Waste fruit cortexes for the removal of heavy metals from wastewater

$15.95

Waste fruit cortexes for the removal of heavy metals from wastewater

Ritu Payal, Arti Jain

There has been an alarming increase in the levels of heavy metals (Pb+2, As+2, Hg+2, Mn+2, Cr+2, Zn+2, Cu+2 and Cd+2), organic dyes (from textiles, food and beverages industries) and surfactants (linear alkyl benzene sulfonate: LABS, alkyl sulphate: AS, alkyl ethoxylate: AE, sodium dodecyl sulphate: SDS) due to their increased usage in industries. For the abolition of heavy metal ions, organic dyes and surfactants from polluted areas, cost effective and proficient substitutes to target these impurities is biosorption technique which exploits various fruit cortexes. This chapter briefly deals with a toxicological indication of metal ions, organic dyes, and surfactants in addition to the comprehensive explanation of biosorption techniques using fruit cortexes (which is otherwise waste for us) for the elimination of the impurities. Additionally, the chapter apprises readers about a recent innovation in biosorption protocols such as the use of modified agricultural waste materials in the form of nanoparticles or mesoporous substances.

Keywords
Fruit Cortex, Ecosystem, Biosorbent, Wastewater Remediation, Threat

Published online 8/1/2017, 19 pages

DOI: https://dx.doi.org/10.21741/9781945291357-8

Part of Inorganic Pollutants in Wastewater

References
[1] N. Satya, C.S.P. Ojha, S.K. Mishra, U.C. Chaube, P.K. Sharma, Cadmium and chromium removal by aquatic plant, Int. J. Environ. Sci. 6 (2011) 1297-1304.
[2] K.J. Abaliwano, A.K. Ghebremichael, L.G. Amy, Application of the purified moringa oleifera coagulant for surface water treatment, Water Mill Working Paper Series 5 (2008) 1-22.
[3] a.K. Meena, K. Kadirvelu, G.K. Mishraa, C. Rajagopal, P.N. Nagar, Adsorption of Pb(II) and Cd(II) metal ions from aqueous solutions by mustard husk, J. Hazard. Mater. 150 (2008) 619-625. https://doi.org/10.1016/j.jhazmat.2007.05.011
[4] a. Sarý, Ö.D. Uluozlü, M. Tüzen, Equilibrium, thermodynamic and kinetic investigations on biosorption of arsenic from aqueous solution by algae (Maugeotia genuflexa) biomass, Chem. Eng. J. 167 (2011) 155-161. https://doi.org/10.1016/j.cej.2010.12.014
[5] M. Iqbal, A. Saeed, R.G.J. Edyvean, Bioremoval of antimony(III) from contaminated water using several plant wastes: Optimization of match and dynamic flow conditions for sorption by green bean husk (Vignaradiata). Chem. Eng. J. 225 (2013) 192-201. https://doi.org/10.1016/j.cej.2013.03.079
[6] V. Vinodhini, N. Das, Relevant approach to assess the performance of sawdust as adsorbent of chromium (VI) ions from aqueous solutions, Int. J. Environ. Sci. Technol. 7 (2010) 85-92. https://doi.org/10.1007/BF03326120
[7] W. Guo, R. Chen, Y. Liu, M. Meng, X. Meng, Z. Hu et. al., Preparation of ion-imprinted mesoporous silica SBA-15 functionalized with triglycine for selective adsorption of Co(II). Colloids Surfaces A Physicochem. Eng. Asp. 436 (2013)
[8] 693-703. https://doi.org/10.1016/j.colsurfa.2013.08.011
[9] H. Abu Hasan, S.R.S. Abdullah, N.T. Kofli, S.K. Kamarudin, Isotherm equilibria of Mn2+ biosorption in drinking water treatment by locally isolated bacillus species and sewage activated sludge, J. Environ. Manage. 111 (2012) 34-43. https://doi.org/10.1016/j.jenvman.2012.06.027
[10] EI. El-Shafey, Removal of Zn(II) and Hg(II) from aqueous solution on a carbonaceous sorbent chemically prepared from rice husk. J. Hazard. Mater. 175 (2010) 319-327. https://doi.org/10.1016/j.jhazmat.2009.10.006
[11] S. Tunali Akar, S. Arslan, T. Alp, D. Arslan, T. Akar, Biosorption potential of the waste biomaterial obtained from cucumis melo for the removal of Pb2+ ions from aqueous media: Equilibrium, kinetic, thermodynamic and mechanism analysis, Chem. Eng. J. 185-186 (2012) 82-90. https://doi.org/10.1016/j.cej.2012.01.032
[12] S. Babel, T.A. Kurniawan, Cr(VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan, Chemosphere 54 (7) (2004) 951–967. https://doi.org/10.1016/j.chemosphere.2003.10.001
[13] S. Babel, T.A. Kurniawan, Low-cost adsorbents for heavy metals uptake from contaminated water: A review. J. Hazard. Mater. B 97 (2003) 219–243. https://doi.org/10.1016/S0304-3894(02)00263-7
[14] M. Iqbal, A. Saeed, R.G.J. Edyvean, Bioremoval of antimony(III) from contaminated water using several plant wastes: Optimization of match and dynamic flow conditions for sorption by green bean husk (Vignaradiata). Chem. Eng. J. 225 (2013) 192-201. https://doi.org/10.1016/j.cej.2013.03.079
[15] M.A. Momodu, C.A. Anyakora, Heavy metal contamination of ground water: The surulere case study, Res. J. Environ. Earth Sci. 2 (2010) 39-43.
[16] a. Sharma, K.G. Bhattacharyya, Azadirachta indica (Neem) leaf powder as a biosorbent for removal of Cd(II) from aqueous medium. J. Hazard. Mater B 125 (2005) 102-112. https://doi.org/10.1016/j.jhazmat.2005.05.012
[17] H. Ali, E. Khan, M.A. Sajad, Phytoremediation of heavy metals-Concepts and applications. Chemosphere 91 (2013) 869-881. https://doi.org/10.1016/j.chemosphere.2013.01.075
[18] M. Bilal, J.A. Shah, T. Ashfaq, S.M.H. Gardazi, A.A. Tahir, A. Pervez, H. Haroon, Q. Mahmood, Waste biomass adsorbents for copper removal from industrial wastewater – A review, J. Hazard. Mater. 263 (2013) 322-333. https://doi.org/10.1016/j.jhazmat.2013.07.071
[19] L.M. Mataka, E.M.T. Henry, W.R.L. Masamba, S.M. Sajidu, Lead remediation of contaminated water using moringa stenopetala and moringa oleifera seed powder. Int. J. Environ. Sci. Technol. 3 (2006) 131-139. https://doi.org/10.1007/BF03325916
[20] U. Farooq, M.A. Khan, M. Athar, J.A. Kozinski, Effect of modification of environmentally friendly biosorbent wheat (triticum aestivum) on the biosorptive removal of cadmium(II) ions from aqueous solution, Chem. Eng. J. 171 (2011) 400-410. https://doi.org/10.1016/j.cej.2011.03.094
[21] L.C. Tan, Y.V. Nancharaiah, E.D.V. Hullebusch, P.N.L. Lens, Biotechnol. Adv. 34(5), (2016) 886-907. https://doi.org/10.1016/j.biotechadv.2016.05.005
[22] J. Febrianto, A.N. Kosasih, J. Sunarso, Y.H. Ju, N. Indraswati, S. Ismadji Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies, J. Hazard. Mater.162 (2009) 616-645. https://doi.org/10.1016/j.jhazmat.2008.06.042
[23] H. He, S. Yang, K. Yu, Y. Ju, C. Sun, L. Wang, Microwave induced catalytic degradation of crystal violet in nano-nickel dioxide suspensions, .J. Hazard. Mater. 173 (2010) 393-400. https://doi.org/10.1016/j.jhazmat.2009.08.084
[24] Z. Chen, M. Deng, Y. Chen, G. He, M. Wu, J. Wang, Preparation and performance of cellulose acetate/polyethyleneimine blend microfiltration membranes and their applications, J. Memb. Sci. 235 (2004) 73-86. https://doi.org/10.1016/j.memsci.2004.01.024
[25] P. Chindaprasirt, S. Rukzon, Strength, porosity and corrosion resistance of ternary blend Portland cement, rice husk ash and fly ash mortar, Constr. Build. Mater. 22 (2008) 1601-1606. https://doi.org/10.1016/j.conbuildmat.2007.06.010
[26] T. Chuah, A. Jumasiah, I. Azni, S. Katayon, S.T. Choong, Rice husk as a potentially low-cost biosorbent for heavy metal and dye removal: an overview, Desalination 175 (2005) 305-316. https://doi.org/10.1016/j.desal.2004.10.014
[27] W.C. Leung, M.F. Wong, H. Chua, W. Lo, C.K. Leung, Removal and recovery of heavy metals by bacteria isolated from activated sludge treating industrial effluents and municipal wastewater, Water. Sci. Technol. 41(12) (2000) 233-240.
[28] T.A. Kurniawan, G.Y.S. Chan, W.H. Lo, S. Babel, Comparisons of low-cost adsorbents for treating wastewaters laden with heavy metals, Sci. Total Environ. 366(2-3) (2005) 409-426. https://doi.org/10.1016/j.scitotenv.2005.10.001
[29] T.A. ChenKurniawan, G.Y.S. Chan, W.H. Lo, S. Babel, Physicochemical treatment techniques for wastewater laden with heavy metals, Chem. Eng. J. 118 (2006) 83-98. https://doi.org/10.1016/j.cej.2006.01.015
[30] a.J. Pedersen, Characterization and electrolytic treatment of wood combustion fly ash for the removal of cadmium, Biomass Bioenergy 25(4) (2003) 447-458. https://doi.org/10.1016/S0961-9534(03)00051-5
[31] L.R. Skubal, N.K. Meshkov, T. Rajh, M. Thurnauer, Cadmium removal from water using thiolactic acid-modified titanium dioxide nanoparticles, J. Photochem. Photobiol. A, Chem. 148 (2002) 393-397. https://doi.org/10.1016/S1010-6030(02)00069-2
[32] K. Mohanty, D. Das, M.N. Biswas, Adsorption of phenol from aqueous solutions using activated carbons prepared from tectona grandis sawdust by ZnCl2 activation, Chem. Eng. J. 115 (2005) 121-131. https://doi.org/10.1016/j.cej.2005.09.016
[33] F. Veglio, F. Beolchini, Removal of metals by biosorption: A review. Hydrometallurgy 44 (1997) 301-316. https://doi.org/10.1016/S0304-386X(96)00059-X
[34] U. Kumar, M. Bandyopadhyay, Sorption of cadmium from aqueous solution using pretreated rice husk, Bioresour. Technol. 97 (2006) 104-109. https://doi.org/10.1016/j.biortech.2005.02.027
[35] S.S. Nawar, H.S. Doma, Removal of dyes from effluents using low-cost agricultural by-products, Sci. Total Environ. 79 (1989) 271-279. https://doi.org/10.1016/0048-9697(89)90342-2
[36] G. Crini, Non-conventional low-cost adsorbents for dye removal: A review, Bioresour. Technol. 97 (2006) 1061-1085. https://doi.org/10.1016/j.biortech.2005.05.001
[37] M. Bilal, J.A. Shah, T. Ashfaq, S.M.H. Gardazi, A.A. Tahir, A. Pervez, H. Haroon, Q. Mahmood, Waste biomass adsorbents for copper removal from industrial wastewater – A review, J. Hazard. Mater. 263 (2013) 322-333. https://doi.org/10.1016/j.jhazmat.2013.07.071
[38] G.M. Gadd, Accumulation and transformation of metals by microorganisms, in: H.J. Rehm, G. Reed, A. Puhler, P. Stadler, (Ed.), Biotechnology, a Multivolume Comprehensive Treatise, Special Processes, Wiley-VCH,Weinheim, 2001, pp. 225-264.
[39] a. Ali, K. Saeed, Decontamination of Cr(VI) and Mn(II) from aqueous media by untreated and chemically treated banana peel: Acomparative study, Desal. Water Treat. 53 (2015) 3586-3591. https://doi.org/10.1080/19443994.2013.876669
[40] G.F. Xuli, Z.X. Shen, R.X. Guo, The kinetic studies for the adsorption of furdan from aqueous solution by orange peel, Adv. Mater. Res. 842 (2014) 187-191.
[41] S. Al-Asheh, F. Banat, R. Al-Omari, Z. Duvnjak, Predictions of binary sorption isotherms for the sorption of heavy metals by pine bark using single isotherm data, Chemosphere 41 (2000) 659-665. https://doi.org/10.1016/S0045-6535(99)00497-X
[42] U. Kumar, M. Bandyopadhyay, Sorption of cadmium from aqueous solution using pretreated rice husk, Bioresour. Technol. 97 (2006) 104-109. https://doi.org/10.1016/j.biortech.2005.02.027
[43] U.K. Garg, M.P. Kaur, V.K. Garg, D. Sud, Removal of hexavalent chromium from aqueous solution by agricultural waste biomass, J. Hazard. Mater. 140 (2007) 60-68. https://doi.org/10.1016/j.jhazmat.2006.06.056
[44] E. Malkoc, Y. Nuhoglu, Investigations of Nickel(II) removal from aqueous solutions using tea factory waste, J. Hazard. Mater., 127 (2005) 120-128. https://doi.org/10.1016/j.jhazmat.2005.06.030
[45] E. Malkoc, Y. Nuhoglu, Fixed bed studies for the sorption of chromium(VI) onto tea factory waste, Chem. Eng. Sci. 61 (2006) 4363-4372. https://doi.org/10.1016/j.ces.2006.02.005
[46] G.S. Agarwal, H.K. Bhuptawat, S. Chaudhari, Biosorption of aqueous chromium(VI) by Tamarindus indica seeds, Bioresour. Technol. 97 (2006) 949-956. https://doi.org/10.1016/j.biortech.2005.04.030
[47] a.G. Devi Prasad, Abdullah, M. Biosorption of Fe(II) from aqueous solution using Tamarind Bark and potato peel waste: Equilibrium and kinetic Studies, J. Appl. Sci. Environ. Sanit. 4 (2009) 273−282.
[48] S.T. Koel Banerjee, R. Ramesh, P.V. Gandhimathi, K.S. Bharathi, A novel agricultural waste adsorbent, watermelon shell for the removal of copper from aqueous solutions, Iran. J. Energy 3 (2012) 143-156.
[49] P. Venkateswarlu, M.V. Ratnam, D.S. Rao, M.V. Rao, Removal of chromium from an aqueous solution using azadirachta indica (neem) leaf powder as an adsorbent, Int. J. Phys. Sci. 2 (2007) 188-195.
[50] T. Altun, E. Pehlivan, Removal of copper(II) ions from aqueous solutions by walnut-, hazelnut- and almond-shells. CLEAN − Soil, Air, Water 35 (2007) 601-606. https://doi.org/10.1002/clen.200700046
[51] a. Saeed, M. Iqbal, M.W. Akhtar, Removal and recovery of lead(II) from single and multimetal (Cd, Cu, Ni, Zn) solutions by crop milling waste (black gram husk), J. Hazard. Mater. 117 (2005) 65-73. https://doi.org/10.1016/j.jhazmat.2004.09.008
[52] Feng, Y.; Yang, F.; Wang, Y.; Ma, L.; Wu, Y.; Kerr, P. G.; Yang, L. Basic dye adsorption onto an agro-based waste material – Sesam hull (Sesamum indicum L.). Bioresour. Technol. 102 (2011)10280-10285. https://doi.org/10.1016/j.biortech.2011.08.090
[53] Mallampati, R.; Valiyaveettil, S. Application of tomato peel as an efficient adsorbent for water purification, Alternative biotechnology? RSC Adv. 2012, 2, 9914−9920.
[54] Rao KS, Mohapatra M, Anand S, Venkateswarlu P. 2010 Review on cadmium removal from aqueous solutions. Int. J. Engineering, Sci. and Technology 2, 81-103. https://doi.org/10.1039/c2ra21108d
[55] F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: A review. J. Environ. Manage. 92 (2011) 407-418. https://doi.org/10.1016/j.jenvman.2010.11.011
[56] Y. Feng, F. Yang, Y. Wang, L. Ma, Y. Wu, P.G. Kerr, L. Yang, Basic dye adsorption onto an agro-based waste material – Sesame hull (Sesamum indicum L.), Bioresour. Technol. 102 (2011) 10280-10285. https://doi.org/10.1016/j.biortech.2011.08.090
[57] R Negi, G. Satpathy, Y.K. Tyagi, R. K. Gupta, Biosorption of heavy metals by utilising onion and garlic wastes, Int. J. Environ. Pollut. 49 (2012) 179-196. https://doi.org/10.1504/IJEP.2012.050898
[58] K.M. Al-Qahtani, Water purification using different waste fruit cortexes for the removal of heavy metals, J. Taibah Univer. Science 10 (2016) 700-708. https://doi.org/10.1016/j.jtusci.2015.09.001
[59] K. Kelly-Vargas, M. Cerro-Lopez, S. Reyna-Tellez, E.R. Bandala, J.L. Sanchez-Salas, Biosorption of heavy metals in polluted water, using different waste fruit cortex, Physics and Chemistry of the Earth 37-39 (2012) 26–29. https://doi.org/10.1016/j.pce.2011.03.006
[60] R. Mallampati, L. Xuanjun, A. Adin, S. Valiyaveettil, Fruit peels as efficient renewable adsorbents for removal of dissolved heavy metals and dyes from water, ACS Sustainable Chem. Eng. 3 (2015) 1117-1124. https://doi.org/10.1021/acssuschemeng.5b00207
[61] P.Y. Tang, C.J. Wong, K.K. Woo, Optimization of pectin extraction from peel of dragon fruit (Hylocereus polyrhizus), Asian J. Biol. Sci. 4 (2011), 189-195. https://doi.org/10.3923/ajbs.2011.189.195
[62] M.R.H.M. Haris, K. Sathasivam, The removal of methyl red from aqueous solutions using banana pseudostem fibers, Am. J. Appl. Sci. 6 (2009) 1690-1700. https://doi.org/10.3844/ajassp.2009.1690.1700
[63] R. Chand, K. Narimura, H. Kawakita, K. Ohto, T. Watari, K. Inoue, Grape waste as a biosorbent for removing Cr(VI) from aqueous solution, J. Hazard. Mater. 163 (2009) 245-250. https://doi.org/10.1016/j.jhazmat.2008.06.084
[64] P.L. Homagai, K.N. Ghimire, K. Inoue, Adsorption behaviour of heavy metals onto chemically modified sugarcane bagasse, Bioresour. Technol. 101 (2010) 2067-2069. https://doi.org/10.1016/j.biortech.2009.11.073