interface 17 (2008) 34–37.
[40] J. Zheng, T. Jow, A new charge storage mechanism for electrochemical capacitors, J. Electrochem. Soc. 142 (1995) 14–16. https://doi.org/10.1149/1.2043966
[41] Y. Su, F. Wu, L. Bao, Z. Yang, RuO2/activated carbon composites as a positive electrode in an alkaline electrochemical capacitor, New Carbon Mater. 22 (2007) 0–4.
[42] J. Zheng, P. Cygan, T. Jow, Hydrous ruthenium oxide as an electrode material electrochemical capacitors, J. Electrochem. Soc. 142 (1995) 9–13. https://doi.org/10.1149/1.2043959
[43] W. Sugimoto, H. Iwata, K. Yokoshima, Y. Murakami, Y. Takasu, Proton and electron conductivity in hydrous ruthenium oxides evaluated by electrochemical impedance spectroscopy: the origin of large capacitance, J. Phys. Chem. B 109 (2005) 7330-7338. https://doi.org/10.1021/jp044252o
[44] C. Ye, Z. M. Lin, S. Z. Hui, Electrochemical and capacitance properties of rod shaped MnO2 for supercapacitor, J. Electrochem. Soc. 152 (2005) A1272. https://doi.org/10.1149/1.1904912
[45] H. Kim, B. N. Popov, Synthesis and characterization of MnO2-based mixed oxides as supercapacitors, J. Electrochem. Soc. 150 (2003) D56. https://doi.org/10.1149/1.1541675
[46] J. Huang, B. Sumpter, V. Meunier, Theoretical model for nanoporous carbon supercapacitors, Angew. Chem. 120 (2008) 30–34. https://doi.org/10.1002/ange.200705458
[47] J. K. Chang, C. H. Huang, M. T. Lee, W. T. Tsai, M. J. Deng, I. W. Sun. Physicochemical factors that affect the pseudocapacitance and cyclic stability of Mn oxide electrodes, Electrochem Acta 54 (2009) 3278–3784. https://doi.org/10.1016/j.electacta.2008.12.042
[48] S. C. Pang, M. A. Anderson, T. W. Chapman, Novel electrode materials for thin-film ultracapacitors: comparison of electrochemical properties of sol–gel-derived and electrodeposited manganese dioxide, J. Electrochem. Soc. 147 (2000) 444–450. https://doi.org/10.1149/1.1393216
[49] R. N. Reddy, R. G. Reddy, Synthesis and electrochemical characterization of amorphous MnO2 electrochemical capacitor electrode material, J. Power Sources 132 (2004) 315–320. https://doi.org/10.1016/j.jpowsour.2003.12.054
[50] X. Y. Wang, X. Y. Wang, W. G. Huang, P. J. Sebastian, S. Gamboa, Sol–gel template synthesis of highly ordered MnO2 nanowire arrays, J. Power Sources 140 (2005) 211–215. https://doi.org/10.1016/j.jpowsour.2004.07.033
[51] W. J. Liu, Y. M. Dai, J. M. Jehng, Synthesis, characterization and electrochemical properties of Fe/MnO2 nanoparticles prepared by using sol–gel reaction, Journal of the Taiwan Institute of Chemical Engineers 45(2):475–480 • March 2014.
[52] J. Cheng, G. P. Cao, Y. S. Yang, Characterization of sol–gel-derived NiOx xerogels as supercapacitors, Journal of Power Sources 159 (2006) 734–741. https://doi.org/10.1016/j.jpowsour.2005.07.095
[53] K. C. Liu, M. A. Anderson, Porous nickel oxide/nickel films for electrochemical capacitors, J. Electrochem. Soc. 143 (1996) 124–130. https://doi.org/10.1149/1.1836396
[54] M. Ghosh, K. Biswas, A. Sundaresan, C. N. R. Rao, MnO and NiO nanoparticles: synthesis and magnetic properties, J. Mater. Chem. 16 (2006) 106–111. https://doi.org/10.1039/B511920K
[55] A. M. Soleimanpour, A. H. Jayatissa, Preparation of nanocrystalline nickel oxide thin films by sol–gel process for hydrogen sensor applications, Mater. Sci. Eng. C 32 (2012) 2230–2234. https://doi.org/10.1016/j.msec.2012.06.007
[56] A. S. Danial , Mohamed I. Awad, Faisal A. Al-Odail, M. M. Saleh, Effect of different synthesis routes on the electrocatalytic properties of NiOX nanoparticles, J. Mol. Liq. 225 (2017) 919–925. https://doi.org/10.1016/j.molliq.2016.11.018
[57] R. B. Rakhi, W. Chen, D. Cha, H. N. Alshareef, Substrate dependent self organization of mesoporous cobalt oxide nanowires with remarkable pseudo capacitance, Nano Lett. 12 (2012) 2559-2567. https://doi.org/10.1021/nl300779a
[58] X. Wang, M. Li, Z. Chang, Y. Yang, Y. Wu, X. Liu, Co3O4@MWCNT nanocable as cathode with superior electrochemical performance for supercapacitors, ACS, Appl. Mater. Interfaces 7 (2015) 2280-2285. https://doi.org/10.1021/am5062272
[59] V. D. Nithya, N. Sabari Arul, Review on a-Fe2O3 based negative electrode for high performance supercapacitors, J. Power Sources 327 (2016) 297-318. https://doi.org/10.1016/j.jpowsour.2016.07.033
[60] M. Mishra, D. M. Chun, α-Fe2O3 as a photocatalytic material: a review, Appl. Catal. A 498 (2015) 126-141. https://doi.org/10.1016/j.apcata.2015.03.023
[61] C. H. Bak, K. Kim, K. Jung, J. B. Kim, J. H. Jang, Efficient photoelectrochemical water splitting of nanostructured hematite on a three-dimensional nanoporous metal electrode, J. Mater. Chem. A 2 (2014) 17249-17252. https://doi.org/10.1039/C4TA03578J
[62] A. Abdia,, M. Trarib, Investigation on photoelectrochemical and pseudo-capacitance properties of the non-stoichiometric hematite a-Fe2O3 elaborated by sol–gel, Electrochemica Acta 111 (2013) 869–875. https://doi.org/10.1016/j.electacta.2013.08.076
[63] S. Shivakumara, T. R. Penki, N. Munichandraiah, Preparation and electrochemical performance of porous hematite (α-Fe2O3) nanostructures as supercapacitor electrode material, Mater. Lett. 131 (2014) 100-103. https://doi.org/10.1016/j.matlet.2014.05.160
[64] S. Shivakumara, T. R. Penki, N. Munichandraiah, Preparation and electrochemical performance of porous hematite (α-Fe2O3) nanostructures as supercapacitor electrode material, J. Solid State Electrochem. 18 (2014) 1057-1066. https://doi.org/10.1007/s10008-013-2355-1
[65] H. Zhang, Q. Gao, K. Yang, Y. Tan, W. Tian, L. Zhu, Z. Li, C. Yang, A Ni1−xZnxS/Ni foam composite electrode with multi-layers: one-step synthesis and high supercapacitor performance, J. Mater. Chem. A 3 (2015) 22005-22011. https://doi.org/10.1039/C5TA06668A
[66] Z. Lu, Z. Chang, J. Liu, X. Sun, Stable ultrahigh specific capacitance of NiO nanorod arrays, Nano Res. 4 (2011) 658–665. https://doi.org/10.1007/s12274-011-0121-1
[67] D. Lan, Y. Chen, P. Chen, X. Chen, X. Wu, X. Pu, Y. Zeng, Z. Zhu, Mesoporous CoO nanocubes @ continuous 3D porous carbon skeleton of rose-based electrode for high-performance supercapacitor, ACS Appl. Mater. Interfaces 6 (2014) 11839–11845. https://doi.org/10.1021/am503378n
[68] A. D. Su, X. Zhang, A. Rinaldi, S. T. Nguyen, H. Liu, Z. Lei, L. Lu, H. M. Duong, Hierarchical porous nickel oxide–carbon nanotubes as advanced pseudocapacitor materials for supercapacitors, Chem. Phys. Lett. 561–562 (2013) 68-73. https://doi.org/10.1016/j.cplett.2013.01.023
[69] B. Zhao, H. Zhuang, T. Fang, Z. Jiao, R. Liu, X. Ling, B. Lu, Y. Jiang, Self-assembly of NiO/graphene with three-dimension hierarchical structure as high performance electrode material for supercapacitors, J. Alloy. Compd. 597 (2014) 291–298. https://doi.org/10.1016/j.jallcom.2014.01.192
[70] Y. Zhang, L. Li, H. Su, W. Huang, X. Dong, Binary metal oxide: advanced energy storage materials in supercapacitors, J. Mater. Chem. A 3 (2015) 43–59. https://doi.org/10.1039/C4TA04996A
[71] H. Che, A. Liu, J. Mu, C. Wu, X. Zhang, Template-free synthesis of novel flower like MnCo2O4 hollow microspheres for application in supercapacitors, Ceram. Int. 42 (2016) 2416–2424. https://doi.org/10.1016/j.ceramint.2015.10.041
[72] J. G. Wang, F. Kang, B. Wei, Engineering of MnO-based nanocomposites for high performance supercapacitors, Prog. Mater. Sci. 74 (2015) 51-124. https://doi.org/10.1016/j.pmatsci.2015.04.003
[73] Q. Li, J. He, D. Liu, H. Yue, S. Bai, B. Liu, L. G. He, Facile preparation of hovenia acerba like hierarchical MnO2/C composites and their excellent energy storage performance for supercapacitors, J. Alloys Comp. 693 (2017) 970-978. https://doi.org/10.1016/j.jallcom.2016.09.259
[74] J. Du, G. Zhou, H. Zhang, C. Cheng, J. Ma, W. Wei, L. Chen, T. Wang, Ultrathin porous NiCo2O4 nanosheet arrays on flexible carbon fabric for high performance supercapacitors, ACS Appl. Mater. Interfaces 5 (2013) 7405–7409. https://doi.org/10.1021/am4017335
[75] N. Garg, M. Basu, A.K. Ganguli, Nickel cobaltite nanostructures with enhanced supercapacitance activity, J. Phys. Chem. C 118 (2014) 17332–17341. https://doi.org/10.1021/jp5039738
[76] Y. Liu, Ni Wang, C. Yang, W. Hu, Sol–gel synthesis of nanoporous NiCo2O4 thin films on ITO glass as high-performance supercapacitor electrodes, Ceram. Int. 42 (2016) 11411–11416. https://doi.org/10.1016/j.ceramint.2016.04.071
[77] Ye Qin Wu, Xiang Ying Chen∗, Ping Ting Ji, Qing Qing Zhou, Sol–gel approach for controllable synthesis and electrochemical properties of NiCo2O4 crystals as electrode materials for application in supercapacitors, Electrochemica Acta 56 (2011) 7517–7522. https://doi.org/10.1016/j.electacta.2011.06.101