Poly(N-vinyl-2-pyrrolidone) Stabilized Nanoclusters as Highly Efficient and Reusable Catalyst for the Dehydrogenation of Dimethly Ammonia–Borane
Betül Sen, Özge Paralı, Süleyman Akocak, Senem Karahan, Fatih Sen
Addressed herein, we report a highly efficient and facile synthesis of palladium, nickel nanoparticles supported on poly(N-vinyl-2-pyrrolidone) (PdNi@PVP NPs) for the dehydrogenation of DMAB. PdNi@PVP nanoclusters have been synthesized from the reduction of precursors of metals (Pd and Ni) by the microwave assistance method at room temperature with an average particle size of 3.05 ± 0.38 nm. This newly produced monodisperse PdNi@PVP nanoclusters exhibits high durability, reusability, and catalytic performance even after the fourth cycle of dehydrogenation of DMAB reactions. On the other hand, the structure morphology and properties of the nanoclusters were characterized using different analytical methods such as UV-Vis, XPS, XRD, TEM, and the HR-TEM techniques. Besides, the PdNi@PVP NPs catalyst showed good catalytic effectiveness with a high turnover frequency of 561.0 h-1 and low Ea value of 37.11 ± 2 kJ mol−1 for DMAB dehydrocoupling in ambient conditions.
Keywords
Dehydrocoupling, Facile Synthesis, Microwave, Monodispersity, Nanocatalyst
Published online 1/2/2018, 18 pages
DOI: https://dx.doi.org/10.21741/9781945291470-8
Part of Smart Polymers and Composites
References
[1] Q. Zhang, G.M. Smith, Y. Wu, Catalytic hydrolysis of sodium borohydride in an integrated reactor for hydrogen generation, Int. J. Hydrogen Energy 32 (2007) 4731–4735. https://doi.org/10.1016/j.ijhydene.2007.08.017
[2] M. Zahmakıran, M. Tristany, K. Philippot, K. Fajerweg, S. Özkar, B. Chaudret, Aminopropyltriethoxysilane stabilized ruthenium(0) nanoclusters as an isolable and reusable heterogeneous catalyst for the dehydrogenation of dimethylamine–borane, Chem. Commun. 46 (2010) 2938–2940. https://doi.org/10.1039/c000419g
[3] Y. Kawano, M. Uruichi, M. Shiomi, S. Taki, T. Kawaguchi, T. Kakizawa, H. Ogino, Dehydrocoupling reactions of borane−secondary and −primary amine adducts catalyzed by group-6 carbonyl complexes, formation of aminoboranes and borazines, J. Am. Chem. Soc. 131 (2009) 14946. https://doi.org/10.1021/ja904918u
[4] M. Zahmakıran, S. Ozkar, Dimethylammonium hexanoate stabilized rhodium(0) nanoclusters identified as true heterogeneous catalysts with the highest observed activity in the dehydrogenation of dimethylamine−borane, Inorg. Chem. 48 (2009) 8955–8964. https://doi.org/10.1021/ic9014306
[5] (a) V. Malgras, H. Ataee-Esfahani, H. Wang, B. Jiang, C. Li, K.C.W. Wu, J.H. Kim, Y. Yamauchi, Nanoarchitectures for mesoporous metals, advanced materials, 28(6) (2016) 993–1010. (b) A. Mittal, J. Mittal, A. Malviya, D. Kaur, V.K. Gupta, Decoloration treatment of a hazardous triarylmethane dye, Light Green SF (Yellowish) by waste material adsorbents, J. Colloid Interface Sci. 342(2) (2010) 518–527. (c) T. Saleh, V.K. Gupta, Photo-catalyzed degradation of hazardous dye methyl orange by use of a composite catalyst consisting of multi-walled carbon nanotubes and titanium dioxide, J. Colloid Interface Sci. 371 (2012) 101–106. (d) A. Mittal, J. Mittal, A. Malviya, V.K. Gupta, Removal and recovery of chrysoidine Y from aqueous solutions by waste materials, J. Colloid Interface Sci. 344(2) (2010) 497–507. https://doi.org/10.1016/j.jcis.2011.12.038
[6] (a) S.C. Amendola, J.M. Janjua, N.C. Spencer, M.T. Kelly, P.J. Petillo, S.L. Sharp–Goldman, M. Binder, A safe, portable, hydrogen gas generator using aqueous borohydride solution and Ru catalyst, Int. J. Hydrogen Energy 25 (2000) 969–975. (b) A. Mittal, J. Mittal, A. Malviya, V.K. Gupta, Adsorptive removal of hazardous anionic dye “Congo red” from wastewater using waste materials and recovery by desorption, J. Colloid Interface Sci. 340 (2009) 16–26. (c) A. Mittal, D. Kaur, J. Mittal, A. Malviya, V.K. Gupta, Adsorption studies on the removal of coloring agent phenol red from wastewater using waste materials as adsorbents, J. Colloid Interface Sci. 337 (2009) 345–354. https://doi.org/10.1016/j.jcis.2009.05.016
[7] B. Sen, S. Kuzu, E. Demir, E. Yıldırır, F. Sen, Highly efficient catalytic dehydrogenation of dimethly ammonia borane via monodisperse palladium-nickel alloy nanoparticles assembled on PEDOT, Int. J. Hydrogen Energy (2017). https://doi.org/10.1016/j.ijhydene.2017.05.115.
[8] R.J. Keaton, J.M. Blacquiere, R.T. Baker, Base metal catalyzed dehydrogenation of ammonia−borane for chemical hydrogen storage, J. Am. Chem. Soc. 129 (2007) 11936. https://doi.org/10.1021/ja066860i
[9] N. Mohajeri, A. T-Raissi, O. Adebiyi, Hydrolytic cleavage of ammonia-borane complex for hydrogen production, J. Power Sources 167 (2007) 482–485. https://doi.org/10.1016/j.jpowsour.2007.02.059
[10] P.V. Ramachandran, P.D. Gagare, Preparation of ammonia borane in high yield and purity, methanolysis, and regeneration, Inorg. Chem. 46 (2007) 7810–7817. https://doi.org/10.1021/ic700772a
[11] C.A. Jaska, I. Manners, Heterogeneous or homogeneous catalysis? mechanistic studies of the rhodium-catalyzed dehydrocoupling of amine-borane and phosphine-borane adducts, J. Am. Chem. Soc. 126 (2004) 9776–9785. https://doi.org/10.1021/ja0478431
[12] B. Çelik, Y. Yıldız, H. Sert, E. Erken, Y. Koşkun, F. Sen, Monodispersed palladium–cobalt alloy nanoparticles assembled on poly(N-vinyl-pyrrolidone) (PVP) as a highly effective catalyst for dimethylamine borane (DMAB) dehydrocoupling, RSC Adv. 6 (2016) 24097–24102. https://doi.org/10.1039/C6RA00536E
[13] Q. Xu, M. Chandra, A portable hydrogen generation system, catalytic hydrolysis of ammonia–borane, J. Alloy Compd. 446–447 (2007) 729–732. https://doi.org/10.1016/j.jallcom.2007.01.040
[14] Q. Xu, M. Chandra, Catalytic activities of non-noble metals for hydrogen generation from aqueous ammonia–borane at room temperature, J. Power Sources, 163 (2006) 364–370. https://doi.org/10.1016/j.jpowsour.2006.09.043
[15] A.P.M. Robertson, R. Suter, L. Chabanne, G.R. Whittel, I. Manners, Heterogeneous dehydrocoupling of amine–borane adducts by skeletal nickel catalysts, Inorg. Chem. 50 (2011) 12680. https://doi.org/10.1021/ic201809g
[16] T. Umegaki, J.M. Yan, X.B. Zhang, H. Shioyama, N. Kuriyama, Q. Xu, Preparation and catalysis of poly(N-vinyl-2-pyrrolidone) (PVP) stabilized nickel catalyst for hydrolytic dehydrogenation of ammonia borane, Int. J. Hydrogen Energy 34 (2009) 3816–3822. https://doi.org/10.1016/j.ijhydene.2009.03.003
[17] R. Fernandes, N. Patel, A. Miotello, Hydrogen generation by hydrolysis of alkaline NaBH4 solution with Cr-promoted Co–B amorphous catalyst, Appl. Catal. B. Environ. 92 (2009) 68–74. https://doi.org/10.1016/j.apcatb.2009.07.019
[18] J.M. Yan, X.B. Zhang, S. Han, H. Shioyama, Q. Xu, Iron-nanoparticle-catalyzed hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage, Angew.Chem. Int. Ed. 47 (2008) 2287–2289. https://doi.org/10.1002/anie.200704943
[19] B. Sen, S. Kuzu, E. Demir, T.O. Okyay, F. Sen, Hydrogen liberation from the dehydrocoupling of dimethylamine-bor.ane at room temperature by using novel and highly monodispersed RuPtNi nanocatalysts decorated with graphene oxide, Int. J. Hydrogen Energy (2017). https://doi.org/10.1016/j.ijhydene.2017.04.213
[20] J.M. Yan, X.B. Zhang, H. Shioyama, Q. Xu, Room temperature hydrolytic dehydrogenation of ammonia borane catalyzed by Co nanoparticles, J. Power Sources 195 (2010) 1091–1094. https://doi.org/10.1016/j.jpowsour.2009.08.067
[21] J.M. Yan, X.B. Zhang, S. Han, H. Shioyama, Q. Xu, Synthesis of longtime water/air-stable Ni nanoparticles and their high catalytic activity for hydrolysis of ammonia−borane for hydrogen generation, Inorg. Chem. 48 (2009) 7389–7393. https://doi.org/10.1021/ic900921m
[22] D.G. Tong, X.L. Zeng, W. Chu, D. Wang, P. Wu, Magnetically recyclable hollow Co–B nanospindles as catalysts for hydrogen generation from ammonia borane, J. Mater. Sci. 45 (2010) 2862–2867. https://doi.org/10.1007/s10853-010-4275-0
[23] N. Patel, R. Fernandes, G. Guella, A. Miotello, Nanoparticle-assembled Co-B thin film for the hydrolysis of ammonia borane: A highly active catalyst for hydrogen production, Appl. Catal. B Environ. 95 (2010) 137–143. https://doi.org/10.1016/j.apcatb.2009.12.020
[24] Y. Yamada, K. Yano, Q. Xu, S. Fukuzumi, Cu/Co3O4 nanoparticles as catalysts for hydrogen evolution from ammonia borane by hydrolysis, J. Phys. Chem. C 114 (2010) 16456–16462. https://doi.org/10.1021/jp104291s
[25] C.A. Jaska, K. Temple, A.J. Lough, I. Manners, Transition metal-catalyzed formation of boron−nitrogen bonds: catalytic dehydrocoupling of amine-borane adducts to form aminoboranes and borazines, J. Am. Chem. Soc. 125 (2003) 9424–9434. https://doi.org/10.1021/ja030160l
[26] A. Friederich, M. Drees, S. Schneider, Ruthenium-catalyzed dimethylamineborane dehydrogenation, stepwise metal-centered dehydrocyclization, Chem. Eur. J. 15 (2009) 10339–10342. https://doi.org/10.1002/chem.200901372
[27] M. Chandra, Q. Xu, A high-performance hydrogen generation system: Transition metal-catalyzed dissociation and hydrolysis of ammonia–borane, J. Power Sources 156 (2006) 190–194. https://doi.org/10.1016/j.jpowsour.2005.05.043
[28] Y. Chen, J.L. Fulton, J.C. Linehan, T. Autrey, In Situ XAFS and NMR Study of Rhodium-Catalyzed dehydrogenation of dimethylamine borane, J. Am. Chem. Soc. 127 (2005) 3254–3255. https://doi.org/10.1021/ja0437050
[29] M.E. Sloan, A. Staubitz, T.J. Clark, C.A. Russell, G.C. Lloyd-Jones, I. Manners, Homogeneous catalytic dehydrocoupling/dehydrogenation of amine−borane adducts by early transition metal, group 4 metallocene complexes, J. Am. Chem. Soc. 132 (2010) 3831–3841. https://doi.org/10.1021/ja909535a
[30] T.J. Clark, C.A. Russell, I. Manners, Homogeneous, Titanocene-catalyzed dehydrocoupling of amine−borane adducts, J. Am. Chem. Soc. 128 (2006) 9582–9583. https://doi.org/10.1021/ja062217k
[31] G. Alcaraz, L. Vendier, E. Clot, S. Sabo-Etienne, Ruthenium Bis(σ-B-H) aminoborane complexes from dehydrogenation of amine–boranes, Trapping of H2B-NH2, Angew. Chem. Int. Ed. 49 (2010) 918–920. https://doi.org/10.1002/anie.200905970
[32] Y. Yildiz, E. Erken, H. Pamuk, H. Sert, F. Sen, Monodisperse Pt nanoparticles assembled on reduced graphene oxide, highly efficient and reusable catalyst for methanol oxidation and dehydrocoupling of dimethylamine-borane (DMAB), J. Nanosci. Nanotech. 6 (2016) 5951–5958. https://doi.org/10.1166/jnn.2016.11710
[33] E. Erken, Y. Yildiz, B. Kilbas, F. Sen. Synthesis and Characterization of Nearly Monodisperse Pt Nanoparticles for C1 to C3 Alcohol Oxidation and Dehydrogenation of Dimethylamine-borane (DMAB), J. Nanosci. Nanotechnol. 16 (2016) 5944–5950. https://doi.org/10.1166/jnn.2016.11683
[34] B. Çelik, G. Başkaya, Ö. Karatepe, E. Erken, F. Sen. Monodisperse Pt(0)/DPA@GO Nanoparticles as Highly Active Catalysts for Alcohol Oxidation and Dehydrogenation of DMAB, Int. J. Hydrogen Energy 41 (2016) 5661–5669. https://doi.org/10.1016/j.ijhydene.2016.02.061
[35] Y. Jiang, H. Berke, Dehydrocoupling of dimethylamine-borane catalysed by rhenium complexes and its application in olefin transfer-hydrogenations, Chem. Commun. 34 (2007) 3571–3573. https://doi.org/10.1039/b708913a
[36] JL Fulton, JC Linehan, T. Autrey, M. Balasubramanian, Y. Chen, NK. Szymczak, When is a nanoparticle a cluster? an operando EXAFS study of amine borane dehydrocoupling by Rh4-6 Clusters, J. Am. Chem. Soc. 129 (2007) 11936–11949. https://doi.org/10.1021/ja073331l
[37] M.E. Sloan, T.C. Clars, I. Manners, Homogeneous catalytic dehydrogenation/dehydrocoupling of amine-borane adducts by the Rh(I) Wilkinson’s complex analogue RhCl(PHCy2)3 (Cy = cyclohexyl), Inorg. Chem, 48 (2009) 2429–2435. https://doi.org/10.1021/ic801752k
[38] B. Celik, S. Kuzu, E. Erken, H. Sert, Y. Koskun, F. Sen, Nearly monodisperse carbon nanotube furnished nanocatalysts as highly efficient and reusable catalyst for dehydrocoupling of DMAB and C1 to C3 alcohol oxidation, Int. J. Hydrogen Energy 41 (2016) 3093–3101. https://doi.org/10.1016/j.ijhydene.2015.12.138
[39] M. Munoz-Olasagasti, A. Telleria, J. Perez-Miqueo, M.A. Garralda, Z.A. Freixa, A readily accessible ruthenium catalyst for the solvolytic dehydrogenation of amine–borane adducts, Dalton Trans, 43 (2014) 11404–11409. https://doi.org/10.1039/c4dt01216j
[40] F. Sen, Karatas Y, Gulcan M, Zahmakiran M, Amylamine stabilized platinum(0) nanoparticles: active and reusable nanocatalyst in the room temperature dehydrogenation of dimethylamine-borane, RSC Adv. 4 (2014) 1526–1531. https://doi.org/10.1039/C3RA43701A
[41] E. Erken, H. Pamuk, Ö. Karatepe, G. Başkaya, H. Sert, M. O. Kalfa, F. Sen, New Pt(0) nanoparticles as highly active and reusable catalysts in the C1–C3 alcohol oxidation and the room temperature dehydrocoupling of dimethylamine-borane (DMAB), J. Cluster Sci. 27(9) (2016) 23. https://doi.org/10.1007/s10876-015-0892-8
[42] B. Çelik, E. Erken, S. Eriş, Y. Yıldız, B. Şahin, H. Pamuk, F. Sen, Highly monodisperse Pt(0)@AC NPs as highly efficient and reusable catalysts: the effect of the surfactant on their catalytic activities in room temperature dehydrocoupling of DMAB, Catal. Sci. Technol. 6 (2016) 1685–1692. https://doi.org/10.1039/C5CY01371B
[43] B. Celik, S. Kuzu, E. Erken, H. Sert, Y. Koskun, F. Sen. Nearly Monodisperse Carbon Nanotube Furnished Nanocatalysts as Highly Efficient and Reusable Catalyst for Dehydrocoupling of DMAB and C1 to C3 Alcohol Oxidation, Int. J. Hydrogen Energy 41 (2016) 3093–3101. https://doi.org/10.1016/j.ijhydene.2015.12.138
[44] D. Pun, E. Lobkovsky, P.J. Chirik, Amineborane dehydrogenation promoted by isolable zirconium sandwich, titanium sandwich and N2 complexes, Chem. Commun. 44 (2007) 3297. https://doi.org/10.1039/b704941b
[45] C.F. Yao, L. Zhuang, Y.L. Cao, X.P. Hi, H.X. Yang, Hydrogen release from hydrolysis of borazane on Pt- and Ni-based alloy catalysts, Int. J. Hydrogen Energy 33 (2008) 2462–2467. https://doi.org/10.1016/j.ijhydene.2008.02.028
[46] X. Yang, F. Cheng, J. Liang, Z. Tao, J. Chen, PtxNi1−x nanoparticles as catalysts for hydrogen generation from hydrolysis of ammonia borane, Int. J. Hydrogen Energy 34 (2009) 8785–8791. https://doi.org/10.1016/j.ijhydene.2009.08.075
[47] H.B. Dai, L.L. Gao, Y. Liang, X.D. Kang, P. Wang, Promoted hydrogen generation from ammonia borane aqueous solution using cobalt–molybdenum–boron/nickel foam catalyst, J. Power Sources 195 (2010) 307–312. https://doi.org/10.1016/j.jpowsour.2009.06.094
[48] B. Sen, S. Kuzu, E. Demir, S. Akocak, F. Sen, Monodisperse palladium-nickel alloy nanoparticles assembled on graphene oxide with the high catalytic activity and reusability in the dehydrogenation of dimethylamine-borane, Int. J. Hydrogen Energy (2017) https://doi.org/10.1016/j.ijhydene.2017.05.113.
[49] B. Sen, S. Kuzu, E. Demir, S. Akocak, F. Sen, Polymer-Graphene hybride decorated Pt Nanoparticles as highly efficient and reusable catalyst for the Dehydrogenation of Dimethylamine-borane at room temperature, Int. J. Hydrogen Energy (2017). https://doi.org/10.1016/j.ijhydene.2017.05.112.
[50] B. Sen, S. Kuzu, E. Demir, S. Akocak, F. Sen, Highly monodisperse RuCo nanoparticles decorated on functionalized multiwalled carbon nanotube with the highest observed catalytic activity in the dehydrogenation of dimethylamine borane, Int. J. Hydrogen Energy (2017). https://doi.org/10.1016/j.ijhydene.2017.06.032.