Ion selective membrane electrodes as sensors for detection of heavy metal ions
Tauseef Ahmad Rangreez, Inamuddin, Rizwana Mobin
The present chapter deals with the basic information regarding pollution caused by heavy metals and their effect on our natural resources, economy and human health. It also gives an idea on the role of nano-composites in the remedial and purification processes. The principle, procedure and advantages of ion-selective membrane electrodes along with the work carried out during the last decade in the field to develop various lead and cadmium selective cation-exchangers is included in this chapter. The utility of organic-inorganic composite material based sensors and their application in the development of ion-selective membrane electrodes (ISME) for the detection of heavy metals, which render portable water unsafe for use and pose a threat to the wellbeing of man is also discussed.
Keywords
Composite Cation Exchanger, Ion-selective Membrane Electrodes, Heavy Metal Pollutants, Electro Chemical Sensors, Selectivity
Published online 8/1/2017, 63 pages
DOI: https://dx.doi.org/10.21741/9781945291357-3
Part of Inorganic Pollutants in Wastewater
References
[1] D. Sud, G. Mahajan, M.P. Kaur, Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions-A review, Bioresour. Technol. 99 (2008) 6017-6027. https://doi.org/10.1016/j.biortech.2007.11.064
[2] T. Deblonde, C.C. Leguille, P. Hartemann, Emerging pollutants in wastewater: A review of the literature, Int. J. Hyg. Environ. Health 214 (2011) 442-448.
[3] M.N. Obasi, Environmental pollution with particular reference to chemical pollutant in Nigeria. 1st ed., White and White Publishers Ltd., Owerri, Nigeria, 1999.
[4] H. El-Dessouky, H. Ettouney, Teaching desalination-a multidiscipline engineering science, Heat Tran. Eng. 23 (2002) 1-3.
[5] D.D. Mara,Water, sanitation and hygiene for the health of developing nations, Public Health 117 (2003) 452-456. https://doi.org/10.1016/S0033-3506(03)00143-4
[6] M. Moore, P. Gould, B.S. Keary,Global urbanization and impact on health, Int. J. Hyg. Environ. Health 206 (2003) 269-278. https://doi.org/10.1078/1438-4639-00223
[7] A.C. Sethi, Key note address, International Conference on Fresh Water, Bonn, Germany (2001).
[8] Directive 76/464/EEC, Official J. European Communities, LI29 (1976).
[9] M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Marias, A.M. Mayes, Science and technology for water purification in the coming decades, Nature 452 (2008) 301-310. https://doi.org/10.1038/nature06599
[10] Drinking water specification, IS, 2nd ed. (2012).
[11] United States Public Health, Drinking water standards (2012).
[12] P. Leonard, S. Hearty, J. Brennan, L. Dunne, J. Quinn, T. Chakraborty, R.O. Kennedy, Advances in biosensors for detection of pathogens in food and water, Enzyme Microb. Tech. 32 (2003) 3-13. https://doi.org/10.1016/S0141-0229(02)00232-6
[13] N.J. Ashbolt, Microbial contamination of drinking water and disease outcomes in developing regions, Toxicology 198 (2004) 229-238. https://doi.org/10.1016/j.tox.2004.01.030
[14] G. Hutton, L. Haller, J. Bartram, Public Health and Environment, World Health Organization, Geneva (2007).
[15] WHO and UNICEF, Progress on Sanitation and Drinking Water, World Health Organization, Geneva (2013).
[16] J. Fawell, M.J. Nieuwenhuijsen, Contaminants in drinking water, Br. Med. Bull. 68 (2003) 199-208. https://doi.org/10.1093/bmb/ldg027
[17] S.R. Mozaz, M.J.L. de Alda, D. Barcelo, Monitoring of estrogens, pesticides and bisphenol A in natural waters and drinking water treatment plants by solid phase extraction-liquid chromatography-mass spectrometry, J. Chrom. 1045 (2004) 85-92. https://doi.org/10.1016/j.chroma.2004.06.040
[18] K. Mulder, N. Hagens, B. Fisher, Burning water: A comparative analysis of the energy return on water invested, Ambio 39 (2010) 30-39. https://doi.org/10.1007/s13280-009-0003-x
[19] H.C.J. Godfray, J.R. Beddington, I.R. Crute, L. Haddad, D. Lawrence, J.F. Muir, J. Pretty, S. Robinson, S.M. Thomas, C. Toulmin, Food Security: The Challenge of Feeding 9 Billion People, Science 327 (2010) 812-818. https://doi.org/10.1126/science.1185383
[20] K.S. Low, C.K. Lee,Cadmium uptake by the Moss, Calymperesdelessertii, Besch, Bioresour. Technol. 38 (1991) 1-6. https://doi.org/10.1016/0960-8524(91)90214-5
[21] D.W.O. Connell, C. Birkinshaw, T.F.O. Dwyer, Heavy metal adsorbents prepared from the modification of cellulose: A review, Bioresour. Technol. 99 (2008) 6709-6724. https://doi.org/10.1016/j.biortech.2008.01.036
[22] M.E. Argun, S. Dursun, C. Ozdemir, M. Karatas, Heavy metal adsorption by modified oak sawdust: Thermodynamics and kinetics, J. Hazard. Mater. 141 (2007) 77-85. https://doi.org/10.1016/j.jhazmat.2006.06.095
[23] G.M. Naja, B. Volesky, Treatment of metal-bearing effluents: removal and recovery in: L.K. Wang, J.P. Chen, Y.T. Hung, N.K. Shammas (Eds.), Handbook on Heavy Metals in the Environment, Taylor and Francis, Boca Raton FL USA 2009, pp. 247-291.
[24] Guidelines for Drinking Water Quality, 4th ed., World Health Organisation (2011).
[25] European Water Quality Standards (2013).
[26] Guidelines for Canadian Drinking Water Quality (2014).
[27] T. Alizadeh, M.R. Ganjali, P. Nourozi, M. Zare, M. Hoseini, A carbon paste electrode impregnated with Cd2+ imprinted polymer as a new and high selective electrochemical sensor for determination of ultra-trace Cd2+ in water samples, J. Electroanal. Chem. 657 (2011) 98-106. https://doi.org/10.1016/j.jelechem.2011.03.029
[28] J.O. Nriagu, J.M. Pacyna, Quantitative assessment of worldwide contamination of air, water and soils by trace metals, Nature 333 (1988) 134-139. https://doi.org/10.1038/333134a0
[29] M. Borsari, Encyclopedia of Inorganic Chemistry, 1st ed., Wiley, New York 1994.
[30] K. Kadirvelu, K. Thamaraiselvi, C. Namasivayam, Removal of heavy metals from industrial wastewaters by adsorption onto activated carbon prepared froman agricultural solid waste, Bioresour. Technol. 76 (2001) 63. https://doi.org/10.1016/S0960-8524(00)00072-9
[31] JM Pearce, Burton’s line in lead poisoning, Eur. Neurol. 57 (2007) 118-119. https://doi.org/10.1159/000098100
[32] L.N. Abhyankar, M.R. Jones, E. Guallar, A.N. Acien, Arsenic exposure and hypertension: A systematic review, Environ. Health Perspect.120 (2012) 494-500. https://doi.org/10.1289/ehp.1103988
[33] C.J. Chen, H.Y. Chiou, M.H. Chiang, L.J. Lin, T.Y. Tai, Dose-response relationship between ischemic heart disease mortality and long-term arsenic exposure, Arterioscler. Thromb.Vasc. Biol. 16 (1996) 504-510. https://doi.org/10.1161/01.ATV.16.4.504
[34] Y. Chen, P.F. Litvak, G.R. Howe, J.H. Graziano, P.B. Rauf, F. Parvez, Arsenic exposure from drinking water, dietary intakes of B vitamins and folate, and risk of high blood pressure in Bangladesh: a population-based, cross-sectional study, Am. J. Epidemiol. 165 (2007) 541-552. https://doi.org/10.1093/aje/kwk037
[35] C.H. Tseng, C.K. Chong, C.J. Chen, T.Y. Tai, Dose-response relationship between peripheral vascular disease and ingested inorganic arsenic among residents in blackfoot disease endemic villages in Taiwan, Atherosclerosis 120 (1996) 125-133. https://doi.org/10.1016/0021-9150(95)05693-9
[36] N. Debendra, G. Mazumder, R. Haque, N. Ghosh, K.D. Binay, A. Santra, D. Chakraborty, A.H. Smith, Arsenic levels in drinking water and the prevalence of skin lesionsin West Bengal, India, Int. J. Epidemiology 27 (1998) 871-877. https://doi.org/10.1093/ije/27.5.871
[37] P. Ghosh, M. Banerjee, S.D. Chaudhuri, J.K. Das, N. Sarma, A. Basu, A.K. Giri, Increased chromosome aberration frequencies in the Bowen’s patients compared to non-cancerous skin lesions individuals exposed to arsenic, Mutat. Res. Genet. Toxicol. Environ. Mutagen. 632 (2007) 104-110. https://doi.org/10.1016/j.mrgentox.2007.05.005
[38] F. Catterina, Y. Yan, C. Jacqueline, B. Hugo, P.L. Roxana, A. Johanna, A.H. Smith, L. Jane, S. Craig, Arsenic, tobacco smoke, and occupation: associations of multiple agents with lung and bladder cancer, Epidemiology 24 (2013) 898-905. https://doi.org/10.1097/EDE.0b013e31829e3e03
[39] J.S. Tsuji, D.D. Alexander, V. Perez, P.J. Mink, Arsenic exposure and bladder cancer: Quantitative assessment of studies in human populations to detect risks at low doses, Toxicology317 (2014) 17-30.
[40] H.M. Anawar, J. Akai, H. Sakugawa, Mobilization of arsenic from subsurface sediments by effect of bicarbonate ions in groundwater, Chemosphere 54 (2004) 753-762. https://doi.org/10.1016/j.chemosphere.2003.08.030
[41] H.T. Lin, M.C. Wang, K. Seshaiah, Mobility of adsorbed arsenic in two calcareous soils as influenced by water extract of compost, Chemosphere 71 (2008) 742-749. https://doi.org/10.1016/j.chemosphere.2007.10.022
[42] Deepali, K.K. Gangwar, Metals concentration in textile and tannery effluents, Associated Soils and Ground Water, N. Y. Sci. J. 3 (2010) 82-89.
[43] P. Sharma, V. Bihari, S.K. Agarwal, V. Verma, C.N. Kesavachandran, B.S. Pangtey, N. Mathur, K.P. Singh, M. Srivastava, S.K. Goel, Groundwater contaminated with hexavalent chromium [Cr (VI)]: A health survey and clinical examination of community inhabitants (Kanpur, India), PLOS ONE (2012) DOI: org/10.1371/journal.pone.0047877.
[44] M. Javed, N. Usmani, Assessment of heavy metal (Cu, Ni, Fe, Co, Mn, Cr, Zn) pollution in effluent dominated rivulet water and their effect on glycogen metabolism and histology of Mastacembelusarmatus, SpringerPlus 2 (2013) 390-402. https://doi.org/10.1186/2193-1801-2-390
[45] M. Javed, N. Usmani, Investigation on accumulation of toxicants and health status of freshwater fish Channapunctatus, exposed to sugar mill effluent, Int. J. Zool. Res. 3 (2013) 43-48.
[46] G.W. James, P.K. David, H.H. Gary, M.S. Anton, Handbook of Ecotoxicology, 2nd ed., CRC Press (2002).
[47] A.A. Khan, Inamuddin, Applications of Hg(II) sensitive polyanilineSn(IV) phosphate composite cation-exchange material in determination of Hg2+ from aqueous solutions and in making ion-selective membrane electrode, Sensor. Actuator. B Chem. 120 (2006) 10-18. https://doi.org/10.1016/j.snb.2006.01.033
[48] A.K. Jain, S.M. Sondhi, V.K. Sharma, Synthesis, characterization and Hg(II) ion selectivity of 1-(2-Nitro-4-methyl phenyl)-6-methyl-6-methoxy-1,4,5,6-tetrahydro-pyrimidine-2-(3H) thione (TPT), Electroanalysis 12 (2000) 301-305. https://doi.org/10.1002/(SICI)1521-4109(20000301)12:4<301::AID-ELAN301>3.0.CO;2-2
[49] G.E.M. Eyssen, J. Ruedy, Methyl mercury exposure in northern quebec I. neurologic findings in adults, Am. J. Epidemiol. 118 (1983) 461-469. https://doi.org/10.1093/oxfordjournals.aje.a113651
[50] M. Harada, Minamata disease: methylmercury poisoning in Japan caused by environmental pollution, Crit. Rev. Toxicol. 25 (1995) 1-24. https://doi.org/10.3109/10408449509089885
[51] W. Giger, The Rhine red, the fish dead-the 1986 Schweizerhalle disaster, a retrospect and long-term impact assessment, Environ.Sci. Pollut. Int. 16 (2009) 98-111. https://doi.org/10.1007/s11356-009-0156-y
[52] A. Blowers, S. Hinchliffe (Eds.), Environmental Responses, John Willey & Sons Ltd., Chichester, UK, 2003.
[53] M.T. Amin, A.A. Alazba, U. Manzoor, A review of removal of pollutants from water/wastewater using different types of nanomaterials, Adv. Mater. Sci. Eng. 2014 (2014), DOI:org/10.1155/2014/825910.
[54] M.R. Servos, D.T. Bennie, B.K. Burnison, A. Jurkovic, R. Mclnnis, T. Neheli, Distribution of estrogens, 17beta-estradiol andestrone, in Canadian municipal wastewater treatment plants, Sci. Total Environ. 336 (2005) 155-170. https://doi.org/10.1016/j.scitotenv.2004.05.025
[55] T. Urase, T. Kikuta, Separate estimation of adsorption and degradation of pharmaceutical substances and estrogens in the activated sludge process, Water Res. 39 (2005) 1289-1300. https://doi.org/10.1016/j.watres.2005.01.015
[56] P. Westerhoff, Y. Yoon, S. Snyder, E. Wert, Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes, Environ. Sci. Tech. 39 (2005) 6649-6663. https://doi.org/10.1021/es0484799
[57] N. Vieno, T. Tuhkanen, L. Kronberg, Removal of pharmaceuticals in drinking water treatment: effect of chemical coagulation, Environ. Tech. 27 (2006) 183-192. https://doi.org/10.1080/09593332708618632
[58] U. Szewzyk, R. Szewzyk, W. Manz, K.H. Schleifer, Microbiological Safety of Drinking Water, Ann. Rev. Microbiol. 54 (2000) 81-127. https://doi.org/10.1146/annurev.micro.54.1.81
[59] W. Zhang, F.A. Di Giano, Comparison of bacterial regrowth in distribution systems using free chlorine and chloramine: a statistical study of causative factors, Water Res. 36 (2002) 1469-1482. https://doi.org/10.1016/S0043-1354(01)00361-X
[60] I.H. Suffet, J. Ho, D. Chou, D. Khiari, J. Mallevialle, Taste-and- odor problems observed during drinking water treatment in: I.H. Suffet, J. Mallevialle, E. Kawczynski, (Eds.), Advances in Taste-and-odor Treatment and Control, American Water Works Association, 1995.
[61] R.M. Hozalski, L. Zhang, W.A. Arnold, Reduction of haloacetic acids by Fe0: implications for treatment and fate, Environ. Sci. Tech. 35 (2001) 2258-2263. https://doi.org/10.1021/es001785b
[62] R. Sadiq, M.J. Rodriguez, Disinfection by-products (DBPs) in drinking water and predictive models for their occurrence: a review, Sci. Total Environ. 321, (2004) 21-46. https://doi.org/10.1016/j.scitotenv.2003.05.001
[63] K. Niihara, New design concept of structural ceramicsceramic nanocomposites, J. Ceram. Mc. Jpn. 99 (1991) 974-982. https://doi.org/10.2109/jcersj.99.974
[64] L.L. Beecroft, C.K. Ober, Nanocomposite Materials for Optical Applications, Chem. Mat. J. 9 (1997) 1302-1317. https://doi.org/10.1021/cm960441a
[65] G. Cao, M.F. Gaurcia, M. Aleala, L.F. burgess, T.E. Mallouk, Chiral Molecular Recognition in Intercalated Zirconium Phosphate, J. Am. Chem. Soc. 114 (1992) 7574-7575. https://doi.org/10.1021/ja00045a046
[66] M.C. Roco, S. Williams, P. Alivisatos, IWGN Workshop Report, U.S. National Science and Technology Council, Washington (1999).
[67] G.Q. Lu, X.S. Zhao, Nanoporous Materials: Science and Engineering, World Scientific, Singapore (2004). https://doi.org/10.1142/p181
[68] M.A.H. Hyder, Nanotechnology and environment: potential application and environmental implications of nanotechnology, Technical University of Hamburg-Harburg, Germany (2003).
[69] A. Indarto, J.W. Choi, H. Lee, H.K. Song, Decomposition of greenhouse gases by plasma, Environ. Chem. Lett. 6 (2008) 215-222. https://doi.org/10.1007/s10311-008-0160-3
[70] Y.C. Sharma, V. Srivastav, V.K. Singh, S.N. Kaul, C.H. Weng,Nano‐adsorbents for the removal of metallic pollutants from water and wastewater, Environ. Tech. 30 (2009) 583-609. https://doi.org/10.1080/09593330902838080
[71] Y.H. Li, J. Ding, Z. Luan, Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes, Carbon 41 (2003) 2787-2792. https://doi.org/10.1016/S0008-6223(03)00392-0
[72] Z.C. Di, J. Ding, X.J. Peng, Y.H. Li, Z.K. Luan, J. Liang, Chromium adsorption by aligned carbon nanotubes supported ceria nanoparticles, Chemosphere 62 (2006) 861-865. https://doi.org/10.1016/j.chemosphere.2004.06.044
[73] C. Lu, H. Chiu, C. Liu, Removal of Zinc(II) from aqueous solution by purified carbon nanotubes: kinetics and equilibrium studies, Ind. Eng. Chem. Res. 45 (2006) 2850-2855. https://doi.org/10.1021/ie051206h
[74] X. Peng, Z. Luan, J. Ding, Z. Di, Y. Li, B. Tian, Ceria nanoparticles supported on carbon nanotubes for the removal of arsenate from water, Mater. Lett. 59 (2005) 399-403. https://doi.org/10.1016/j.matlet.2004.05.090
[75] D.M. du Plessis, Fabrication and characterization of anti-microbial and biofouling resistant nanofibers with silver nanoparticles and immobilized enzymes for application in water filtration, University of Stellenbosch, (2011).
[76] S.K. Smart, A.I. Cassady, G.Q. Lu, D.J. Martin,The biocompatibility of carbon nanotubes, Carbon 44 (2006) 1034-1047. https://doi.org/10.1016/j.carbon.2005.10.011
[77] M. Staiano, M. Baldassarre, M. Esposito, E. Apicella, R. Vitale, V. Aurilia, S.D. Auri, New trends in bio/nanotechnology: stable proteins as advanced moleculartools for health and environment, Environ. Tech. 31 (2010) 935-942. https://doi.org/10.1080/09593331003639575
[78] T. Masciangioli, W.X. Zhang, Environmental technologies at the nanoscale, Environ. Sci. Tech. 37 (2011) 102A-108A. https://doi.org/10.1021/es0323998
[79] N.R. Stradiotto, H. Yamanaka, M.V.B. Zanoni, Electrochemical sensors: A powerful tool in analytical chemistry, J. Braz. Chem. Soc. 14 (2003) 159. https://doi.org/10.1590/S0103-50532003000200003
[80] C.M.A. Brett, Electrochemical sensors for environmental monitoring. Strategy and examples, Pure Appl. Chem. 73 (2001) 1969-1977. https://doi.org/10.1351/pac200173121969
[81] R.W. Cattrall, Chemical Sensors, Oxford Chemistry Premiers, New York, 1997.
[82] U. Yogeswaran, S.M. Chen, A review on the electrochemical sensors and biosensors composed of nanowires as sensing material, Sensors 8 (2008) 290-313. https://doi.org/10.3390/s8010290
[83] C.C. Liu, Electrochemical Sensors, in: J.D. Bronzino (Ed.), The Biomedical Engineering Handbook, 2nd ed., CRC Press, LLC, 2000.
[84] H. Bai, G. Shi, Gas sensors based on conducting polymers, Sensors 7 (2007) 267-307. https://doi.org/10.3390/s7030267
[85] R.P. Buck, E. Lindner, Recommendations for nomenclature of Ion-selective electrodes, Pure Appl. Chem. 66 (1994) 2527-2536. https://doi.org/10.1351/pac199466122527
[86] W. Ostwald, Elektrische Eigenschaften Halbdurchlassiger Scheidewande., J. Phys. Chem. 6 (1890) 71-82.
[87] F.G. Donan, The theory of membrane equilibrium in presence of a non-dialyzable electrolyte, Z. Elektrochem. 17 (1911) 572-581.
[88] L. Michaelis, A. Fujita, Permselectivity of biological membranes, Biochem. Z. 148 (1925) 28-37.
[89] W. Juda, W.A. McRae, Coherent ion-exchange gels and membranes, J. Am. Chem. Soc. 72 (1950) 1044-1044. https://doi.org/10.1021/ja01158a528
[90] A.G. Winger, G.W. Bodamer, R. Kunin, Some electrochemical properties of new synthetic ion exchange membranes, J. Electrochem. Soc. 100 (1953) 178-184. https://doi.org/10.1149/1.2781103
[91] K. Sollner, in: T. Shedlobsy, (Ed.) Electrochemistry in Biology and Medicines, Wiley, New York, 1955, pp. 50.
[92] R. Schlogl, Mass Transport through Membrane, Willey-VCH, Weinheim, Germany 1964
[93] B.P. Nikoloskii, Acta Physiochim. URSS 7 (1937) 597.
[94] R.P. Buck, Electroanalytical chemistry of membranes, Crit. Rev. Anal. Chem. 5 (1976) 323-420. https://doi.org/10.1080/10408347608085583
[95] D. Amman, W. Morf, P. Anker, P. Meier, E. Pret, W. Simon, Neutral carrier based ion-selective electrodes, Ibid. 5 (1983) 3-92. https://doi.org/10.1016/b978-0-08-031492-1.50005-x
[96] A.K. Covington, Ion-selective electrodes, Crit. Rev. Anal. Chem. 3 (1973) 355-406. https://doi.org/10.1080/10408347308542665
[97] M.F. Wilson, E. Haikala, P. Kivalo, An evaluation of some sodium ion-selective glass electrodes in aqueous solution: Part I. Electrode calibration characteristics and selectivity with respect to hydrogen ions, Anal. Chim. Acta 74 (1975) 395. https://doi.org/10.1016/S0003-2670(01)95790-3
[98] A. Hulanicki, A. Lewenstam, Model for treatment of selectivity coefficients for solid-state ion-selective electrodes, Anal. Chem. 53 (1981) 1401-1405. https://doi.org/10.1021/ac00232a024
[99] D.J. Clarke, D.B. Kell, J.G. Morris, A. Burns, The role of ion-selective electrodes in microbial process control, Ion Sel. Electrode Rev. 4 (1982) 75-131.
[100] Y. Umezawa (Ed.); Handbook of ion selective electrodes: selectivity coefficients, CRC Press, Boca Raton, Florida, 1990.
[101] A.K. Jain, V.K. Gupta, L.P. Singh, P. Srivastava, J.R. Raisoni, Anion recognition through novel C-thiophenecalix[4]resorcinarene: PVC based sensor for chromate ions, Talanta 65 (2005) 716-721. https://doi.org/10.1016/j.talanta.2004.07.041
[102] R. Ioana, S.V. Staden, A.A. Ratko, Enantioselective, potentiometric membrane electrodes based on cyclodextrins: Application for the determination of R-baclofen in its pharmaceutical formulation, Talanta 69 (2006) 1049-1053. https://doi.org/10.1016/j.talanta.2005.12.022
[103] M. Kaniewska, T. Sikora, R. Kataky, M. Trojanowicz, Enantioselectivity of potentiometric sensors with application of different mechanisms of chiral discrimination, J. Biochem.Biophys.Meth. 70 (2008) 1261-1267. https://doi.org/10.1016/j.jbbm.2007.09.006
[104] A. Abbaspour, A.R. Esmaeilbeig, A.A Jarrahpour, B. Khajeh, R. Kia, Aluminium(III)-selective electrode based on a newly synthesized tetradentate Schiff base, Talanta 58 (2002) 397-403. https://doi.org/10.1016/S0039-9140(02)00290-4
[105] H.Y.Aboul-Enein, X.X. Sun, C.J. Sun, Ion selective PVC membrane electrode for the determination of methacycline hydrochloride in pharmaceutical formulation, Sensors 2 (2002) 424-431. https://doi.org/10.3390/s21000424
[106] S. Anastasova, A. Radu, G. Matzeu, C. Zuliani, U. Mattinen, J. Bobacka, D. Diamond, Disposable solid-contact ion-selective electrodes for environmental monitoring of lead with ppb limit-of-detection, Electrochim. Acta 73 (2012) 93-97. https://doi.org/10.1016/j.electacta.2011.10.089
[107] M. Guzinski, G. Lisak, J. Kupis, A. Jasinski, M. Bochenska, Lead(II)-selective ionophores for ion-selective electrodes: A review, Anal. Chim. Acta 791 (2013) 1-46. https://doi.org/10.1016/j.aca.2013.04.044
[108] B. Rezaei, S. Meghdadi, F. Zarandi, A fast response cadmium-selective polymeric membrane electrode based on N,N′-(4-methyl-1,2 phenylene)diquinoline-2-carboxamide as a new neutral carrier, J. Hazard. Mater. 153 (2008) 179-186. https://doi.org/10.1016/j.jhazmat.2007.08.033
[109] X.J. Yuan, R.Y. Wang, C.B. Mao, L. Wu, C.Q. Chu, R. Yao, Z.Y. Gao, B.L. Wu, H.Y. Zhang, New Pb(II)-selective membrane electrode based on a new Schiff base complex, Inorg. Chem. Comm. 15 (2012) 29-32. https://doi.org/10.1016/j.inoche.2011.09.031
[110] H.M. Rong, R.X. Wu, L.X. Gui, Nitrogen-bearing organic compounds as carriers for lead ion-selective electrodes with excellent response, Chin. J. Anal. Chem. 36 (2008) 1735-1741. https://doi.org/10.1016/S1872-2040(09)60011-6
[111] K.K. Tiwari, M.C. Chattopadhyaya, Heterogeneous precipitate based Cu(II)-ionselective electrode and its application in the determination of stability constant of Cu(II) complex with 4-(2-pyridylazo)-resorcinol, Indian J. Chem. 40A (2001) 619-621.
[112] A.A. Khan, Inamuddin, M.M. Alam, Determination and separation of Pb2+ from aqueous solutions using a fibrous type organic–inorganic hybrid cation-exchange material: Polypyrrole thorium(IV) phosphate, React. Funct.Polym. 63 (2005) 119-133. https://doi.org/10.1016/j.reactfunctpolym.2005.02.001
[113] A.P. Gupta, Renuka, Studies on araldite based zirconium tungstophosphate membrane-a lead(II) ion selective electrode, Indian J. Chem. 36A (1997) 1073.
[114] A.A. Khan, A. Khan, Inamuddin, Preparation and characterization of a new organic–inorganic nano-composite poly-o-toluidine Th(IV) phosphate: Its analytical applications as cation-exchanger and in making ion-selective electrode, Talanta. 72 (2007) 699–710. https://doi.org/10.1016/j.talanta.2006.11.044
[115] P.J. Parsons, W. Slavin, A rapid Zeeman graphite furnace atomic absorption spectrometric method for the determination of lead in blood, Spectrochim.Acta B Atom.Spectros. 48 (1993) 925-939. https://doi.org/10.1016/0584-8547(93)80094-B
[116] J.E. Tahan, V.A. Granadillo, R.A. Romero, Electrothermal atomic absorption spectrometric determination of Al, Cu, Fe, Pb, V and Zn in clinical samples and in certified environmental reference materials, Anal. Chim. Acta 295 (1994) 187-197. https://doi.org/10.1016/0003-2670(94)80350-1
[117] M.F. Mousavi, M.B. Barzegar, S. Sahari, A PVC-based capric acid membrane potentiometric sensor for lead(II) ions, Sensor. Actuator. B Chem. 73 (2001) 199-204. https://doi.org/10.1016/S0925-4005(00)00698-5
[118] H.W. Liu, S.J. Jiang, S.H. Liu, Determination of cadmium, mercury and lead in seawater by electro thermal vaporization isotope dilution inductively coupled plasma mass spectrometry, Spectrochim. Acta B Atom.Spectros. 54 (1999) 1367-1375. https://doi.org/10.1016/S0584-8547(99)00081-6
[119] R.J. Bowins, R.H. McNutt, Electrothermal isotope dilution inductively coupled plasma mass spectrometry method for the determination of sub-ng-mL-1 levels of lead in human plasma, J. Anal. Atom.Spectrom. 9 (1994) 1233-1236. https://doi.org/10.1039/JA9940901233
[120] M.N. Bui, C.A. Li, K.N. Han, X.H. Pham, G.H. Seong, Electrochemical determination of cadmium and lead on pristine single-walled carbon nanotube electrodes, Anal. Sci. 28 (2012) 699-704. https://doi.org/10.2116/analsci.28.699
[121] F. Arduini, J.Q. Calvo, A. Amine, G. Palleschi, D. Moscone, Bismuth-modified electrodes for lead detection, Trends Anal. Chem. 29 (2010) 1295-1304. https://doi.org/10.1016/j.trac.2010.08.003
[122] V.L. Dressler, D. Pozebon, A.J. Curtius, Determination of heavy metals by inductively coupled plasma mass spectrometry after on-line separation and preconcentration, Spectrochim. Acta B Atom.Spectros. 53 (1998) 1527-1539. https://doi.org/10.1016/S0584-8547(98)00180-3
[123] Z. Lu, S. Yang, Q. Yang, S. Luo, C. Liu, Y. Tang, A glassy carbon electrode modified with graphene, gold nanoparticles and chitosan for ultrasensitive determination of lead(II), MicrochimicaActa 180 (2013) 555-562. https://doi.org/10.1007/s00604-013-0959-x
[124] S. Anastasova, A. Radu, G. Matzeu, C. Zuliani, U. Mattinen, J. Bobacka, D. Diamond, Disposable solid-contact ion-selective electrodes for environmental monitoring of lead with ppb limit-of-detection, Electrochim. Acta 73 (2012) 93-97. https://doi.org/10.1016/j.electacta.2011.10.089
[125] M. Guzinski, G. Lisak, J. Kupis, A. Jasinski, M. Bochenskaa, Lead(II)-selective ionophores for ion-selective electrodes: A review, Anal. Chim.Acta, 791 (2013) 1-46. https://doi.org/10.1016/j.aca.2013.04.044
[126] M.R. Huang, X.W. Rao, X.G. Li, Nitrogen-bearing organic compounds as carriers for lead ion-selective electrodes with excellent response, Chin. J. Anal. Chem. 36 (2008) 1735-1741. https://doi.org/10.1016/S1872-2040(09)60011-6
[127] B. Rezaei, S. Meghdadi, F. Zarandi, A fast response cadmium-selective polymeric membrane electrode based on N,N’-(4-methyl-1,2-phenylene) diquinoline-2 carboxamide as a new neutral carrier, J. Hazard. Mater. 153 (2008) 179-186. https://doi.org/10.1016/j.jhazmat.2007.08.033
[128] X.J. Yuan, R.Y. Wang, C.B. Mao, L. Wu, C.Q. Chu, R. Yao, Z.Y. Gao, B.L. Wu, H.Y. Zhang, New Pb(II)-selective membrane electrode based on a new Schiff base complex, Inorg. Chem. Comm. 15 (2012) 29-32. https://doi.org/10.1016/j.inoche.2011.09.031
[129] K.K. Tiwari, M.C. Chattopadhyaya, Heterogeneous precipitate based Cu(II) ionselective electrode and its application in the determination of stability constant of Cu(II) complex with 4-(2-pyridylazo)-resorcinol, Indian J. Chem. 40A (2001) 619.
[130] A. Mohammad, Inamuddin, S. Hussain, Synthesis and physicochemical characterization of excellent thermally stable and mercury selective organic-inorganic composite cation exchanger polyvinyl alcohol thorium(IV) phosphate, Desalin. Water Treat. 57 (2016) 13795-13806. https://doi.org/10.1080/19443994.2015.1065768
[131] M.N. Abbas, E. Zahran, Novel solid-state cadmium ion-selective electrodes based on its tetraiodoand tetrabromo-ion pairs with cetylpyridinium, J. Electroanal. Chem. 576 (2005) 205-213. https://doi.org/10.1016/j.jelechem.2004.10.017
[132] V.K. Gupta, A.K. Jain, P. Kumar, PVC-based membranes of dicyclohexano-24-crown-8 as Cd(II) selective sensor, Electrochim. Acta 52 (2006) 736-741. https://doi.org/10.1016/j.electacta.2006.06.009
[133] S. Senthilkumar, A.J. King, S.M. Holmes, R.A.W. Dryfe, R. Saraswathi, Potentiometric sensing of heavy metal ions using a novel zeolite y membrane, Electroanalysis 18 (2006) 2297-2304. https://doi.org/10.1002/elan.200603661
[134] V.K. Gupta, A.K. Singh, B. Gupta, Schiff bases as cadmium(II) selective ionophores in polymeric membrane electrodes, Anal. Chim. Acta 583 (2007) 340-348. https://doi.org/10.1016/j.aca.2006.10.039
[135] S. Tascioglu, D. Tas, Surfactant effect on determination of Cu2+ and Cd2+ ions by ion-selective electrodes providing evidence for the discrepancy between the point of zero charge and the isoelectric point of CdS, Colloid. Surface. Physiochem. Eng. Aspect. 302 (2007) 349-353. https://doi.org/10.1016/j.colsurfa.2007.02.058
[136] V.K. Gupta, A.K. Jain, R. Ludwig, G. Maheshwari, Electroanalytical studies on cadmium(II) selective potentiometric sensors based on t-butyl thiacalix[4]areneand thiacalix[4]arene in poly(vinyl chloride), Electrochim. Acta 53 (2008) 2362-2368. https://doi.org/10.1016/j.electacta.2007.10.001
[137] B. Rezaei, S. Meghdadi, S. Bagherpour, Cadmium selective PVC-membranes sensor based on 1, 2-bis (quinoline-2-carboxamido)-4-chlorobenzene as a neutral carrier, IEEE Sensor. J. 8 (2008) 1469-1477. https://doi.org/10.1109/JSEN.2008.920719
[138] B. Rezaei, S. Meghdadi, R.F. Zarandi, A fast response cadmium-selective polymeric membrane electrode based on N,N′-(4-methyl-1,2-phenylene) diquinoline-2-carboxamide as a new neutral carrier, J. Hazard. Mater. 153 (2008) 179-186. https://doi.org/10.1016/j.jhazmat.2007.08.033
[139] A.A. Ensafi, S. Meghdadi, S. Sedighi, Sensitive cadmium potentiometric sensor based on 4-hydroxy salophen as a fast tool for water samples analysis, Desalination 242 (2009) 336-345. https://doi.org/10.1016/j.desal.2008.06.002
[140] S. Tyagi, H. Agarwal, S. Ikram, A polyvinylchloride-based cadmium ion-selective electrode using [Mo2(OAc)2(H2-calix[4]arene)] as an electroactive material, Water Sci. Tech. 62 (2010) 2510-2518. https://doi.org/10.2166/wst.2010.774
[141] A.A. Khan, A. Khan, Ion-exchange studies on poly-o-anisidineSn(IV) phosphate nano composite and its application as Cd(II) ion-selective membrane electrode, Cent. Eur. J. Chem. 8 (2010) 396-408.
[142] S. Yu, F. Li, W. Qin, An all-solid-state Cd2+-selective electrode with a low detection limit, Sensor. Actuator. B Chem. 155 (2011) 919-922. https://doi.org/10.1016/j.snb.2011.01.052
[143] J. Singh, A.K. Singh, A.K. Jain, Fabrication of novel coated graphite electrodes for the selective nano-level determination of Cd2+ ions in biological and environmental samples, Electrochim. Acta 56 (2011) 9095-9104. https://doi.org/10.1016/j.electacta.2011.06.106
[144] M. Shamsipur, S. Sahari, M. Payehghadr, K. Alizadeh, Flow injection potentiometric determination of Cd2+ ions using a coated graphite plasticized pvc-membrane electrode based on 1,3-bis(2-cyanobenzene)triazene, ActaChim. Slov. 58 (2011) 555-562.
[145] U. Khamjumphol, S. Watchasit, C. Suksai, W. Janrungroatsakul, S. Boonchiangma, T. Tuntulani, W. Ngeontae, New polymeric membrane cadmium(II)-selective electrodes using tripodal amine based ionophores, Anal. Chim.Acta 704 (2011) 73-86. https://doi.org/10.1016/j.aca.2011.08.005
[146] A.A. Khan, T. Akhtar, Synthesis, characterization and analytical application of nano-composite cation-exchange material, poly-o-toluidine Ce(IV) phosphate: Its application in making Cd(II) ion selective membrane electrode, Solid State Sci. 13 (2011) 559-568. https://doi.org/10.1016/j.solidstatesciences.2010.12.026
[147] C. Wardak, A comparative study of cadmium ion-selective electrodes with solid and liquid inner contact, Electroanalysis 24 (2012) 85-90. https://doi.org/10.1002/elan.201100362
[148] J.L.W. Ling, A. Khan, B. Saad, S.A. Ghani, Electro polymerized 4-vinyl pyridine on 2B pencil graphite as ionophore for cadmium (II), Talanta 88 (2012) 477-483. https://doi.org/10.1016/j.talanta.2011.11.018
[149] S.W. Jing, W.X. Wei, D.J. Wang, Z. Jun, Z.R. Ming, Q. Wei, Electrochemical sensing system for determination of heavy metals in seawater, Chin. J. Anal. Chem. 40 (2012) 670-674. https://doi.org/10.1016/S1872-2040(11)60545-8
[150] A.K. Singh, A.K. Jain, A. Upadhyay, K.R.J. Thomas, P. Singh, Electroanalytical performance of Cd(II) selective sensor based on PVC membranes of 5,5′‐(5,5′‐(benzo[c][1,2,5]thiadiazole‐4,7‐diyl)-bis(thiophene‐5,2‐diyl)bis-(N1,N1,N3,N3‐tetraphenylbenzene‐1,3‐diamine), Int. J. Environ. Anal. Chem. 93 (2013) 813-827. https://doi.org/10.1080/03067319.2011.649744
[151] S.A.R. Ivari, A. Darroudi, M.H.A. Zavar, G. Zohuri, N. Ashraf, Ion imprinted polymer based potentiometric sensor for the trace determination of cadmium (II) ions, Arabian J. Chem., 10 (2013)S864-S869. https://doi.org/10.1016/j.arabjc.2012.12.021
[152] H. Bagheri, A. Afkhami, A. Shirzadmehr, H. Khoshsafar, H. Khoshsafar, H. Ghaedi, Novel potentiometric sensor for the determination of Cd2+ based on a new nano-composite, Int. J. Environ. Anal. Chem. 93 (2013) 578-591. https://doi.org/10.1080/03067319.2011.649741
[153] S. Chandra, Deepshikha, A. Sarkar, Synthesis, spectral characterization, thermal investigation and electrochemical evaluation of benzilbis(carbohydrazone) as Cd(II) ion selective electrode, Arabian J. Chem.10 (2013) S1306-S1315. https://doi.org/10.1016/j.arabjc.2013.03.015
[154] K. Khun, Z.H. Ibupoto, M. Willander, Urea assisted synthesis of flower like CuO nanostructures and their chemical sensing application for the determination of cadmium ions, Electroanalysis 25 (2013) 1425-1432. https://doi.org/10.1002/elan.201200660
[155] C. Dernane, A. Zazoua, I. Kazane, N.J. Renault, Cadmium-sensitive electrode based on tetracetone derivatives of p-tert-butylcalix[8]arene, Mater. Sci. Eng. C 33 (2013) 3638-3643. https://doi.org/10.1016/j.msec.2013.04.049
[156] A.A. Khan, S. Shaheen, Synthesis and characterization of a novel hybrid nano composite cation exchanger poly-o-toluidine Sn(IV) tungstate: Its analytical applications as ion-selective electrode, Solid State Sci. 16 (2013) 158-167. https://doi.org/10.1016/j.solidstatesciences.2012.10.024
[157] V.K. Gupta, S. Kumar, R. Singh, L.P. Singh, S.K. Shoora, B. Sethi, Cadmium (II) ion sensing through p-tert-butyl calix[6]arene based potentiometric sensor, J. Mol. Liq. 195 (2014) 65-68. https://doi.org/10.1016/j.molliq.2014.02.001
[158] A. Ghaemi, H. Tavakkoli, T. Mombeni, Fabrication of a highly selective cadmium (II) sensor based on 1,13-bis(8-quinolyl)-1,4,7,10,13-pentaoxatridecane as a supramolecularionophore, Mater. Sci. Eng. C 38 (2014) 186-191. https://doi.org/10.1016/j.msec.2014.02.006
[159] M. Naushad, Inamuddin, T.A. Rangreez, Potentiometric determination of Cd(II) ions using PVC-based polyaniline Sn(IV) silicate composite cation-exchanger ion-selective membrane electrode, Desalin. Water Treat. 55 (2014) 463-470. https://doi.org/10.1080/19443994.2014.915389
[160] M.K. Sahani, A.K. Singh, A.K. Jain, A. Upadhyay, A. Kumar, U.P. Singh, S. Narang, Fabrication of novel coated pyrolytic graphite electrodes for the selective nano-level monitoring of Cd2+ ions in biological and environmental samples using polymeric membrane of newly synthesized macrocycle, Anal. Chim. Acta 860 (2015) 51-60. https://doi.org/10.1016/j.aca.2014.12.023
[161] C. Wardak, Solid contact cadmium ion-selective electrode based on ionic liquid and carbon nanotubes, Sensor.Actuator. B Chem. 209 (2015) 131-137. https://doi.org/10.1016/j.snb.2014.11.107
[162] Inamuddin, T.A. Rangreez, A. Khan, Synthesis of single-walled carbon nanotubes cerium(IV) phosphate composite cation exchanger: ion exchange studies and its application as ion-selective membrane electrode for determination of Cd(II) ions, Polymer Compos. (2015) DOI: 10.1002/pc.
[163] T. Jeong, H.K. Lee, D.C. Jeong, S. Jeon, A lead (II) selective PVC membrane based on a Schiff base complex of N,N’-bis(salicylidene)-2,6-pyridineamine, Talanta 65 (2005) 543-548. https://doi.org/10.1016/j.talanta.2004.07.016
[164] M.M. Ardakani, M.K. Kashani, M.S. Niasari, A.A. Ensafi, Lead ion-selective electrode prepared by sol-gel and PVC membrane techniques, Sensor.Actuator. B Chem. 107 (2005) 438-445. https://doi.org/10.1016/j.snb.2004.10.036
[165] S. Li, W. Yang, M. Chen, J. Gao, J. Kang, Y. Qi, Preparation of PbO nanoparticles by microwave irradiation and their application to Pb(II)-selective electrode based on cellulose acetate, Mater. Chem. Phys. 90 (2005) 262-269. https://doi.org/10.1016/j.matchemphys.2004.02.022
[166] H.R. Zare, M.M. Ardakani, N. Nasirizadeh, J. Safari, Lead-selective poly(vinyl chloride) membrane electrode based on 1-phenyl-2-(2-quinolyl)-1, 2-dioxo-2-(4-bromo) phenylhydrazone, Bull. Kor. Chem. Soc. 26 (2005) 51-56. https://doi.org/10.5012/bkcs.2005.26.1.051
[167] A.A. Khan, Inamuddin, M.M. Alam, Preparation, characterization and analytical applications of a new and novel electrically conducting fibrous type polymeric-inorganic composite material: polypyrrole Th(IV) phosphate used as a cation-exchanger and Pb(II) ion-selective membrane electrode, Mater. Res. Bull. 40 (2005) 289-305. https://doi.org/10.1016/j.materresbull.2004.10.014
[168] L. Chen, J. Zhang, W. Zhao, X. He, Y. Liu, Double-armed calix[4]arene amide derivatives as ionophores for lead ion-selective electrodes, J. Electroanal. Chem. 589 (2006) 106-111. https://doi.org/10.1016/j.jelechem.2006.02.001
[169] M.R. Yaftian, S. Rayati, D. Emadi, D. Matt, A coated wire-type lead(ii) ion-selective electrode based on a phosphorylated calix[4]arene derivative, Anal. Sci. 22 (2006) 1075-1078. https://doi.org/10.2116/analsci.22.1075
[170] A.K. Jain, V.K. Gupta, L.P. Singh, J.R. Raisoni, A comparative study of Pb2+ selective sensors based on derivatizedtetrapyrazole and calix[4]arene receptors, Electrochim. Acta 51 (2006) 2547-2553. https://doi.org/10.1016/j.electacta.2005.07.040
[171] H. Kim, H.K. Lee, A.Y. Choi, S. Jeon, Bull. Kor. Chem. Soc. 28 (2007) 538-542. https://doi.org/10.5012/bkcs.2007.28.4.538
[172] S.A. Nabi, A.H. Shalla, S.A. Ganai, Sorption of metal ions on acrylamidezirconium (IV) arsenate and its synthesis of PVC based lead (II) selective electrode, Separ. Sci. Tech. 43 (2008) 164-178. https://doi.org/10.1080/01496390701764882
[173] S.Y. Kazemi, M. Shamsipur, H. Sharghi, Lead-selective poly(vinyl chloride) electrodes based on some synthesized benzo-substituted macrocyclicdiamides , J. Hazard. Mater. 172 (2009) 68-73. https://doi.org/10.1016/j.jhazmat.2009.06.145
[174] X.G. Li, X.L. Ma, M.R. Huang, Lead(II) ion-selective electrode based on polyaminoanthraquinone particles with intrinsic conductivity, Talanta 78 (2009) 498-505. https://doi.org/10.1016/j.talanta.2008.11.045
[175] A. Michalska, M. Wojciechowski, E. Bulska, J. Mieczkowski, K. Maksymiuk, Poly(n-butyl acrylate) based lead (II) selective electrodes, Talanta 79 (2009) 1247-1251. https://doi.org/10.1016/j.talanta.2009.05.028
[176] S.S. Bozkurt, S. Ayata, I. Kaynak, Fluorescence-based sensor for Pb(II) using tetra-(3-bromo-4-hydroxyphenyl)porphyrin in liquid and immobilized medium, Spectrochim. Acta Mol. Biomol.Spectros. 72 (2009) 880-883. https://doi.org/10.1016/j.saa.2008.12.012
[177] A.A. Ensafi, A. Katiraei Far, S. Meghdadi, Highly selective optical-sensing film for lead(II) determination in water samples, J. Hazard. Mater. 172 (2009) 1069-1075. https://doi.org/10.1016/j.jhazmat.2009.07.112
[178] A.A. Khan, U. Habiba, A. Khan, Synthesis and characterization of organic-inorganic nanocomposite poly-o-anisidine Sn(IV) arsenophosphate: Its analytical applications as Pb(II) ion-selective membrane electrode, Int. J. Anal.Chem. (2009) DOI:10.1155/2009/659215. https://doi.org/10.1155/2009/659215
[179] A.S. Alasier, S.A. Entisar, H.A. Elbishti, Lead-sensitive membrane electrode based on chelating ion exchanger, Arabian J. Chem. 3 (2010) 89-94. https://doi.org/10.1016/j.arabjc.2010.02.004
[180] D. Wilson, M.A. Arada, S. Alegret, M.D. Valle, Lead(II) ion selective electrodes with PVC membranes based on two bis-thioureas as ionophores: 1,3-bis(N′-benzoylthioureido)benzene and 1,3-bis(N-furoylthioureido)benzene J. Hazard. Mater. 181 (2010) 140-146. https://doi.org/10.1016/j.jhazmat.2010.04.107
[181] I. Ion, A. Culetu, J. Costa, C. Luca, A.C. Ion, Polyvinyl chloride-based membranes of 3,7,11-tris (2-pyridylmethyl)-3,7,11,17-tetraazabicyclo [11.3.1] heptadeca-1(17),13,15-triene as a Pb(II)-selective sensor, Desalination 259 (2010) 38-43. https://doi.org/10.1016/j.desal.2010.04.038
[182] A.A. Zamani, N. Khorsidhi, Z. Mofidi, M.R. Yatifan, Crown ethers bearing 18c6 unit; sensory molecules for fabricating PVC membrane lead ion-selective electrodes, J. Chin. Chem. Soc. 58 (2011) 673-680. https://doi.org/10.1002/jccs.201190105
[183] M. Shamsipur, M. Sadeghi, K. Alizadeh, A. Bencini, B. Valtancoli, A. Garau, V. Lippolis, Novel fluorimetric bulk optode membrane based on 5,8-bis((5′-chloro-8′-hydroxy-7′-quinolinyl)methyl)-2,11-dithia-5,8-diaza-2,6-pyridinophane for selective detection of lead(II) ions , Talanta 80 (2010) 2023-2033. https://doi.org/10.1016/j.talanta.2009.11.011
[184] S. Yu, F. Li, T. Yin, Y. Liu, D. Pan, W. Qin, A solid-contact Pb2+-selective electrode using poly(2-methoxy-5-(2′-ethylhexyloxy)-p-phenylenevinylene) as ion-to-electron transducer, Anal. Chim. Acta 702 (2011) 195-198. https://doi.org/10.1016/j.aca.2011.06.049
[185] J. Guo, Y. Chai, R. Yuan, Z. Song, Z. Zou, Lead (II) carbon paste electrode based on derivatized multi-walled carbon nanotubes: Application to lead content determination in environmental samples, Sensor. Actuator. B Chem. 155 (2011) 639-645. https://doi.org/10.1016/j.snb.2011.01.023
[186] M.R. Huang, X.W. Rao, X.G. Li, Y.B. Ding, Lead ion-selective electrodes based on polyphenylenediamine as unique solid ionophores, Talanta 85 (2011) 1575-1584. https://doi.org/10.1016/j.talanta.2011.06.049
[187] C. Wardak, A highly selective lead-sensitive electrode with solid contact based on ionic liquid, J. Hazard. Mater. 186 (2011)1131-1135. https://doi.org/10.1016/j.jhazmat.2010.11.103
[188] M.H. Mashhadizadeh, H. Khani, A. Shockravi, M. Sadeghpour, Determination of ultratrace levels of lead (II) in water samples using a modified carbon paste electrode based on a new podand, Mater. Sci. Eng. C 31 (2011) 1674-1680. https://doi.org/10.1016/j.msec.2011.07.021
[189] N. Aksuner, Development of a new fluorescent sensor based on a triazolo-thiadiazin derivative immobilized in polyvinyl chloride membrane for sensitive detection of lead(II) ions, Sensor. Actuator. B Chem. 157 (2011) 162-168. https://doi.org/10.1016/j.snb.2011.03.044
[190] X.J. Yuan, R.Y. Wang, C.B. Mao, L. Wu, C.Q. Chu, R. Yao, Z.Y. Gao, B.L. Wu, H.Y. Zhang, New Pb(II)-selective membrane electrode based on a new Schiff base complex, Inorg. Chem. Comm. 15 (2012) 29-32. https://doi.org/10.1016/j.inoche.2011.09.031
[191] S.M. Saadeh, H.M.A. Shawish, H.M. Dalloul, N.M. EL-Halabi, B.K. Daher, Lead(II) complexes with some SNO and ONO tridentate Schiff base ligands and their evaluation as lead(II) sensors , Mater. Sci. Eng. C 32 (2012) 619-624. https://doi.org/10.1016/j.msec.2012.01.001
[192] A. Soleymanpour, B. Shafaatian, K. Kor, A.R. Hasaninejad, Coated wire lead (II)-selective electrode based on a Schiff base ionophore for low concentration measurements, Monatsh. Chem. 143 (2012) 181-188. https://doi.org/10.1007/s00706-011-0634-z
[193] A.A. Khan, U. Baig, Electrically conductive membrane of polyaniline-titanium(IV)phosphate cation exchange nanocomposite: Applicable for detection of Pb(II) using its ion-selective electrode, J. Ind. Eng. Chem. 18 (2012) 1937-1944. https://doi.org/10.1016/j.jiec.2012.05.008
[194] R. Bushra, M. Shahadat, M.A. Khan, Inamuddin, R. Adnan, M. Rafatullah, Optimization of polyaniline supported Ti(IV) arsenophosphate composite cation exchanger based ion-selective membrane electrode for the determination of lead, Ind. Eng. Chem. Res. 53 (2014) 19387-19391. https://doi.org/10.1021/ie5034655
[195] A.A. Khan, L. Paquiza, Synthesis and characterization of in situ polymerized poly(methyl methacrylate)-cerium molybdate nanocomposite for electroanalytical application, J. Appl. Polymer Sci. 127 (2013) 3737- 3748. https://doi.org/10.1002/app.37672
[196] A. Khan, A.M. Asiri, M.A. Rub, N. Azum, A.A.P. Khan, S.B. Khan, M.M. Rahman, I. Khan, Synthesis, characterization of silver nanoparticle embedded polyanilinetungstophosphate-nanocompositecation exchanger and its application for heavy metal selective membrane, Compos. B Eng. 45 (2013) 1486-1492. https://doi.org/10.1016/j.compositesb.2012.09.023
[197] S. Singh, G. Rani, G. Singh, H. Agarwal, Comparative study of lead(II) selective poly(vinyl chloride) membrane electrodes based on podand derivatives as ionophores, Electroanalysis 25 (2013) 475-485. https://doi.org/10.1002/elan.201200404
[198] P. Heidari, S. Jalali, Z. Mofidi, A. Zamani, M.R. Yaftian, Preparation of a lead ion-selective electrode based upon crown ether nitrobenzo18-crown-6, Anal. Bioanal. Electrochem. 5 (2013) 305-315.
[199] A.A. Khan, S. Shaheen, Synthesis and characterization of a novel hybrid nano composite cation exchanger poly-o-toluidine Sn(IV) tungstate: Its analytical applications as ion-selective electrode, Solid State Sci. 16 (2013) 158-167. https://doi.org/10.1016/j.solidstatesciences.2012.10.024
[200] A.A. Khan, S. Shaheen, Preparations and characterizations of poly-o-toluidine/multiwalled carbon nanotubes/Sn(IV) tungstate composite ion exchange thin films and their application as a Pb(II) selective electrode, RCS Adv. 4 (2014) 23456-23463. https://doi.org/10.1039/c4ra01594k
[201] O. Sayar, N.A. Torbati, H. Saravani, K. Mehrani, A. Behbahani, H. Reza, M. Zadeh, A novel magnetic ion imprinted polymer for selective adsorption of trace amounts of lead(II) ions in environment samples, J. Ind. Eng. Chem. 20 (2014) 2657-2662. https://doi.org/10.1016/j.jiec.2013.10.052
[202] Inamuddin, M. Naushad, T.A. Rangreez, Z.A. Al-Othman, Ion-selective potentiometric determination of Pb(II) ions using PVC-based carboxymethyl cellulose Sn(IV) phosphate composite membrane electrode, Desalin. Water Treat. 56 (2015) 806-813. https://doi.org/10.1080/19443994.2014.941307
[203] A. Jasinski, M. Guzinski, G. Lisak, J. Bobacka, M. Bochenska, Solid-contact lead(II) ion-selective electrodes for potentiometric determination of lead(II) in presence of high concentrations of Na(I), Cu(II), Cd(II), Zn(II), Ca(II) and Mg(II), Sensor. Actuator. B Chem. 218 (2015) 25-30. https://doi.org/10.1016/j.snb.2015.04.089
[204] K. Zargoosh, F.F. Babadi, Highly selective and sensitive optical sensor for determination of Pb2+ and Hg2+ ions based on the covalent immobilization of dithizone on agarose membrane, Spectrochim. Acta Mol. Biomol. Spectros. 137 (2015) 105-110. https://doi.org/10.1016/j.saa.2014.08.043
[205] Inamuddin, T.A. Rangreez, M. Naushad, A.A. Ahmad, Synthesis and characterisation of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) Zr(IV) monothiophosphate composite cation exchanger: analytical application as lead ion selective membrane electrode, Int. J. Environ. Anal. Chem. 95 (2015) 312-323. https://doi.org/10.1080/03067319.2015.1016016
[206] M. Rashid, F. Khan, Lutfullah, R. Wahab, Zirconium(IV) phosphosulphosalicylate-based ion selective membrane electrode for potentiometric determination of Pb(II) ions, Arabian J. Chem. (2015), DOI: org/10.1016/j.arabjc.2014.12.013.
[207] A.A. Khan, Inamuddin, Preparation, physico-chemical characterization, analytical applications and electrical conductivity measurement studies of an ‘organic–inorganic’ composite cation-exchanger: PolyanilineSn(IV) phosphate, React. Funct.Polym. 66 (2006) 1649-1663. https://doi.org/10.1016/j.reactfunctpolym.2006.06.007
[208] W.A. Siddiqui, S.A. Khan, Inamuddin, Synthesis, characterization and ion-exchange properties of a new and novel ‘organic–inorganic’ hybrid cation-exchanger: Poly(methyl methacrylate) Zr(IV) phosphate, Colloid. Surface. Physicochem. Eng. Aspect. 295 (2007) 193-199. https://doi.org/10.1016/j.colsurfa.2006.08.053
[209] M. Islam, R. Patel, Polyacrylamide thorium (IV) phosphate as an importantlead selective fibrousion exchanger: Synthesis, characterization and removal study, J. Hazard.Mater. 156 (2008) 509-520. https://doi.org/10.1016/j.jhazmat.2007.12.046
[210] S.A. Nabi, A.S. Ganai, A.H. Shalla, New organic-inorganic type acrylamide aluminumtungstate: preparation, characterization and analytical applications as a cation exchange material, Separ. Sci. Tech. 43 (2008) 3695-3711. https://doi.org/10.1080/01496390802212674
[211] A.A. Khan, U. Habiba, A. Khan, Synthesis and characterization of organic-inorganic nanocomposite poly-o-anisidinesn(IV) arsenophosphate: its analytical applications as Pb(II) ion-selective membrane electrode, Int. J. Anal. Chem. (2009) Article, ID659215, 10.
[212] S.A. Nabi, M. Naushad, R. Bushra, Synthesis and characterization of a new organic–inorganic Pb2+ selective composite cation exchanger acrylonitrile stannic(IV) tungstate and its analytical applications, Chem. Eng. J. 152 (2009) 80-87. https://doi.org/10.1016/j.cej.2009.03.033
[213] U. Ulusoy, R. Akkaya, Adsorptive features of polyacrylamide-apatite composite for Pb2+, UO22+ and Th4+, J. Hazard. Mater. 163 (2009) 98-108. https://doi.org/10.1016/j.jhazmat.2008.06.064
[214] M. Shamsipur, A.S. Dezaki, M. Akhond, H. Sharghi, Z. Paziraee, K. Alizadeh, Novel PVC-membrane potentiometric sensors based on a recently synthesized sulfur-containing macrocyclicdiamide for Cd2+ ion. Application to flow-injection potentiometry, J. Hazard.Mater. 172 (2009) 566-573. https://doi.org/10.1016/j.jhazmat.2009.07.003
[215] O.M. Kalfa, O. Yalcinkaya, A.R. Turker, Synthesis of nano B2O3/TiO2 composite material and its application to preconcentration and separation of cadmium, J. Hazard. Mater. 166 (2009) 455-461. https://doi.org/10.1016/j.jhazmat.2008.11.112
[216] S.A. Nabi, A.H. Shalla, EDTA-stannic (IV) iodate: preparation, characterization and its analytical applications for metal content determination in real and synthetic samples, J. Porous Mater., 16 (2009) 587-597. https://doi.org/10.1007/s10934-008-9236-5
[217] S.A. Nabi, A.H. Shalla, Synthesis, characterization and analytical application of hybrid; Acrylamide zirconium (IV) arsenate a cation exchanger, effect of dielectric constant on distribution coefficient of metal ions, J. Hazard. Mater. 163 (2009) 657-664. https://doi.org/10.1016/j.jhazmat.2008.07.011
[218] A.M. Khan, S.A. Ganai, S.A. Nabi, Synthesis of a crystalline organic-inorganic composite exchanger, acrylamide stannic silicomolybdate: Binary and quantitative separation of metal ions, Colloid. Surface. Physicochem. Eng. Aspect. 337 (2009) 141-145. https://doi.org/10.1016/j.colsurfa.2008.12.012
[219] Z. Alam, Inamuddin, S.A. Nabi, Synthesis and characterization of a thermally stable strongly acidic Cd(II) ion selective composite cation-exchanger: PolyanilineCe(IV) molybdate, Desalination 250 (2010) 515-522. https://doi.org/10.1016/j.desal.2008.09.008
[220] Inamuddin, Y.A. Ismail, Synthesis and characterization of electrically conducting poly-o-methoxyanilineZr(1V) molybdate Cd(II) selective composite cation-exchanger, Desalination 250 (2010) 523-529. https://doi.org/10.1016/j.desal.2008.06.033
[221] S.A. Nabi, R. Bushra, M. Naushad, A.M. Khan, Synthesis, characterization and analytical applications of a new composite cation exchange material poly-o-toluidine stannic molybdate for the separation of toxic metal ions, Chem. Eng. J. 165 (2010) 529-536. https://doi.org/10.1016/j.cej.2010.09.064
[222] Z.A. Al Othman, M. Naushad, A. Nilchi, Development, characterization and ion exchange thermodynamics for a new crystalline composite cation exchange material: application for the removal of Pb2+ ion from a standard sample (rompin hematite), J. Inorg. Organomet. Polymer Mater. 21 (2011) 547-559. https://doi.org/10.1007/s10904-011-9491-9
[223] S.A. Nabi, S.A. Ganai, A.M. Khan, Synthesis, characterization and ion exchange behavior of polyaniline stannic silicomolybdate, an organic–inorganic composite material: Quantitative separation of Pb2+ ions from industrial effluents, J. Inorg. Organomet.Polym. 21 (2011) 25-35. https://doi.org/10.1007/s10904-010-9423-0
[224] A.A. Khan, L. Paquiza, Characterization and ion-exchange behavior of thermally stable nano-composite polyaniline zirconium titanium phosphate: Its analytical application in separation of toxic metals, Desalination 265 (2011) 242-254. https://doi.org/10.1016/j.desal.2010.07.058
[225] M. Shahadat, A.H. Shalla, A.S. Raeissi, Synthesis, characterization, and sorption behavior of a novel composite cation exchange adsorbent, Ind. Eng. Chem. Res. 51 (2012) 15525–15529. https://doi.org/10.1021/ie3014555
[226] S.A. Nabi, R. Bushra, M. Shahadat, Removal of toxic metal ions by using compositecation‐exchange material, J. Appl. Polymer Sci. 125(2012) 3438-3446. https://doi.org/10.1002/app.36325
[227] R. Bushra, M. Shahadat, A.S. Raeissi, S.A. Nabi, Development of nano-composite adsorbent for removal of heavy metals from industrial effluent and synthetic mixtures; its conducting behavior , Desalination 289 (2012)1-11. https://doi.org/10.1016/j.desal.2011.12.013
[228] M. Shahadat, S.A. Nabi, R. Bushra, A.S. Raeissi, K. Umar, M.O. Ansari,Synthesis, characterization, photolytic degradation, electrical conductivity and applications of a nanocomposite adsorbent for the treatment of pollutants, RSC Adv. 2 (2012) 7207-7220. https://doi.org/10.1039/c2ra20589k
[229] M.M. Alam, Z.A. Alothman, M. Naushad, Analytical and environmental applications of polyaniline Sn(IV) tungstoarsenate and polypyrrolepolyantimonic acid composite cation-exchangers, J. Ind. Eng. Chem. 19 (2013) 1973-1980. https://doi.org/10.1016/j.jiec.2013.03.006
[230] M. Naushad, Z.A. AL-Othman, M. Islam, Adsorption of cadmium ion using a new composite cation-exchanger polyaniline Sn(IV) silicate: kinetics, thermodynamic and isotherm studies, Int. J. Environ. Sci. Technol. 10 (2013) 567-578. https://doi.org/10.1007/s13762-013-0189-0
[231] M.M.A. Khan, Rafiuddin, Inamuddin, PVC based polyvinyl alcohol zinc oxide composite membrane: Synthesis and electrochemical characterization for heavy metal ions, J. Ind. Eng. Chem. 19 (2013) 1365-1370. https://doi.org/10.1016/j.jiec.2012.12.041
[232] R. Bushra, Mu.Naushad, R. Adnan, M.N.M. Ibrahim, M. Rafatullah, J. Ind. Eng. Chem., (2014), DOI: org/10.1016/j.jiec.2014.05.022.
[233] R. Bushra, M. Shahadat, A. Ahmad, S.A. Nabi, K.Umar, M. Oves, A.S. Raeissi, M. Muneer, Synthesis, characterization, antimicrobial activity and applications of polyanilineTi (IV) arsenophosphate adsorbent for the analysis of organic and inorganic pollutants, J. Hazard. Mater. 264 (2014) 481-489. https://doi.org/10.1016/j.jhazmat.2013.09.044
[234] M.A. Khan, A. Ahmad, K. Umar, S.A. Nabi, Synthesis, characterization, and biological applications of nanocomposites for the removal of heavy metals and dyes, Ind. Eng. Chem. Res. 54 (2015) 76-82. https://doi.org/10.1021/ie504148k
[235] A. Mohammad, Inamuddin, S. Hussain, Poly (3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) Zr(IV) phosphate composite cation exchanger : sol-gel synthesis and physicochemical characterization, Ionics 21 (2014) 1063-1071. https://doi.org/10.1007/s11581-014-1247-4
[236] M. Shahadat, R. Bushra, Synthesis, characterization and significant applications of PANI-Zr(IV)sulphosalicylate nanocomposite, Advances in nanotechnology 6 (2015) 181-206.
[237] T.A. Rangreez, Inamuddin, M. Naushad, H. Ali, Synthesis and characterisation of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) Zr(IV) monothiophosphate composite cation exchanger: analytical application in the selective separation of lead metal ions, Int. J. Environ. Anal. Chem. 95 (2015) 556-568. https://doi.org/10.1080/03067319.2015.1036863
[238] T.A. Khan, Inamuddin, M. Naushad, Heavy metal ion-exchange kinetic studies over cellulose acetate Zr(IV) molybdophosphate composite cation-exchanger, Desalin. Water Treat. 53 (2015) 1675-1682. https://doi.org/10.1080/19443994.2013.838527