A Basic Overview of Fuel Cells: Materials and Applications

$15.95

A Basic Overview of Fuel Cells: Materials and Applications

Jayshree Ramkumar, S. Chandramouleeswaran

In this chapter, the history of fuel cells from invention to modern days is discussed. The 19th century saw the development of steam engine while in the 20th century, the combustion engine was dominant and it is quite probable that the 21st century will be the era of fuel cells. The various types of fuel cells with their advantages, disadvantages and principal applications are reviewed in this chapter.

Keywords
Fuel Cells, Principle of Operation, History of Fuel Cells, Fuel Design

Published online 1/2/2018, 15 pages

DOI: https://dx.doi.org/10.21741/9781945291470-5

Part of Smart Polymers and Composites

References
[1] S. Bhattacharyya (ed.), Rural Electrification Through Decentralised Off-grid Systems in Developing Countries, Green Energy and Technology, Springer Verlag London, 2013, doi: 10.1007/978-1-4471-4673-5_2 https://doi.org/10.1007/978-1-4471-4673-5_2
[2] U. Bossell, The birth of the Fuel Cell 1835–1845. Power for the 21st century, European Fuel Cell Forum, 2000.
[3] M. Ball, M. Weeda, The hydrogen economy—Vision or reality? Int. J. Hydr. Energy, 40 (2015) 7903-7919. https://doi.org/10.1016/j.ijhydene.2015.04.032
[4] B. Cook, An introduction to fuel cells and hydrogen technology. Vancouver, Canada: Heliocentris; 2001.
[5] M. Winter, R.J. Brodd, What are batteries, fuel cells, and super capacitors? Chem. Rev., 104.(2004) 4245–4270. https://doi.org/10.1021/cr020730k
[6] R.S. Khurmi, Materials Science, 1987, S. Chand Publishing Co., 1987.
[7] E.O. Rivera, A.R. Hernandez, A. Febo, Understanding the history of fuel cells. IEEE Conference on the History of Electric Power, 1 (2007) 117–122.
[8] K. Kordesch, G. Simader, Fuel Cells and their Applications, Weinheim: VCH, 1996, p.38. https://doi.org/10.1002/352760653X
[9] J. Wisniak, Electrochemistry and fuel cells: the contribution of William Robert Grove, Ind. J. Hist. Sci., 50 (2015) 476-490. https://doi.org/10.16943/ijhs/2015/v50i4/48318
[10] P.B.L. Chaurasia, Y. Ando, T. Tanaka, Regenerative fuel cell with chemical reactions, Energ. Conv. Manag., 44 (2003) 611–628. https://doi.org/10.1016/S0196-8904(02)00066-3
[11] A.B. Stambouli, E. Traversa, Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy, Renew. Sustain. Energ. Rev., 6 (2002) 433-455. https://doi.org/10.1016/S1364-0321(02)00014-X
[12] J. Appleby, From Sir William Grove to today: fuel cells and the future, J. Power Sour., 29 (1990) 3-11. https://doi.org/10.1016/0378-7753(90)80002-U
[13] C. Stone, A.E. Morrison, From curiosity to power to change the world, Solid State Ion., 152-153 (2002) 1-13. https://doi.org/10.1016/S0167-2738(02)00315-6
[14] N.S.N.V. Vardhan, G.H.N. Rao, Int. J. Adv. Eng. Globala Technol., 4 (2016) 1221-1225.
[15] G.V. Elmore and H.A. Tanner, Intermediate Temperature Fuel Cells, J. Electrochem. Soc., 108 (1961) 669-671 https://doi.org/10.1149/1.2428186
[16] J. Weissbart and R. Ruka, A Solid Electrolyte Fuel Cell, J. Electrochem. Soc., 109 (1962) 723-726. https://doi.org/10.1149/1.2425537
[17] Y. Wang, K.S. Chen, J. Mishler, S.C. Cho, X.C. Adroher, A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research, App. Ener. 88 (2011) 981-1007. https://doi.org/10.1016/j.apenergy.2010.09.030
[18] M. Farooque and H.C. Maru, Fuel cells—the clean and efficient power generators, IEEE Proc., 89 (2001) 1819-1829.
[19] J.B. O’Sullivan, Fuel cells in distributed generation, IEEE Proc., 1 (1999) 568-572.
[20] M.W. Ellis, M.R.V. Spakovsky, D.J. Nelson, Fuel cell systems: efficient flexible energy conversion for the 21st century. IEEE Proc., 89 (2001) 1808–1818.
[21] M. Spinelli, M.C. Romano, S. Consonni, S. Campanari, M. Marchi, G. Cinti, Application of molten carbonate fuel cells in cement plants for CO2 capture and clean power generation, Ener. Procedia, 63 (2014) 6517-6526. https://doi.org/10.1016/j.egypro.2014.11.687
[22] A.J. Jacobson, Materials for solid oxide fuel cells, Chem. Mater., 22 (2010) 660-674. https://doi.org/10.1021/cm902640j
[23] A.M. Khan, Electricity Generation by Microbial Fuel Cells, Adv. Nat.App. Sci. 3 (2009) 279-286.
[24] P.K. Barua and D. Deka, electricity generation from bio waste based microbial fuel cells, Int. J. Ener. Infor. Comm., 1 (2010) 77-92.
[25] D. Pant, G.V. Bogaert, L. Diels, K. Vanbroekhoven, A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production, Bioreso. Technol., 101 (2010) 1533-1543. https://doi.org/10.1016/j.biortech.2009.10.017
[26] Z. Du, H. Li and T. Gu, A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy, Biotechnol. Adv., 25 (2007) 464-482. https://doi.org/10.1016/j.biotechadv.2007.05.004
[27] M. Rahimnejad, A. Adhami, S. Darvari, A. Zirepour and S.E. Oh, Microbial fuel cell as new technology for bioelectricity generation: A review, Alex. Eng. J., 54 (2015) 745-756. https://doi.org/10.1016/j.aej.2015.03.031
[28] D.H. Park, Y.K. Park, C.E. So, Application of single-compartment bacterial fuel cell (SCBFC) using modified electrodes with metal ions to wastewater treatment reactor, J. Microbiol. Biotechnol., 14 (2004), 1120-1128.
[29] M. Rahimnejad, A. Adhami, S. Darvari, A. Zirepour, S.E. Oh, Microbial fuel cell as new technology for bioelectricity generation: A review, Alex. Eng. J., 54 (2015) 745-756. https://doi.org/10.1016/j.aej.2015.03.031
[30] J. Chouler, G.A. Padgett, P.J. Cameron, K. Preuss, M.M. Titirici, I. Ieropoulos, M.D. Lorenzo, Towards effective small scale microbial fuel cells for energy generation from urine, Electrochim. Acta, 192 (2016) 89-98. https://doi.org/10.1016/j.electacta.2016.01.112
[31] E. Dannys, T. Green, A. Wettlaufer, C.M.R. Madhurnathakam, A. Elkamel, Wastewater treatment with microbial fuel cells: a design and feasibility study for scale-up in microbreweries, J. Bioproc. Biotech 6:267 (2016) 1-6. doi:10.4172/2155- 9821.1000267
[32] V. Chaturvedi, P. Verma, Microbial fuel cell: a green approach for the utilization of waste for the generation of bioelectricity, Biores. Bioproc. 3:38 (2016) 1-14. https://doi.org/10.1186/s40643-016-0116-6