Biomass-based sustainable electrode materials for electrochemical capacitors
Mohd. Khalid, Ana M.B. Honorato, Rajib Paul
Sustainable and clean energies are the most important current issues, renewable energy sources like solar and wind will not have impact unless an efficient technology is developed to store the energy that the renewable energy systems produce. Electrochemical capacitors also called as supercapacitors offer clean energy mitigation effects when combined with renewable energy systems. Carbon is the most versatile material used in both energy conversion and storage applications. However, there is indeed a need to develop more sustainable variants of classical carbon materials. In this regard, the biomass derived materials could be a good alternate to explore new carbon based materials for sustainable energy conversion and energy storage systems. In this chapter, we present the preparation process of biomass derived activated carbons and their use in supercapacitor applications.
Keywords
Biomass, Activated Carbon, Activation, Surface Area, Supercapacitor
Published online 1/15/2018, 18 pages
DOI: https://dx.doi.org/10.21741/9781945291531-2
Part of Nanocomposites for Electrochemical Capacitors
References
[1] O. Ioannidou, A. Zabaniotou, Agricultural residues as precursors for activated carbon production-A review, Renew. Sust. Ener Rev. 11 (2007) 1966-2005. https://doi.org/10.1016/j.rser.2006.03.013
[2] A. R. Mohamed, M. Mohammadi, G. N. Darzi, Preparation of carbon molecular sieve from lignocellulosic biomass: A review, Renew. Sust. Ener. Rev. 14 (2010) 1591-1599. https://doi.org/10.1016/j.rser.2010.01.024
[3] J. M. Dias, M. C. M. Alvim-Ferraz, M. F. Almeida, J. Rivera- Utrilla, M. Sanchez-Polo, Waste materials for activated carbon preparation and its use in aqueous-phase treatment: A review, J. Environ. Manage. 85 (2007) 833-846. https://doi.org/10.1016/j.jenvman.2007.07.031
[4] P. A. Brown, S. A. Gill, S. J. Allen, Metal removal from wastewater using peat, Water Research, 34 (2000) 3907-3916. https://doi.org/10.1016/S0043-1354(00)00152-4
[5] K. Y. Foo, B. H. Hameed, Utilization of rice husk ash as novel adsorbent: A judicious recycling of the colloidal agricultural waste, Adv. Colloid Interface Sci. 152 (2009) 39-47. https://doi.org/10.1016/j.cis.2009.09.005
[6] C. B. Field, M. J. Behrenfeld, J. T. Randerson, P. Falkowski, Primary production of the biosphere: integrating terrestrial and oceanic components, Science, 281 (1998) 237-240. https://doi.org/10.1126/science.281.5374.237
[7] J. C. Wang, S. Kaskel, KOH activation of carbon-based materials for energy storage, J. Mater. Chem. 22 (2012) 23710-23725. https://doi.org/10.1039/c2jm34066f
[8] D. W. Wang, F. Li, M. Liu, G. Q. Lu, H. M. Cheng, 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage, Angew. Chem. 120 (2008) 379-382. https://doi.org/10.1002/ange.200702721
[9] M. M. Titirici, R.J. White, N. Brun, V. L. Budarin, D. S. Su, F. del Monte, J. H. Clark, M. J. MacLachlan, Sustainable carbon materials, Chem. Soc. Rev. 44 (2015) 250-290. https://doi.org/10.1039/C4CS00232F
[10] M. Jagtoyen, F. Derbyshire, Activated carbons from yellow poplar and white oak by H3PO4 activation, Carbon 36 (1998) 1085-1097. https://doi.org/10.1016/S0008-6223(98)00082-7
[11] M. A. Lillo-R’odenas, D. Cazorla-Amor’os and A. Linares- Solano, Understanding chemical reactions between carbons and NaOH and KOH: An insight into the chemical activation mechanism, Carbon 41 (2003) 267-275. https://doi.org/10.1016/S0008-6223(02)00279-8
[12] M. A. Lillo-Rodenas, J. Juan, D. Cazorla-AmorosA. Linares-Solano, About reactions occurring during chemical activation with hydroxides, Carbon 42 (2004) 1371-1375. https://doi.org/10.1016/j.carbon.2004.01.008
[13] D. L. Castello, J. M. Calo, D. C. Amoros, A. L. Solano, Carbon activation with KOH as explored by temperature programmed techniques, and the effects of hydrogen, Carbon 45 (2007) 2529-2536. https://doi.org/10.1016/j.carbon.2007.08.021
[14] Z. Hu, H. Guo, M. P. Srinivasan, N. Yaming, A simple method for developing mesoporosity in activated carbon, Sep. Purif. Technol. 31 (2003) 47-52. https://doi.org/10.1016/S1383-5866(02)00148-X
[15] A. Arami-Niya, W. M. A. Daud, F. S. Mjalli, Comparative study of the textural characteristics of oil palm shell activated carbon produced by chemical and physical activation for methane adsorption, Chem. Eng. Res. Des. 89 (2011) 657-664. https://doi.org/10.1016/j.cherd.2010.10.003
[16] P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Nat. Mater. 7 (2008) 845-854. https://doi.org/10.1038/nmat2297
[17] B. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Kluwer Academic/Plenum Publishers, New York, (1999). https://doi.org/10.1007/978-1-4757-3058-6
[18] M. Ghidiu, M. R. Lukatskaya, M. Q. Zhao, Y. Gogotsi, M. W. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance, Nature 516 (2014) 78-81. https://doi.org/10.1038/nature13970
[19] https://www.maxwell.com/
[20] K. Fic, M. Meller, E. Frackowiak, Strategies for enhancing the performance of carbon/carbon supercapacitors in aqueous electrolytes. Electrochim. Acta 128 (2014) 210-217. https://doi.org/10.1016/j.electacta.2013.11.047
[21] J.Y. Hwang, M. Li, M. F. El-Kady, R. B. Kaner, Next-generation activated carbon supercapacitors: a simple step in electrode processing leads to remarkable gains in energy density, Adv. Funct. Mater. 27 (2017) 1605745. https://doi.org/10.1002/adfm.201605745
[22] N. Manyala, A. Bello, F. Barzegar, A.A. Khaleed, D. Y. Momodu, J. K. Dangbegnon, Coniferous pine biomass: A novel insight into sustainable carbon materials for supercapacitors electrode, Materials Chemistry and Physics, 182 (2016) 1-9. https://doi.org/10.1016/j.matchemphys.2016.07.015
[23] B. Liu, L. Zhang, P. Qi, M. Zhu, G. Wang, Y. Ma, X. Guo, H. Chen, B. Zhang, Z. Zhao, B. Dai, F. Yu. Nitrogen-doped banana peel-derived porous carbon foam as binder-free electrode for supercapacitors, Nanomaterials 6 (2016) 18. https://doi.org/10.3390/nano6010018
[24] M. Lee, G. P. Kim, H. D. Song, S. Park, J. Yi, Preparation of energy storage material derived from a used cigarette filter for a supercapacitor electrode, Nanotechnology 25 (2014) 345601. https://doi.org/10.1088/0957-4484/25/34/345601
[25] X. Wu, L. Jiang. C. long, Z. Fan, From flour to honeycomb like carbon foam: carbon makes room for high energy density supercapacitors, Nano Energy 13 (2015) 527-536. https://doi.org/10.1016/j.nanoen.2015.03.013
[26] C. Zequine, C. K. Ranaweera, Z. Wang, S. Singh, P. Tripathi, O. N. Srivastava, B. K. Gupta, K. Ramasamy, P. K. Kahol, P.R. Dvornic, R. K. Gupta, High performance and flexible supercapacitors based on carbonized bamboo fibers for wide temperature applications, Scientific Reports 6 (2016) 31704. https://doi.org/10.1038/srep31704
[27] R. Wang, P. Y. Wang, X. B. Yan, J. W. Lang, C. Peng, Q. J. Xue, Promising porous carbon derived from celtuce leaves with outstanding supercapacitance and CO2 capture performance, ACS Appl. Mater. Interf. 4 (2012) 5800-5806. https://doi.org/10.1021/am302077c
[28] C. Longa, X. Chena, L. Jianga, L. Zhib, Z. Fana, Porous layer-stacking carbon derived from in-built template in biomass for high volumetric performance supercapacitors, Nano Energy 12 (2015) 141-151. https://doi.org/10.1016/j.nanoen.2014.12.014
[29] Q. Xie, R. Bao, A. Zheng, Y. Zhang, S. Wu, C. Xie, P. Zhao, Sustainable low-cost green electrodes with high volumetric capacitance for aqueous symmetric supercapacitors with high energy density, ACS Sustainable Chem. Eng. 4 (2016) 1422-1430. https://doi.org/10.1021/acssuschemeng.5b01417
[30] T. E. Rufford, D. H. Jurcakova, Z. Zhu, G. Q. Lu, Nanoporous carbon electrode from waste coffee beans for high performance supercapacitors. Nanoporous carbon electrode from waste coffee beans for high performance supercapacitors, Electrochem. Commun. 10 (2008) 1594-1597. https://doi.org/10.1016/j.elecom.2008.08.022
[31] C. Zhang, D. Long, B. Xing, W. Qiao, R. Zhang, L. Zhan, X. Liang, L. Ling, The superior electrochemical performance of oxygen-rich activated carbons prepared from bituminous coal, Electrochem. Comm. 10 (2008) 1809-1811. https://doi.org/10.1016/j.elecom.2008.09.019
[32] J. S. Wei, H. Ding, Y. G. Wang, H. M. Xiong, Hierarchical Porous Carbon Materials with High Capacitance Derived from Schiff-Base Networks, ACS Appl. Mater. Interfaces, 7 (2015) 5811-5819. https://doi.org/10.1021/am508864c
[33] T. E. Rufford, D. H. Jurcakova, K. Khosla, Z. H. Zhu, G. Q. Lu, Microstructure and electrochemical double-layer capacitance of carbon electrodes prepared by zinc chloride activation of sugar cane bagasse, J. Power Sources, 195 (2010) 912-918. https://doi.org/10.1016/j.jpowsour.2009.08.048
[34] F. C. Wu, R. L. Tseng, C. C. Hu, C. C. Wang, Physical and electrochemical characterization of activated carbons prepared from fire woods for supercapacitors, J. Power Sources 138 (2004) 351-359. https://doi.org/10.1016/j.jpowsour.2004.06.023
[35] M. S. Balathanigaimani, W. G. Shim, M. J. Lee, C. Kim, J. W. Lee, H. Moon, Highly porous electrodes from novel corn grains-based activated carbons for electrical double layer capacitors, Electrochem. Commun. 10 (2008) 868-871. https://doi.org/10.1016/j.elecom.2008.04.003
[36] W. Huang, H. Zhang, Y. Huang, W. Wang, S. Wei, Hierarchical porous carbon obtained from animal bone and evaluation in electric double-layer capacitors, Carbon 49 (2011) 838-843. https://doi.org/10.1016/j.carbon.2010.10.025
[37] J. Xu, Q. Gao, Y. Zhang, Y. Tan, W. Tian, L. Zhu, L. Jiang, Preparing two-dimensional microporous carbon from Pistachio nutshell with high areal capacitance as supercapacitor materials, Scientific Reports 4 (2014) 5545. https://doi.org/10.1038/srep05545
[38] X. Liu, M. Zheng, Y. Xiao, Y. Yang, L. Yang, Y. Liu, B. Lei, H. Dong, H. Zhang, H. Fu, Microtube Bundle Carbon Derived from Paulownia Sawdust for Hybrid Supercapacitor Electrodes, ACS Appl. Mater. Interfaces, 5 (2013) 4667-4677. https://doi.org/10.1021/am4012808
[39] X. He, P. Ling, J. Qiu, M. Yu, .X. Zhang, C. Yu, M. Zheng, Efficient preparation of biomass-based mesoporous carbons for supercapacitors with both high energy density and high power density, J. Power Sources 240 (2013) 109-113. https://doi.org/10.1016/j.jpowsour.2013.03.174
[40] Y. Lv, L. Gan, M. Liu, W. Xiong, Z. Xu, D. Zhu, D. S. Wright, A self-template synthesis of hierarchical porous carbon foams based on banana peel for supercapacitor electrodes, J. Power Sources 209 (2012) 152-157. https://doi.org/10.1016/j.jpowsour.2012.02.089
[41] X. Li, W. Xing, S. Zhuo, J. Zhou, F. Li, S. Z. Qiao, G. Q. Lu, Preparation of capacitor’s electrode from sunflower seed shell, Bioresour. Technol. 102 (2011) 1118-1123. https://doi.org/10.1016/j.biortech.2010.08.110
[42] C. S. Yang, Y. S. Jang, H. Kyung, H. K. Jeong, Bamboo-based activated carbon for supercapacitor applications, Curr. Appl. Phys. 14 (2014) 1616-1620. https://doi.org/10.1016/j.cap.2014.09.021
[43] E. R. Pi-ero, M. Cadek, F. Béguin, Tuning carbon materials for supercapacitors by direct pyrolysis of seaweeds, Adv. Funct. Mater. 19 (2009) 1032-1039. https://doi.org/10.1002/adfm.200801057
[44] Y. Q. Zhao, M. Lu, P. Y. Tao, Y. J. Zhang, X.T. Gong, Z. Yang, G. Q. Zhang, H. L. Li, Hierarchically porous and heteroatom doped carbon derived from tobacco rods for supercapacitors, J. Power Sources 307 (2016) 391-400. https://doi.org/10.1016/j.jpowsour.2016.01.020
[45] Q. Liang, L. Ye, Z. H. Huang, Q. Xu, Y. Bai, F. Kang, Q. H. Yang, A honeycomb-like porous carbon derived from pomelo peel for use in high-performance supercapacitors, Nanoscale 6 (2014) 13831-13837. https://doi.org/10.1039/C4NR04541F
[46] Y. Li, G. Wang, T. Wei, Z. Fan, P. Yan, Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors, Nano Energy 19 (2016) 165-175. https://doi.org/10.1016/j.nanoen.2015.10.038
[47] M. Lee, G-P. Kim, H. D. Song, S. Park, J. Yi, Preparation of energy storage material derived from a used cigarette filter for a supercapacitor electrode, Nanotechnology 25 (2014) 345601. https://doi.org/10.1088/0957-4484/25/34/345601
[48] Z. Li, L. Zhang, B. S. Amirkhiz, X. H. Tan, Z. W. Xu, H. L. Wang, B. C. Olsen, C. M. Holt, D. Mitlin, Carbonized chicken eggshell membranes with 3d architectures as high-performance electrode materials for supercapacitors, Adv. Energy Mater. 2 (2012) 431-437. https://doi.org/10.1002/aenm.201100548
[49] C. Ruan, K. Ai and L. Lu, Biomass-derived carbon materials for high-performance supercapacitor electrodes, RSC Adv. 4 (2014) 30887-30895. https://doi.org/10.1039/C4RA04470C
[50] L. Zhang, F. Zhang, X. Yang, K. Leng, Y. Huang and Y. S. Chen, High-performance supercapacitor electrode materials prepared from various pollens, Small, 9 (2013) 1342-1347. https://doi.org/10.1002/smll.201202943
[51] J. Hou, C. Cao, F. Idrees and X. Ma, Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors, ACS Nano, 9 (2015) 2556-2564. https://doi.org/10.1021/nn506394r
[52] K. Karthikeyan, S. Amaresh, S. N. Lee, X. Sun, V. Aravindan, Y.-G. Lee and Y. S. Lee, Construction of high energy density supercapacitors from pine cone derived high surface area carbon, Chem. Sus. Chem. 7 (2014) 1435-1442. https://doi.org/10.1002/cssc.201301262
[53] L. Sun, C. G. Tian, M. T. Li, X. Y. Meng, L. Wang, R. H. Wang, J. Yin and H. G. Fu, From coconut shell to porous graphene-like nanosheets for high-power supercapacitors, J. Mater. Chem. A 1 (2013) 6462-6470. https://doi.org/10.1039/c3ta10897j
[54] W. Qian, F. Sun, Y. Xu, L. Qiu, C. Liu, S. Wang and F. Yan, Human hair-derived carbon flakes for electrochemical supercapacitors, Energy Environ. Sci.7 (2014) 379-386. https://doi.org/10.1039/C3EE43111H
[55] C. Long, L. Jiang, X. Wu, Y. Jiang, D. Yang, C. Wang, T. Wei and Z. Fan, Facile synthesis of functionalized porous carbon with three-dimensional interconnected pore structure for high volumetric performance supercapacitors, Carbon 93 (2015) 412-420. https://doi.org/10.1016/j.carbon.2015.05.040
[56] Y. Sato, K. Yomogida, T. Nanaumi, K. Kobayakawa, Y. Ohsawa and M. Kawai, Electrochemical Behavior of Activated‐Carbon Capacitor Materials Loaded with Ruthenium Oxide, Electrochem. Solid-State Lett. 3 (2000) 113-116. https://doi.org/10.1149/1.1390974
[57] M. Ramani, B. S. Haran, R. E. White, B. N. Popov and L. Arsov, Studies on activated carbon capacitor materials loaded with different amounts of ruthenium oxide, J. Power Sources 93 (2001) 209-2014. https://doi.org/10.1016/S0378-7753(00)00575-9
[58] Y. J. Lee, H. W. Park, S. Park and I. K. Song, Electrochemical properties of Mn-doped activated carbon aerogel as electrode material for supercapacitor, Current Applied Physics 12 (2012) 233-237. https://doi.org/10.1016/j.cap.2011.06.010
[59] Q. Huang, X. Wang, J. Li, C. Dai, S. Gamboa and P. J. Sebastian, Nickel hydroxide/activated carbon composite electrodes for electrochemical capacitors, J. Power Sources 164 (2007) 425-429. https://doi.org/10.1016/j.jpowsour.2006.09.066
[60] H. Liang, F. Chen, R. Li, L. Wang and Z. Deng, Electrochemical study of activated carbon-semiconducting oxide composites as electrode materials of double-layer capacitors, Electrochim. Acta, 49 (2004) 3463-3467. https://doi.org/10.1016/j.electacta.2004.03.016
[61] Y. Huai, X. Hu, Z. Lin, Z. Deng and J. Suo, Preparation of nano-TiO2/activated carbon composite and its electrochemical characteristics in non-aqueous electrolyte, Mater. Chem. Phys. 113 (2009) 962-966. https://doi.org/10.1016/j.matchemphys.2008.08.074
[62] M. K. Seo and S. J. Park, Preparation and characterization of ACs/TiO2 composite electrodes for improving the specific capacitance of electrochemical double-layer capacitors, J. Nanosci. Nanotechnol. 9 (2009) 7186-7189. https://doi.org/10.1166/jnn.2009.1597
[63] Y. R. Lin and H. Teng, A novel method for carbon modification with minute polyaniline deposition to enhance the capacitance of porous carbon electrodes, Carbon 41 (2003) 2865-2871. https://doi.org/10.1016/S0008-6223(03)00424-X
[64] Q. Wang Qin, J. L. Li, F. Gao, W. S. Li, K. Z. Wu and X.-D. Wang, Activated carbon coated with polyaniline as an electrode material in supercapacitors, New Carbon Mater. 23 (2008) 275-280. https://doi.org/10.1016/S1872-5805(08)60030-X
[65] M. J. Bleda-Mart’ınez, E. Morall’on and D. Cazorla-Amor’os, Polyaniline/porous carbon electrodes by chemical polymerisation: Effect of carbon surface chemistry, Electrochim. Acta 52 (2007) 4962-4968. https://doi.org/10.1016/j.electacta.2007.01.073