Advances in desalination for water and wastewater treatment
Aiman Eid Al-Rawajfeh, Ghada A. Al Bazedi, Marwa M. Eid, Malek G. Hajaya
This chapter briefly summarizes the main concepts of conventional and novel/emerging desalination technologies. It also emphasizes the principal process engineering outlays for dual desalination systems, covering simultaneous water/power production and heterogeneous desalination. In addition to schemes that comprises both of the membrane and thermal processes, this chapter distinctively covers the typically overlooked medium and long term environmental impacts on soil and marine environment. Finally, the challenges in this field will be outlined targeting acceptable process economy and triple production of energy, water, and salt.
Keywords
Desalination, Water Treatment, Wastewater, Membrane Process, Thermal Desalination
Published online 8/1/2017, 28 pages
DOI: https://dx.doi.org/10.21741/9781945291357-9
Part of Inorganic Pollutants in Wastewater
References
[1] F. Salah, R. Oumeddour, Investment and production costs of desalination plants by semi-empirical method, Desalination, 223 (1–3)(2008),457-463
[2] L. F. Greenlee, D. F. Lawler, B. D. Freeman, B. Marrot, and P. Moulin, “Reverse osmosis desalination: Water sources, technology, and today’s challenges,” Water Res.43(9)(2009) 2317–2348 https://doi.org/10.1016/j.watres.2009.03.010
[3] M. K. Wittholz, B. K. O’Neill, C. B. Colby, and D. Lewis, “Estimating the cost of desalination plants using a cost database,” Desalination, 229 (1–3) (2008) 10–20 https://doi.org/10.1016/j.desal.2007.07.023
[4] K. V. Reddy and N. Ghaffour, “Overview of the cost of desalinated water and costing methodologies,” Desalination, 205(1–3) (2007) 340–353 https://doi.org/10.1016/j.desal.2006.03.558
[5] A. D. Khawaji, I. K. Kutubkhanah, and J.-M. Wie, “Advances in seawater desalination technologies,” Desalination, 221 (1–3) (2008) 47–69 https://doi.org/10.1016/j.desal.2007.01.067
[6] S. Lattemann, M. D. Kennedy, J. C. Schippers, and G. Amy, “Chapter 2 Global Desalination Situation,” 2010, 7–39. https://doi.org/10.1201/b10829-4
[7] A. Maurel, Seawater/brackish water desalination and other non-conventional processes for water supply, 2nd edition book, Lavoisier, France (2006).
[8] F. Macedonio, E. Drioli, A. A. Gusev, A. Bardow, R. Semiat, and M. Kurihara, “Efficient technologies for worldwide clean water supply,” Chem. Eng. Process. Process Intensif.51 (2012) 2–17 https://doi.org/10.1016/j.cep.2011.09.011
[9] M. K. Chris Binnie, Basic Water Treatment : Edition 5 Title. Royal Society of Chemistry, 2013 https://doi.org/10.1680/bwt.58163
[10] S. Vigneswaran, Waste Water Treatment Technologies – volume I, EOLSS Publications, 2009
[11] M. Kotchen, J. Kallaos, K. Wheeler, C. Wong, and M. Zahller, “Pharmaceuticals in wastewater: Behavior, preferences, and willingness to pay for a disposal program,” J. Environ. Manage.90 (3) (2009) 1476–1482 https://doi.org/10.1016/j.jenvman.2008.10.002
[12] T. Wintgens, T. Melin, A. Schäfer, S. Khan, M. Muston, D. Bixio, and C. Thoeye, “The role of membrane processes in municipal wastewater reclamation and reuse,” Desalination, 178 (1–3) (2005) 1–11 https://doi.org/10.1016/j.desal.2004.12.014
[13] Y. Yoon, P. Westerhoff, S. A. Snyder, and E. C. Wert, “Nanofiltration and ultrafiltration of endocrine disrupting compounds, pharmaceuticals and personal care products,” J. Memb. Sci. 270 (1–2) (2006) 88–100 https://doi.org/10.1016/j.memsci.2005.06.045
[14] Z. A. ALOthman, Inamuddin, and M. Naushad, “Recent Developments in the Synthesis, Characterization and Applications of Zirconium(IV) Based Composite Ion Exchangers,” J. Inorg. Organomet. Polym. Mater. 23 (2) (2013) 257–269 https://doi.org/10.1007/s10904-012-9797-2
[15] M. Naushad, Inamuddin, T. A. Rangreez, and Z. A. ALOthman, “A mercury ion selective electrode based on poly-o-toluidine Zr(IV) tungstate composite membrane,” J. Electroanal. Chem.713 (2014) 125–130 https://doi.org/10.1016/j.jelechem.2013.12.002
[16] C. Bellona, J. E. Drewes, P. Xu, and G. Amy, “Factors affecting the rejection of organic solutes during NF/RO treatment; a literature review,” Water Res. 38 (12) (2004) 2795–2809 https://doi.org/10.1016/j.watres.2004.03.034
[17] Suárez A, Fernández P, Ramón Iglesias J, Iglesias E, Riera F. Cost assessment of membrane processes: A practical example in the dairy wastewater reclamation by reverse osmosis. J. Memb. Sci. (2015) 493, 389-402. https://doi.org/10.1016/j.memsci.2015.04.065
[18] Bazedi, Gh. A., Sh.R. Tewfik, R.S. Ettouney, M.H. Sorour, M.A. El-Rifai, “Prediction of Salt rejection in seawater nanofiltration membrane process,” World Appl. Sci. J.17 (1)(2012) 10–19
[19] M. Ernst, “Characterization of the DOC in nanofiltration permeates of a tertiary effluent,” Water Res.34 (11), (2000) 2879–2886 https://doi.org/10.1016/S0043-1354(99)00369-3
[20] C. Kazner, T. Wintgens, T. Melin, S. Baghoth, S. Sharma, and G. Amy, “Comparing the effluent organic matter removal of direct NF and powdered activated carbon/NF as high quality pretreatment options for artificial groundwater recharge,” Water Sci. Technol.57 (6), (2008) 821 https://doi.org/10.2166/wst.2008.164
[21] L. Wu, Z. Xuan, Z. Meng, Removal of dissolved organic matter in municipal effluent with ozonation, slow sand filtration and nanofiltration as high quality pre-treatment option for artificial groundwater recharge, Chemosphere, 83 (5) (2011) 693–699 https://doi.org/10.1016/j.chemosphere.2011.02.022
[22] L. Watson, I. C.; Morin, O. J.; Henthorne, “Desalting Handbook For Planners (Third Edit.).,” 2003
[23] International Energy Agency (IEA), World Energy outlook, 2005.
[24] United States Bureau of Reclamation (USBR), Desalination and Water Purification Technology Roadmap, A report to the executive committee, USA 2003
[25] Ettouney, H.M., El-Dessouky, H.T., Alatiqi, I. Understand thermal desalination. Chem Eng Prog. 95: (1999) 43–54
[26] J. E. MILLER, “Review of Water Resources and Desalination Technologies,” Albuquerque, NM, and Livermore, CA, Mar. 2003.
[27] A. E. Al-Rawajfeh, “Hybrid salts precipitation-nanofiltration pretreatment of MSF and RO seawater desalination feed,” Membr. Water Treat.3 (4)(2012) 253–266 https://doi.org/10.12989/mwt.2012.3.4.253
[28] A. E. Al-Rawajfeh, “Influence of Seawater Composition on CO2 Release and Scaling in Multi-Stage Flash (MSF) Distillers from Different Arabian Gulf Intakes,” Int. J. Chem. Eng. Appl.(2010) 43–48
[29] Membrane Technologies for Water Applications, Highlights from a selection of European Research Projects, EUR 24552 , 2010
[30] A. I. Schafer, L. D. Nghiem, and T. D. Waite, “Removal of the Natural Hormone Estrone from Aqueous Solutions Using Nanofiltration and Reverse Osmosis,” Environ. Sci. Technol.37 (1) (2003) 182–188 https://doi.org/10.1021/es0102336
[31] H. Ozaki and H. Li, “Rejection of organic compounds by ultra-low pressure reverse osmosis membrane,” Water Res.36 (1) (2002) 123–130 https://doi.org/10.1016/S0043-1354(01)00197-X
[32] N. Hilal, H. Al-Zoubi, N. A. Darwish, A. W. Mohammad, and M. Abu Arabi, “A comprehensive review of nanofiltration membranes:Treatment, pretreatment, modelling, and atomic force microscopy,” Desalination, 170 (3) (2004) 281–308 https://doi.org/10.1016/j.desal.2004.01.007
[33] J. Schaep, B. Van der Bruggen, S. Uytterhoeven, R. Croux, C. Vandecasteele, D. Wilms, E. Van Houtte, and F. Vanlerberghe, “Removal of hardness from groundwater by nanofiltration,” Desalination, 119 (1–3) (1998) 295–301 https://doi.org/10.1016/S0011-9164(98)00172-6
[34] W. S. Z. Kov’acs, “Characterization of nanofiltration membranes with uncharged solutes,” Membrántechnika, 12 (2) (2008) 22–36
[35] R. Maria João, Maria Norberta de Pinho, Nanofiltration of textile industry wastewater using a physicochemical process as a pre-treatment, Desalination, 178 (1-3)(2005) 343-349 https://doi.org/10.1016/j.desal.2004.11.044
[36] J.M Gozalvez-Zafrilla., A. Santafé-Moros, “Nanofiltration modeling based on the extended Nernst Plank equation under different physical modes,” in Comsol Confrence, 2008.
[37] B. Balannec, M. Vourch, M. Rabiller-Baudry, and B. Chaufer, “Comparative study of different nanofiltration and reverse osmosis membranes for dairy effluent treatment by dead-end filtration,” Sep. Purif. Technol.42 (2)(2005) 195–200 https://doi.org/10.1016/j.seppur.2004.07.013
[38] M. Frappart, O. Akoum, L. Ding, and M. Jaffrin, “Treatment of dairy process waters modelled by diluted milk using dynamic nanofiltration with a rotating disk module,” J. Memb. Sci.282 (1–2)(2006) 465–472 https://doi.org/10.1016/j.memsci.2006.06.005
[39] Y. Yoon, P. Westerhoff, S. A. Snyder, E. C. Wert, and J. Yoon, “Removal of endocrine disrupting compounds and pharmaceuticals by nanofiltration and ultrafiltration membranes,” Desalination, 202 (1–3)(2007) 16–23 https://doi.org/10.1016/j.desal.2005.12.033
[40] H. Ivnitsky, I. Katz, D. Minz, G. Volvovic, E. Shimoni, E. Kesselman, R. Semiat, and C. Dosoretz, “Bacterial community composition and structure of biofilms developing on nanofiltration membranes applied to wastewater treatment,” Water Res.41 (17)(2007) 3924–3935 https://doi.org/10.1016/j.watres.2007.05.021
[41] M. Teixeira, M. Rosa, and M. Nystrom, “The role of membrane charge on nanofiltration performance,” J. Memb. Sci.265 (1–2) (2005) 160–166 https://doi.org/10.1016/j.memsci.2005.04.046
[42] E. Curcio and E. Drioli, “Membranes for Desalination,” 2009, 41–75
[43] E. Curcio, X. Ji, A. M. Quazi, S. Barghi, G. Di Profio, E. Fontananova, T. Macleod, and E. Drioli, “Hybrid nanofiltration?membrane crystallization system for the treatment of sulfate wastes,” J. Memb. Sci.360 (1–2) (2010) 493–498 https://doi.org/10.1016/j.memsci.2010.05.053
[44] M. Turek, P. Dydo, and R. Klimek, “Salt production from coal-mine brine in NF ? evaporation ? crystallization system,” Desalination, 221 (1–3) (2008) 238–243 https://doi.org/10.1016/j.desal.2007.01.080
[45] M. Mulder: Basic principles in membrane technology, Kluwer Academic Publishers, 1997.
[46] R. Weber, H. Chmiel, and V. Mavrov, “Characteristics and application of new ceramic nanofiltration membranes,” Desalination, 157 (1–3) (2003) 113–125 https://doi.org/10.1016/S0011-9164(03)00390-4
[47] G. E. Üstün, S. K. A. Solmaz, F. Çiner, and H. S. Başkaya, “Tertiary treatment of a secondary effluent by the coupling of coagulation–flocculation–disinfection for irrigation reuse,” Desalination, 277(1–3)(2011) 207–212 https://doi.org/10.1016/j.desal.2011.04.032
[48] J. A. Nilson, F. A. DiGiano, “Influence of NOM composition on NF”, J. AWWA, 53-66, 1996.
[49] P. Laurent, P. Servais, D. Gatel, G. Randon, P. Bonne and Cavard J., ” Microbiological quality before and after NF”, J. AWWA 9 (1999) 62-72
[50] S.-H. Yoon, C.-H. Lee, K.-J. Kim, and A. G. Fane, “Effect of calcium ion on the fouling of nanofilter by humic acid in drinking water production,” Water Res.32 (7) (1998) 2180–2186 https://doi.org/10.1016/S0043-1354(97)00416-8
[51] S.-H. Yoon and J.-S. Kim, “Effect of the origin of humic acids on nanofilter fouling in drinking water production,” Chem. Eng. Sci.55 (21)(2000) 5171–5175 https://doi.org/10.1016/S0009-2509(00)00136-6
[52] K. M. Agbekodo, B. Legube, and S. Dard, “Atrazine and simazine removal mechanisms by nanofiltration: Influence of natural organic matter concentration,” Water Res.30 (11)(1996) 2535–2542 https://doi.org/10.1016/S0043-1354(96)00128-5
[53] K. Agbekodo, B. legude, P. Cote, ” Organics in NF permeate”, J. AWWA,88 (5) (1996) 67-74
[54] A. I. Richards, L. ; Richards, B.S. ; Schäfer, “Renewable energy powered membrane technology: Effect of contaminant speciation on retention and membrane deposition,” J. Memb. Sci.(2010) 188–195
[56] H. Al-Zoubi and W. Omar, “Rejection of salt mixtures from high saline by nanofiltration membranes,” Korean J. Chem. Eng.26 (3) (2009) 799–805 https://doi.org/10.1007/s11814-009-0133-7
[57] J. Lozier, G. Jones, and W. Bellamy, “Integrated membrane treatment in Alaska”, J. AWWA, (1997) 50-64
[58] S. Cheliam, J. Jacangelo, T. Bonacquisti, and B. Schauer, ” Effect of pretreatment on surface water NF” J. AWWA, 89 (1997)77-89
[59] C. Robert Reiss, J. S. Taylor, and C. Robert, “Surface water treatment using nanofiltration?pilot testing results and design considerations,” Desalination, 125 (1–3) (1999) 97–112 https://doi.org/10.1016/S0011-9164(99)00127-7
[60] M. H. Sorour, A. G. Abulnour, and H. A. Talaat, “Desalination of agricultural drainage water,” Desalination, 86 (1) (1992) 63–75 https://doi.org/10.1016/0011-9164(92)80024-4
[61] H. Talaat, M. . Sorour, N. . Rahman, and H. . Shaalan, “Pretreatment of agricultural drainage water (ADW) for large-scale desalination,” Desalination, 152 (1–3) (2003) 299–305 https://doi.org/10.1016/S0011-9164(02)01077-9
[62] W. E. Betrand S, Lemaitre I, “Performance of a nanofiltration plant on hard and highly sulphated water during two years of operation,” Desalination, 113 (2–3) (1997) 277–281
[63] J. L. Acero, F. J. Benitez, F. Teva, and A. I. Leal, “Retention of emerging micropollutants from UP water and a municipal secondary effluent by ultrafiltration and nanofiltration,” Chem. Eng. J.163 (3) (2010) 264–272 https://doi.org/10.1016/j.cej.2010.07.060
[64] K. Kimura, T. Iwase, S. Kita, and Y. Watanabe, “Influence of residual organic macromolecules produced in biological wastewater treatment processes on removal of pharmaceuticals by NF/RO membranes,” Water Res.43 (15) (2009) 3751–3758 https://doi.org/10.1016/j.watres.2009.05.042
[65] K. Chon, H. KyongShon, and J. Cho, “Membrane bioreactor and nanofiltration hybrid system for reclamation of municipal wastewater: Removal of nutrients, organic matter and micropollutants,” Bioresour. Technol. 122 (2012) 181–188 https://doi.org/10.1016/j.biortech.2012.04.048
[66] E. Dialynas and E. Diamadopoulos, “Integration of a membrane bioreactor coupled with reverse osmosis for advanced treatment of municipal wastewater,” Desalination, 238 (1–3) (2009) 302–311 https://doi.org/10.1016/j.desal.2008.01.046
[67] H. K. Shon, S. Vigneswaran, R. Ben Aim, H. H. Ngo, I. S. Kim, and J. Cho, “Influence of Flocculation and Adsorption as Pretreatment on the Fouling of Ultrafiltration and Nanofiltration Membranes:? Application with Biologically Treated Sewage Effluent,” Environ. Sci. Technol.39 (10) (2005) 3864–3871 https://doi.org/10.1021/es040105s
[68] N. Kabay, O. Arar, F. Acar, A. Ghazal, U. Yuksel, and M. Yuksel, “Removal of boron from water by electrodialysis: effect of feed characteristics and interfering ions,” Desalination, 223 (1–3) (2008) 63–72 https://doi.org/10.1016/j.desal.2007.01.207
[69] M. Turek, P. Dydo, J. Ciba, J. Trojanowska, J. Kluczka, and B. Palka-Kupczak, “Electrodialytic treatment of boron-containing wastewater with univalent permselective membranes,” Desalination, 185 (1–3) (2005) 139–145 https://doi.org/10.1016/j.desal.2005.03.077
[70] M. Turek, J. Was, and P. Dydo, “Brackish water desalination in RO?single pass EDR system,” Desalin. Water Treat.7 (1–3) (2009) 263–266 https://doi.org/10.5004/dwt.2009.710
[71] Z. Yazicigil and Y. Oztekin, “Boron removal by electrodialysis with anion-exchange membranes,” Desalination, 190 (1–3) (2006) 71–78 https://doi.org/10.1016/j.desal.2005.07.016
[72] N. Tzanetakis, W. . Taama, K. Scott, R. J. . Jachuck, R. . Slade, and J. Varcoe, “Comparative performance of ion exchange membranes for electrodialysis of nickel and cobalt,” Sep. Purif. Technol.30 (2) (2003) 113–127 https://doi.org/10.1016/S1383-5866(02)00139-9
[73] T. Benvenuti, M. Antônio Siqueira Rodrigues, A. Moura Bernardes and J. Zoppas Ferreira, Chapter 12: Electrodialysis Treatment of Nickel Wastewater, Electrodialysis and Water Reuse, Topics in Mining, Metallurgy and Materials Engineering, 2014, Part of the series Topics in Mining, Metallurgy and Materials Engineering, Springer Internatiol,pp 133-144
[74] T. A. Kurniawan, G. Y. S. Chan, W.-H. Lo, and S. Babel, “Physico-chemical treatment techniques for wastewater laden with heavy metals,” Chem. Eng. J.118 (1–2) (2006) 83–98 https://doi.org/10.1016/j.cej.2006.01.015
[75] M. Jakobsen, “Electrodialytic removal of cadmium from wastewater sludge,” J. Hazard. Mater.106 (2–3) (2004) 127–132 https://doi.org/10.1016/j.jhazmat.2003.10.005
[76] T. Mohammadi, A. Moheb, M. Sadrzadeh, and A. Razmi, “Modeling of metal ion removal from wastewater by electrodialysis,” Sep. Purif. Technol.41 (1) (2005) 73–82 https://doi.org/10.1016/j.seppur.2004.04.007
[77] Y. Dong, J. Liu, M. Sui, Y. Qu, J. J. Ambuchi, H. Wang, and Y. Feng, “A combined microbial desalination cell and electrodialysis system for copper-containing wastewater treatment and high-salinity-water desalination,” J. Hazard. Mater.321 (2017) 307–315 https://doi.org/10.1016/j.jhazmat.2016.08.034
[78] H. A. Aziz, M. N. Adlan, and K. S. Ariffin, “Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr(III)) removal from water in Malaysia: Post treatment by high quality limestone,” Bioresour. Technol.99 (6) (2008) 1578–1583 https://doi.org/10.1016/j.biortech.2007.04.007
[79] A. E. Al-Rawajfeh, E. M. Al-Shamaileh, K. Al-Whoosh, A. Al-Ma’abrah, R. Al-Zorqan, R. Zanoon, K. Rawajfeh, and S. Al-Jufout, “Adsorption desalination of chloride ions on composite natural–synthetic materials: An approach for the reduction of chlorine corrosion in electrodeionization units,” J. Ind. Eng. Chem.19 (6) (2013) 1895–1902 https://doi.org/10.1016/j.jiec.2013.02.035
[80] A. E. Al-Rawajfeh, “Enhancement of hardness and chloride removal and reduction of Cl2 release and corrosion in electrodeionization units,” J. Water Process Eng.5 (2015) 160–165 https://doi.org/10.1016/j.jwpe.2014.06.010
[81] M. . García-Payo, C. . Rivier, I. . Marison, and U. von Stockar, “Separation of binary mixtures by thermostatic sweeping gas membrane distillation,” J. Memb. Sci.198 (2) (2002) 197–210 https://doi.org/10.1016/S0376-7388(01)00649-4
[82] M. . Garcia-Payo, M. . Izquierdo-Gil, and C. Fernandez-Pineda, “Air gap membrane distillation of aqueous alcohol solutions,” J. Memb. Sci.169 (1) (2000) 61–80 https://doi.org/10.1016/S0376-7388(99)00326-9
[83] G. W. Meindersma, C. M. Guijt, and A. B. de Haan, “Desalination and water recycling by air gap membrane distillation,” Desalination, 187 (1–3) (2006) 291–301 https://doi.org/10.1016/j.desal.2005.04.088
[84] H. Chang, G.-B. Wang, Y.-H. Chen, C.-C. Li, and C.-L. Chang, “Modeling and optimization of a solar driven membrane distillation desalination system,” Renew. Energy, 35 (12) (2010) 2714–2722 https://doi.org/10.1016/j.renene.2010.04.020
[85] S. T. Hsu, K. T. Cheng, and J. S. Chiou, “Seawater desalination by direct contact membrane distillation,” Desalination, 143 (3) (2002) 279–287 https://doi.org/10.1016/S0011-9164(02)00266-7
[86] M. Gryta, M. Tomaszewska, and K. Karakulski, “Wastewater treatment by membrane distillation,” Desalination, 198 (1–3) (2006) 67–73 https://doi.org/10.1016/j.desal.2006.09.010
[87] Mohamed Khayet Souhaimi Takeshi Matsuura, Membrane Distillation 1st Edition, View on ScienceDirect Membrane Distillation 1st Edition Principles and Applications. 2011
[88] A. Alkhudhiri, N. Darwish, and N. Hilal, “Membrane distillation: A comprehensive review,” Desalination, 287 (2012) 2–18 https://doi.org/10.1016/j.desal.2011.08.027
[89] E. Curcio, A. Criscuoli, and E. Drioli, “Membrane Crystallizers,” Ind. Eng. Chem. Res.40 (12) (2001) 2679–2684 https://doi.org/10.1021/ie000906d
[90] M. S. EL-Bourawi, M. Khayet, R. Ma, Z. Ding, Z. Li, and X. Zhang, “Application of vacuum membrane distillation for ammonia removal,” J. Memb. Sci.301 (1–2) (2007) 200–209
[91] T. J. Welgemoed and C. F. Schutte, “Capacitive Deionization Technology?: An alternative desalination solution,” Desalination, 183 (1–3) (2005) 327–340 https://doi.org/10.1016/j.desal.2005.02.054
[92] E. Avraham, M. Noked, A. Soffer, and D. Aurbach, “The feasibility of boron removal from water by capacitive deionization,” Electrochim. Acta, 56 (18) (2011) 6312–6317 https://doi.org/10.1016/j.electacta.2011.05.037
[93] W. Tang, P. Kovalsky, B. Cao, D. He, and T. D. Waite, “Fluoride Removal from Brackish Groundwaters by Constant Current Capacitive Deionization (CDI),” Environ. Sci. Technol.50 (19) (2016) 10570–10579 https://doi.org/10.1021/acs.est.6b03307
[94] W. Tang, P. Kovalsky, D. He, and T. D. Waite, “Fluoride and nitrate removal from brackish groundwaters by batch-mode capacitive deionization,” Water Res.84 (2015) 342–349 https://doi.org/10.1016/j.watres.2015.08.012
[95] L.-C. Shen and N. P. Hankins, “Forward Osmosis for Sustainable Water Treatment,” in Emerging Membrane Technology for Sustainable Water Treatment, Elsevier, 2016, pp 55–76. https://doi.org/10.1016/B978-0-444-63312-5.00003-6
[96] R.C. Eusebio, M.A. Promentilla and H.S. Kim, Application of FO-MBR System to Utilize RO Concentrate as Draw Solution, International Conference “Industrial waste and wastewater treatment and valorization, Greece IWWATV 2015
[97] Q. Guanglei, Forward osmosis membrane bioreactor (FOMBR): More than a novel membrane bioreactor process, March 2017, Seminar SBS CR3 (Level 1), Singapore Centre for Environmental Life Sciences Engineering (SCELSE)
[98] N. Edwin Moe, J. Barber, US9382135 B2, (2016)
[99] S. Kumar Sahu, F. E. Torres. US9340436 B2, (2016)
[100] J. Ray Lin, G. Y. Gu. US9403127 B2, (2016)
[101] V. Bhikhi, W. Van Baak, US20160152492 A1, (2016)
[102] U. Chatterjee, S. Kumar JEWRAJKA, S. Thampy. US20160177043 A1, (2016)
[103] M. Wessling, Y. Gendel, A. Rommerskirchen, EP 3 045 431 A1, (2016)
[104] M. Wessling, Y. Gendel, A. Rommerskirchen, WO2016113139 A1, (2016)
[105] M. Zdenek Bazant, E.M Victoria Dydek, D. Deng, A. Mani, US8999132 B2, (2015)
[106] T. W. Aylesworth, US9242213 B1, (2016)
[107] C. D. Moody, R. L. Riley, J. C. Franklin, US9393525 B2, (2016)
[108] S. Dae Chi, B. Jun CHA, J. Hwa Lee, D. Ri Kim, S. Jeong Lim, US20150108061 A1, (2015)
[109] R. L. McGinnis, US8753514 B2, (2014)
[110] M. Alvin Curole, E. Bruce Greene, US8678080 B2, (2014)
[111] Riad A. Al-Samadi, US8679347 B2, (2014)
[112] Y. Sekine, K. Noto, . Sasaki, K. KITAMURA. US20140151283 A1, (2014)