A review of the progress of desalination technologies: application to wastewater treatment
Lavanya Madhura, Shalini Singh
Due to rapid industrialization, water is one of the key components for the world’s economic and social growth. The supply of clean water to the community is a big challenge. This chapter is aimed to discuss the prospects of nanotechnology in solving the water challenges.
Keywords
Desalination, Wastewater Treatment, Clean- water
Published online 8/1/2017, 27 pages
DOI: https://dx.doi.org/10.21741/9781945291357-11
Part of Inorganic Pollutants in Wastewater
References
[1] [G. O. Schreiner, R. C. van Ballegooyen and W. Osman, Seawater desalination as an option to alleviate water scarcity in South Africa: the need for a strategic approach to planning and environmental decision-making, J. Water Reuse Desal. 4 (2014) 287-293. https://doi.org/10.2166/wrd.2014.035
[2] [G. M. Rios, Nanotechnologies and membrane engineering at the core of water and related questions in the Mediterranean and Middle-East countries, Options Méditerranéennes, A n° 88, 2009 – Technological Perspectives for Rational Use of Water Resources in the Mediterranean Region.
[3] [Using Desalination Technologies for Water Treatment, Background paper, March 1988,NTIS order #PB88-193354.
[4] [L. Wagner, “Water desalination – Tap into the liquid Gold”, Research report, MORA ASSOCIATES, December 2007.
[5] [https://www.solaqua.com/solstilbas.html
[6] [N. Ghaffour, The challenge of capacity-building strategies and perspectives for desalination for sustainable water use in MENA, Desalin. Water Treat. 5 (2009) 48–53. https://doi.org/10.5004/dwt.2009.564
[7] [G.W.I.G.I. DesalData, Market profile and desalination markets, 2009–2012 yearbooks and GWI website, https://www.desaldata.com/.
[8] [Z. Khatib, P. Verbeek,Water to value-produced water management for sustainable field development of mature and green fields, SPE International Conference on Health Safety and Environment in Oil and Gas Exploration and Production, Society of Petroleum Engineers, 2002. https://doi.org/10.2118/73853-MS
[9] [M. Çakmakce, N. Kayaalp, I. Koyuncu, Desalination of produced water from oil production fields by membrane processes, Desalination 222 (2008) 176–186. https://doi.org/10.1016/j.desal.2007.01.147
[10] [C.H. Webb, L. Nagghappan, G. Smart, J. Hoblitzell, R. Franks, Desalination of oilfieldproducedwater at the San Ardo water reclamation facility, CA, SPE Western Regional Meeting, Society of Petroleum Engineers, 2009.
[11] [Y. He, Z.W. Jiang, Technology review: treating oilfield wastewater, Filtr. Sep. 45 (2008) 14–16. https://doi.org/10.1016/S0015-1882 (08)70174-5
[12] [N. Liu, J. Lu, L. Li, R. Lee, Factors determining the reverse osmosis performance of zeolite membranes on produced water purification, SPE International Symposium on Oilfield Chemistry, Houston, Texas, USA, 2007. https://doi.org/10.2118/106168-MS
[13] [A. Zaidi, K. Simms, S. Kok, The use of micro/ultrafiltration for the removal of oil and suspended solids from oilfield brines, Water Sci. Technol. 25 (1992) 163–176.
[14] [P. Xu, J.E. Drewes, D. Heil, Beneficial use of co-produced water through membrane treatment: technical-economic assessment, Desalination 225 (2008) 139–155. https://doi.org/10.1016/j.desal.2007.04.093
[15] [D.B. Burnett, Potential for beneficial use of oil and gas produced water, Global Petroleum Institute, Texas Water Resources Institute, 2004 1–11.
[16] [A. Chen, J. Flynn, R. Cook, A. Casaday, Removal of oil, grease, and suspended solids from produced water with ceramic crossflow microfiltration, SPE Prod. Eng. 6 (1991) 131–136. https://doi.org/10.2118/20291-PA
[17] [K.S. Ashaghi, M. Ebrahimi, P. Czermak, Ceramic ultra-and nanofiltration membranes for oilfield produced water treatment: a mini review, Open Environ. J. 1 (2007) 1–8. https://doi.org/10.2174/1874233500701010001
[18] [M. Bader, Seawater versus produced water in oil-fields water injection operations, Desalination 208 (2007) 159–168. https://doi.org/10.1016/j.desal.2006.05.024
[19] [J.M. Lee, T.C. Frankiewicz, Treatment of produced water with an ultrafiltration (UF) membrane-a field trial, SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, 2005. https://doi.org/10.2118/95735-MS
[20] [T. Bilstad, E. Espedal, Membrane separation of produced water, Water Sci. Technol. 34 (1996) 239–246. https://doi.org/10.1016/S0273-1223(96)00810-4
[21] [Y.S. Li, L. Yan, C.B. Xiang, L.J. Hong, Treatment of oily wastewater by organic–inorganic composite tubular ultrafiltration (UF) membranes, Desalination 196 (2006) 76–83. https://doi.org/10.1016/j.desal.2005.11.021
[22] [K.L. Hickenbottom, N.T. Hancock, N.R. Hutchings, E.W. Appleton, E.G. Beaudry, P. Xu, T.Y. Cath, Forward osmosis treatment of drilling mud and fracturing wastewater from oil and gas operations, Desalination 312 (2013) 60–66. https://doi.org/10.1016/j.desal.2012.05.037
[23] [D.L. Shaffer, L.H. Arias Chavez, M. Ben-Sasson, S. Romero-Vargas Castrillón, N.Y. Yip,M. Elimelech, Desalination and reuse of high-salinity shale gas produced water: drivers, technologies, and future directions, Environ. Sci. Technol. 47 (2013) 9569–9583. https://doi.org/10.1021/es401966e
[24] [G. Breit, J. Otton, Produced waters database, United States Geological Survey, Available:https://energy. cr. usgs. gov/prov/prodwat/data2. html (access on 2002, June 12).
[25] [A. Alklaibi, N. Lior, Membrane-distillation desalination: status and potential, Desalination 171 (2005) 111–131. https://doi.org/10.1016/j.desal.2004.03.024
[26] [E. Curcio, E. Drioli, Membrane distillation and related operations—a review, Sep. Purif. Rev. 34 (2005) 35–86. https://doi.org/10.1081/SPM-200054951
[27] [M.K. Souhaimi, T. Matsuura, Membrane Distillation: Principles and Applications, Elsevier, 2011.
[28] [A. Alkhudhiri, N. Darwish, N. Hilal, Membrane distillation: a comprehensive review, Desalination 287 (2012) 2–18. https://doi.org/10.1016/j.desal.2011.08.027
[29] [P. Wang, T.S. Chung, Recent advances in membrane distillation processes: membrane development, configuration design and application exploring, J. Membr. Sci. 474 (2015) 39–56. https://doi.org/10.1016/j.memsci.2014.09.016
[30] [S. Al-Obaidani, E. Curcio, F. Macedonio, G. Di Profio, H. Al-Hinai, E. Drioli, Potential of membrane distillation in seawater desalination: thermal efficiency, sensitivity study and cost estimation, J. Membr. Sci. 323 (2008) 85–98. https://doi.org/10.1016/j.memsci.2008.06.006
[31] [T.Y. Cath, A.E. Childress, M. Elimelech, Forward osmosis: principles, applications, and recent developments, J. Membr. Sci. 281 (2006) 70–87. https://doi.org/10.1016/j.memsci.2006.05.048
[32] [Q. Ge, M. Ling, T.S. Chung, Draw solutions for forward osmosis processes: developments, challenges, and prospects for the future, J.Membr. Sci. 442 (2013) 225–237. https://doi.org/10.1016/j.memsci.2013.03.046
[33] [M. MingáLing, Facile synthesis of thermo-sensitive magnetic nanoparticles as “smart” draw solutes in forward osmosis, Chem. Commun. 47 (2011) 10788–10790. https://doi.org/10.1039/c1cc13944d
[34] [Q. Ge, J. Su, G.L. Amy, T.S. Chung, Exploration of polyelectrolytes as draw solutes in forward osmosis processes, Water Res. 46 (2012) 1318–1326. https://doi.org/10.1016/j.watres.2011.12.043
[35] [D. Li, X. Zhang, G.P. Simon, H.Wang, Forward osmosis desalination using polymer hydrogels as a draw agent: influence of draw agent, feed solution and membrane on process performance, Water Res. 47 (2013) 209–215. https://doi.org/10.1016/j.watres.2012.09.049
[36] [D.L. Shaffer, N.Y. Yip, J. Gilron, M. Elimelech, Seawater desalination for agriculture by integrated forward and reverse osmosis: improved product water quality for potentially less energy, J. Membr. Sci. 415 (2012) 1–8. https://doi.org/10.1016/j.memsci.2012.05.016
[37] [R.W. Holloway, A.E. Childress, K.E. Dennett, T.Y. Cath, Forward osmosis for concentration of anaerobic digester centrate, Water Res. 41 (2007) 4005–4014. https://doi.org/10.1016/j.watres.2007.05.054
[38] [C.R. Martinetti, A.E. Childress, T.Y. Cath, High recovery of concentrated RO brines using forward osmosis and membrane distillation, J. Membr. Sci. 331 (2009) 31–39. https://doi.org/10.1016/j.memsci.2009.01.003
[39] [M. Elimelech, W.A. Phillip, The future of seawater desalination: energy, technology, and the environment, Science 333 (2011) 712–717. https://doi.org/10.1126/science.1200488
[40] [Y.C. Kim, S.-J. Park, Experimental study of a 4040 spiral-wound forward-osmosis membrane module, Environ. Sci. Technol. 45 (2011) 7737–7745. https://doi.org/10.1021/es202175m
[41] [J.R. McCutcheon, R.L. McGinnis, M. Elimelech, A novel ammonia–carbon dioxide forward (direct) osmosis desalination process, Desalination 174 (2005) 1–11. https://doi.org/10.1016/j.desal.2004.11.002
[42] [R.A. Neff, Solvent extractor, Google Patents, 1964.
[43] [C. Boo, Y.F. Khalil, M. Elimelech, Performance evaluation of trimethylamine–carbon dioxidethermolytic draw solution for engineered osmosis, J. Membr. Sci. 473 (2015) 302–309. https://doi.org/10.1016/j.memsci.2014.09.026
[44] [A.D. Wilson, F.F. Stewart, M.L. Stone, Methods and systems for treating liquids using switchable solvents, Google Patents, 2012.
[45] [M.L. Stone, C. Rae, F.F. Stewart, A.D. Wilson, Switchable polarity solvents as draw solutes for forward osmosis, Desalination 312 (2013) 124–129. https://doi.org/10.1016/j.desal.2012.07.034
[46] [J.M. Beltrán, S. Koo-Oshima, Water desalination for agricultural applications, FAO Land and water discussion paper, 5 2006, p. 48.
[47] [O. Barron, R. Ali, G. Hodgson, D. Smith, E. Qureshi, D. McFarlane, E. Campos, D. Zarzo, Feasibility assessment of desalination application in Australian traditional agriculture, Desalination 364 (2014) 33–45. https://doi.org/10.1016/j.desal.2014.07.024
[48] [D. Zarzo, E. Campos, P. Terrero, Spanish experience in desalination for agriculture, Desalin. Water Treat. 51 (2013) 53–66. https://doi.org/10.1080/19443994.2012.708155
[49] [S. Burn, M. Hoang, D. Zarzo, F. Olewniak, E. Campos, B. Bolto, O. Barron, Desalination techniques—a review of the opportunities for desalination in agriculture, Desalination 364 (2015) 2–16. https://doi.org/10.1016/j.desal.2015.01.041
[50] [M. Tester, P. Langridge, Breeding technologies to increase crop production in a changing world, Science 327 (2010) 818–822. https://doi.org/10.1126/science.1183700
[51] [Desaldata, https://www.idadesal.org/publications/desaldata-com/2012.
[52] [M.J.R. Guerreiro, M.d.M. de la Fuente, E.M. Camacho, Toxicidad del boroen las plantas, Encuentros Biol. 82 (2002) 1.
[53] [R. Dunne, Water everywhere and not a drop to drink, nor do i know its whereabouts, Water in Mineral Processing2012.
[54] [G. Juby,Membrane desalination of service water from goldmines, J. South Afr. Inst. Min. Metall. 92 (1992) 69.
[55] [L. Haig-Smillie, Sea water flotation, Proceedings of the 6th Annual Meeting of Canadian Mineral Processors 1974, pp. 263–281.
[56] [G. Poling, D. Ellis, Importance of geochemistry: the black angel lead‐zinc mine, Greenland, Mar. Georesour. Geotechnol. 13 (1995) 101–118. https://doi.org/10.1080/10641199509388280
[57] [J. Weirtz, When best water use efficiency is not enough, what can the mining industry do? Water in Mining 2009 Conference Proceedings, Australasian Institute of Mining and Metallurgy Perth, Carlton (Australia) 2009, pp. 15–17.
[58] [J. Chadwick, Copper recovery, Min. Mag. (2009) 23–30.
[59] [V. Lévy, R. Fabre, B. Boebel, C. Hertle, Water use in the mining industry—threats and opportunities, Proceedings of Water in Mining, 2006.
[60] [R. Harries, A field trial of seeded reverse osmosis for the desalination of a scaling type mine water, Desalination 56 (1985) 227–236. https://doi.org/10.1016/0011-9164(85)85027-X
[61] [G.Du. Plessis, J. Swartz, Tubular reverse osmosis treatment of Secunda mine water: a pilot plant investigation, Water Sci. Technol. 25 (1992) 193–201.
[62] [R. Bowell, A review of sulfate removal options for mine waters, Proceedings of Mine Water 2004, pp. 75–88.
[63] [G. Juby,W. Pulles, Evaluation of electrodialysis reversal for desalination of brackish mine water, WRC Report, 1791990 1190.
[64] [M. Sivakumar, M. Ramezanianpour, G. O’Halloran, Mine water treatment using a vacuum membrane distillation system, APCBEE Proc. 5 (2013) 157–162. https://doi.org/10.1016/j.apcbee.2013.05.028
[65] [G. Juby, C. Schutte, J. Van Leeuwen, Desalination of calcium sulphate scaling mine water: design and operation of the SPARRO process, Water S. A. 22 (1996) 161–172.
[66] [W. Pulles, G. Juby, R. Busby, Development of the slurry precipitation and recycle reverse osmosis (SPARRO) technology for desalinating scaling mine waters, Water Sci. Technol. 25 (1992) 177–192.
[67] [N. Cicek, J.P. Franco, M.T. Suidan, V. Urbain, Using a membrane bioreactor to reclaim wastewater, J. Am. Water Works Assoc. 90 (1998) 105–113.
[68] [J. Lozier, A. Fernandez, B. Hines, K. Carns, Using a membrane bioreactor/reverse osmosis system for indirect water reuse, Proc. 2000 AWWA Water Reuse Conference, San Antonio, Texas, 2000.
[69] [T. Guihe, K. Kiran, V. Bala, H.O. Maung, S. Harry, Membrane bioreactor for water reclamation in Singapore, Water Pract. Technol. 3 (2008) 11-17.
[70] [N. Cicek, A review of membrane bioreactors and their potential application in the treatment of agricultural wastewater, Can. Biosyst. Eng. 45 (2003) 6.37–36.37.
[71] [S. Rosenberger, U. Krüger, R. Witzig, W. Manz, U. Szewzyk, M. Kraume, Performance of a bioreactor with submerged membranes for aerobic treatment of municipal waste water, Water Res. 36 (2002) 413–420. https://doi.org/10.1016/S0043-1354(01)00223-8
[72] [K.H. Ahn, H.Y. Cha, K.G. Song, Retrofitting municipal sewage treatment plants using an innovative membrane–bioreactor system, Desalination 124 (1999) 279–286. https://doi.org/10.1016/S0011-9164(99)00113-7
[73] [X.J. Fan, V. Urbain, Y. Qian, J. Manem, Nitrification and mass balance with a membrane bioreactor for municipal wastewater treatment, Water Sci. Technol. 34 (1996) 129–136. https://doi.org/10.1016/0273-1223(96)00502-1
[74] [E. Muller, A. Stouthamer, H.W.V. van Verseveld, D. Eikelboom, Aerobic domestic waste water treatment in a pilot plant with complete sludge retention by cross-flow filtration, Water Res. 29 (1995) 1179–1189. https://doi.org/10.1016/0043-1354(94)00267-B
[75] [W. Lorenz, T. Cunningham, J.P. Penny, Phosphorus removal in a membrane reactor system: a full-scale wastewater demonstration study, Proc. Water Environ. Fed. 2002 (2002) 406–414. https://doi.org/10.2175/193864702784247864
[76] [J. Manam, E. Sanderson, Membrane bioreactors, in: Megaw Hill (Ed.), Water Treatment: Membrane Process, 1996.
[77] [A. Parker, Membrane technology plays key role in waterless hygienic toilet, Membr. Technol. 2014 (2014) 8. https://doi.org/10.1016/S0958-2118(14)70255-1
[78] [E. Perez Lopez, Design and testing of a novel human-powered generator device as a backup solution to power Cranfield’ s Nano-Membrane Toilet, 2014.
[79] [A. Hogetsu, T. Ishikawa, M. Yoshikawa, T. Tanabe, S. Yudate, J. Sawada, High rate anaerobic digestion of wool scouring wastewater in a digester combined with membrane filter, Water Sci. Technol. 25 (1992) 341–350.
[80] [K. Minami, A trial of high performance anaerobic treatment on wastewater from a kraft pulp mill, Desalination 98 (1994) 273–283. https://doi.org/10.1016/0011-9164(94)00152-9
[81] [M. Knoblock, P. Sutton, P. Mishra, K. Gupta, A. Janson, Membrane biological reactor system for treatment of oily wastewaters, Water Environ. Res. (1994) 133–139. https://doi.org/10.2175/WER.66.2.6
[82] [R. Zaloum, S. Lessard, D. Mourato, J. Carriere, Membrane bioreactor treatment of oily wastes from a metal transformation mill, Water Sci. Technol. 30 (1994) 21–27.
[83] [W. Ross, J. Barnard, N. Strohwald, C. Grobler, J. Sanetra, Practical application of the ADUF process to the full-scale treatment of a maize-processing effluent, Water Sci. Technol. 25 (1992) 27–39.
[84] [L.D. Nghiem, A. Schäfer, Trace contaminant removal with nanofiltration, in: A.I. Schäfer, T.D. Waite, A.G. Fane (Eds.), Nanofiltration—Principles and Applications, Elsevier 2004, pp. 479–520 (Chapter 8).
[85] [F.I. Hai, L.N. Nguyen, L.D. Nghiem, B.-Q. Liao, I. Koyuncu, W.E. Price, Trace organic contaminants removal by combined processes for wastewater reuse, The Handbook of Environmental Chemistry, 45 2016, pp. 39–78.
[86] [M. Cirja, P. Ivashechkin, A. Schäffer, P.F. Corvini, Factors affecting the removal of organic micropollutants from wastewater in conventional treatment plants (CTP) and membrane bioreactors (MBR), Rev. Environ. Sci. Biotechnol. 7 (2008) 61–78. https://doi.org/10.1007/s11157-007-9121-8
[87] [O.H. Jones, N. Voulvoulis, J. Lester, Human pharmaceuticals in wastewater treatment processes, Crit. Rev. Environ. Sci. Technol. 35 (2005) 401–427. https://doi.org/10.1080/10643380590956966
[88] [F.I. Hai, N. Tadkaew, J.A. McDonald, S.J. Khan, L.D. Nghiem, Is halogen content the most important factor in the removal of halogenated trace organics by MBR treatment? Bioresour. Technol. 102 (2011) 6299–6303. https://doi.org/10.1016/j.biortech.2011.02.019
[89] [K. Kimura, H. Hara, Y. Watanabe, Removal of pharmaceutical compounds by submerged membrane bioreactors (MBRs), Desalination 178 (2005) 135–140. https://doi.org/10.1016/j.desal.2004.11.033
[90] [N. Tadkaew, F.I. Hai, J.A. McDonald, S.J. Khan, L.D. Nghiem, Removal of trace organics by MBR treatment: the role of molecular properties, Water Res. 45 (2011) 2439–2451. https://doi.org/10.1016/j.watres.2011.01.023
[91] [S. Castiglioni, R. Bagnati, R. Fanelli, F. Pomati, D. Calamari, E. Zuccato, Removal of pharmaceuticals in sewage treatment plants in Italy, Environ. Sci. Technol. 40(2006) 357–363. https://doi.org/10.1021/es050991m
[92] [F.I. Hai, K. Tessmer, L.N. Nguyen, J. Kang, W.E. Price, L.D. Nghiem, Removal of micropollutants by membrane bioreactor under temperature variation, J. Membr. Sci. 383 (2011) 144–151. https://doi.org/10.1016/j.memsci.2011.08.047
[93] [N.M. Vieno, T. Tuhkanen, L. Kronberg, Seasonal variation in the occurrence of pharmaceuticals in effluents from a sewage treatment plant and in the recipient water, Environ. Sci. Technol. 39 (2005) 8220–8226. https://doi.org/10.1021/es051124k
[94] [A.S. Stasinakis, S. Kotsifa, G. Gatidou, D. Mamais, Diuron biodegradation in activated sludge batch reactors under aerobic and anoxic conditions, Water Res. 43 (2009) 1471–1479. https://doi.org/10.1016/j.watres.2008.12.040
[95] [N. Tadkaew, M. Sivakumar, S.J. Khan, J.A. McDonald, L.D. Nghiem, Effect of mixed liquor pH on the removal of trace organic contaminants in a membrane bioreactor, Bioresour. Technol. 101 (2010) 1494–1500. https://doi.org/10.1016/j.biortech.2009.09.082
[96] [T. Urase, C. Kagawa, T. Kikuta, Factors affecting removal of pharmaceutical Substances and estrogens in membrane separation bioreactors, Desalination 178 (2005) 107–113. https://doi.org/10.1016/j.desal.2004.11.031
[97] [C. Zwiener, F. Frimmel, Short-term tests with a pilot sewage plant and biofilm reactors for the biological degradation of the pharmaceutical compounds clofibric acid, ibuprofen, and diclofenac, Sci. Total Environ. 309 (2003) 201–211. https://doi.org/10.1016/S0048-9697(03)00002-0
[98] [S. Kim, P. Eichhorn, J.N. Jensen, A.S. Weber, D.S. Aga, Removal of antibiotics in wastewater: effect of hydraulic and solid retention times on the fate of tetracycline in the activated sludge process, Environ. Sci. Technol. 39 (2005) 5816–5823. https://doi.org/10.1021/es050006u
[99] [M. Bernhard, J. Müller, T.P. Knepper, Biodegradation of persistent polar pollutants in wastewater: comparison of an optimised lab-scale membrane bioreactor and activated sludge treatment, Water Res. 40 (2006) 3419–3428. https://doi.org/10.1016/j.watres.2006.07.011
[100] [M. Clara, N. Kreuzinger, B. Strenn, O. Gans, H. Kroiss, The solids retention time—a suitable design parameter to evaluate the capacity of wastewater treatment plants to remove micropollutants, Water Res. 39 (2005) 97–106. https://doi.org/10.1016/j.watres.2004.08.036
[101] [N. Kreuzinger,M. Clara, B. Strenn, H. Kroiss, Relevance of the sludge retention time(SRT) as design criteria for wastewater treatment plants for the removal of endocrinedisruptors and pharmaceuticals from wastewater, Water Sci. Technol. 50 (2004) 149–156.
[102] [C. Abegglen, A. Joss, C.S. McArdell, G. Fink, M.P. Schlüsener, T.A. Ternes, H. Siegrist, The fate of selected micropollutants in a single-house MBR, Water Res. 43 (2009)2036–2046. https://doi.org/10.1016/j.watres.2009.02.005
[103] [M. Clara, B. Strenn, O. Gans, E. Martinez, N. Kreuzinger, H. Kroiss, Removal of selectedpharmaceuticals, fragrances and endocrine disrupting compounds in a membranebioreactor and conventional wastewater treatment plants, Water Res. 39 (2005) 4797–4807. https://doi.org/10.1016/j.watres.2005.09.015
[104] [F.I. Hai, X. Li,W.E. Price, L.D. Nghiem, Removal of carbamazepine and sulfamethoxazolebyMBR under anoxic and aerobic conditions, Bioresour. Technol. 102 (2011)10386–10390. https://doi.org/10.1016/j.biortech.2011.09.019
[105] [A. Joss, H. Andersen, T. Ternes, P.R. Richle, H. Siegrist, Removal of estrogens in municipal wastewater treatment under aerobic and anaerobic conditions: consequences for plant optimization, Environ. Sci. Technol. 38 (2004) 3047–3055. https://doi.org/10.1021/es0351488
[106] [Y. Kiso, A. Mizuno, R.A.A. Binti Othman, Y.-J. Jung, A. Kumano, A. Ariji, Rejection properties of pesticides with a hollow fiber NF membrane (HNF-1), Desalination143 (2002) 147–157. https://doi.org/10.1016/S0011-9164(02)00236-9
[107] [Y. Kiso, Y. Sugiura, T. Kitao, K. Nishimura, Effects of hydrophobicity and molecularsize on rejection of aromatic pesticides with nanofiltration membranes, J. Membr. Sci. 192 (2001) 1–10. https://doi.org/10.1016/S0376-7388(01)00411-2
[108] [M. Reinhard, N.L. Goodman, P.L. McCarty, D.G. Argo, Removing trace organics by reverse osmosis using cellulose acetate and polyamide membranes, J. Am. Water Works Assoc. 78 (1986) 163–174.
[109] [P. Berg, G. Hagmeyer, R. Gimbel, Removal of pesticides and other micropollutants by nanofiltration, Desalination 113 (1997) 205–208. https://doi.org/10.1016/S0011-9164(97)00130-6
[110] [R. Boussahel, A. Montiel, M. Baudu, Effects of organic and inorganic matter on pesticide rejection by nanofiltration, Desalination 145 (2002) 109–114. https://doi.org/10.1016/S0011-9164(02)00394-6
[111] [B. Van der Bruggen, J. Schaep,W. Maes, D. Wilms, C. Vandecasteele, Nanofiltration as a treatment method for the removal of pesticides from ground waters, Desalination117 (1998) 139–147. https://doi.org/10.1016/S0011-9164(98)00081-2
[112] [K.M. Agbekodo, B. Legube, S. Dard, Atrazine and simazine removal mechanisms by nanofiltration: influence of natural organic matter concentration, Water Res. 30 (1996) 2535–2542. https://doi.org/10.1016/S0043-1354(96)00128-5
[113] [L. Nghiem, A. Manis, K. Soldenhoff, A. Schäfer, Estrogenic hormone removal from wastewater using NF/RO membranes, J. Membr. Sci. 242 (2004) 37–45. https://doi.org/10.1016/j.memsci.2003.12.034
[114] [L.D. Nghiem, A.I. Schäfer, M. Elimelech, Removal of natural hormones by nanofiltration membranes: measurement, modeling, and mechanisms, Environ. Sci. Technol. 38 (2004) 1888–1896. https://doi.org/10.1021/es034952r
[115] [K. Agenson, J. Oh, T. Kikuta, T. Urase, Rejection mechanisms of plastic additives and natural hormones in drinking water treated by nanofiltration, Water Supply 3 (2003) 311–319.
[116] [S. Weber, M. Gallenkemper, T. Melin, W. Dott, J. Hollender, Efficiency of nanofiltration for the elimination of steroids from water, Water Sci. Technol. 50 (2004) 9–14.
[117] [T.A. Ternes, M. Meisenheimer, D. McDowell, F. Sacher, H.J. Brauch, B. Haist-Gulde,G. Preuss, U.Wilme, N. Zulei-Seibert, Removal of pharmaceuticals during drinking water treatment, Environ. Sci. Technol. 36 (2002) 3855–3863. https://doi.org/10.1021/es015757k
[118] [E.M. Golet, A.C. Alder, W. Giger, Environmental exposure and risk assessment of fluoroquinolone antibacterial agents in wastewater and river water of the Glatt Valley Watershed, Switzerland, Environ. Sci. Technol. 36 (2002) 3645–3651. https://doi.org/10.1021/es0256212
[119] [T.A. Ternes, R. Hirsch, Occurrence and behavior of X-ray contrast media in sewage facilities and the aquatic environment, Environ. Sci. Technol. 34 (2000) 2741–2748. https://doi.org/10.1021/es991118m
[120] [S.J. Khan, J.E. Ongerth, Modelling of pharmaceutical residues in Australian sewage by quantities of use and fugacity calculations, Chemosphere 54 (2004) 355–367. https://doi.org/10.1016/j.chemosphere.2003.07.001
[121] [K. Kimura, G. Amy, J.E. Drewes, T. Heberer, T.-U. Kim, Y.Watanabe, Rejection of organic micropollutants (disinfection by-products, endocrine disrupting compounds, and pharmaceutically active compounds) by NF/RO membranes, J.Membr. Sci. 227 (2003) 113–121. https://doi.org/10.1016/j.memsci.2003.09.005
[122] [S.P. Sun, T.A. Hatton, S.Y. Chan, T.S. Chung, Novel thin-film composite nanofiltration hollow fiber membranes with double repulsion for effective removal of emerging organic matters from water, J. Membr. Sci. 401 (2012) 152–162. https://doi.org/10.1016/j.memsci.2012.01.046
[123] [R.W. Holloway, J. Regnery, L.D. Nghiem, T.Y. Cath, Removal of trace organic chemicals and performance of a novel hybrid ultrafiltration-osmotic membrane bioreactor, Environ. Sci. Technol. 48 (2014) 10859–10868. https://doi.org/10.1021/es501051b
[124] [T.Y. Cath, N.T. Hancock, C.D. Lundin, C. Hoppe-Jones, J.E. Drewes, A multi-barrierosmotic dilution process for simultaneous desalination and purification of impaired water, J. Membr. Sci. 362 (2010) 417–426. https://doi.org/10.1016/j.memsci.2010.06.056
[125] [N.T. Hancock, P. Xu, D.M. Heil, C. Bellona, T.Y. Cath, Comprehensive bench-and pilot-scale investigation of trace organic compounds rejection by forward osmosis, Environ. Sci. Technol. 45 (2011) 8483–8490. https://doi.org/10.1021/es201654k
[126] [R.V. Linares, V. Yangali-Quintanilla, Z. Li, G. Amy, Rejection of micropollutants by clean and fouled forward osmosis membrane, Water Res. 45 (2011) 6737–6744. https://doi.org/10.1016/j.watres.2011.10.037
[127] [J.H. Al-Rifai, H. Khabbaz, A.I. Schäfer, Removal of pharmaceuticals and endocrine disrupting compounds in a water recycling process using reverse osmosis systems, Sep. Purif. Technol. 77 (2011) 60–67. https://doi.org/10.1016/j.seppur.2010.11.020
[128] [A.A. Alturki, N. Tadkaew, J.A. McDonald, S.J. Khan, W.E. Price, L.D. Nghiem, CombiningMBR and NF/RO membrane filtration for the removal of trace organics in indirect potable water reuse applications, J. Membr. Sci. 365 (2010) 206–215. https://doi.org/10.1016/j.memsci.2010.09.008
[129] [C. Bellona, J.E. Drewes, P. Xu, G. Amy, Factors affecting the rejection of organic solutes during NF/RO treatment—a literature review, Water Res. 38 (2004) 2795–2809. https://doi.org/10.1016/j.watres.2004.03.034
[130] [P. Cartagena, M. El Kaddouri, V. Cases, A. Trapote, D. Prats, Reduction of emerging micropollutants, organic matter, nutrients and salinity from real wastewater by combined MBR–NF/RO treatment, Sep. Purif. Technol. 110 (2013) 132–143. https://doi.org/10.1016/j.seppur.2013.03.024
[131] [D. Dolar, M. Gros, S. Rodriguez-Mozaz, J. Moreno, J. Comas, I. Rodriguez-Roda, D. Barceló, Removal of emerging contaminants from municipal wastewater with an integrated membrane system, MBR–RO, J. Hazard. Mater. 239 (2012) 64–69. https://doi.org/10.1016/j.jhazmat.2012.03.029
[132] [L.N. Nguyen, F.I. Hai, J. Kang,W.E. Price, L.D. Nghiem, Removal of emerging trace organic contaminants by MBR-based hybrid treatment processes, Int. Biodeterior. Biodegrad. 85 (2013) 474–482. https://doi.org/10.1016/j.ibiod.2013.03.014
[133] [E. Sahar, I. David, Y. Gelman, H. Chikurel, A. Aharoni, R. Messalem, A. Brenner, The use of RO to remove emerging micropollutants following CAS/UF or MBR treatment of municipal wastewater, Desalination 273 (2011) 142–147. https://doi.org/10.1016/j.desal.2010.11.004
[134] [F. Zaviska, P. Drogui, A. Grasmick, A. Azais,M. Héran, Nanofiltrationmembrane bioreactorfor removing pharmaceutical compounds, J. Membr. Sci. 429 (2013) 121–129. https://doi.org/10.1016/j.memsci.2012.11.022
[135] [A. Achilli, T.Y. Cath, E.A. Marchand, A.E. Childress, The forward osmosis membranebioreactor: a low fouling alternative to MBR processes, Desalination 239 (2009)10–21. https://doi.org/10.1016/j.desal.2008.02.022
[136] [A. Alturki, J. McDonald, S.J. Khan, F.I. Hai, W.E. Price, L.D. Nghiem, Performance of a novel osmotic membrane bioreactor (OMBR) system: flux stability and removal of trace organics, Bioresour. Technol. 113 (2012) 201–206. https://doi.org/10.1016/j.biortech.2012.01.082
[137] [A.A. Alturki, J.A. McDonald, S.J. Khan,W.E. Price, L.D. Nghiem,M. Elimelech, Removal of trace organic contaminants by the forward osmosis process, Sep. Purif. Technol. 103 (2013) 258–266. https://doi.org/10.1016/j.seppur.2012.10.036
[138] [J.L. Cartinella, T.Y. Cath, M.T. Flynn, G.C. Miller, K.W. Hunter, A.E. Childress, Removal of natural steroid hormones from wastewater using membrane contactor processes, Environ. Sci. Technol. 40 (2006) 7381–7386. https://doi.org/10.1021/es060550i
[139] [F.I. Hai, K. Yamamoto, Membrane biological reactors, in: P. Wilderer (Ed.), Treatiseon Water Science 2011, pp. 571–613. https://doi.org/10.1016/B978-0-444-53199-5.00096-8
[140] [W.C. Lay, Q. Zhang, J. Zhang, D. McDougald, C. Tang, R. Wang, Y. Liu, A.G. Fane, Effect of pharmaceuticals on the performance of a novel osmotic membrane Bioreactor(OMBR), Sep. Sci. Technol. 47 (2012) 543–554. https://doi.org/10.1080/01496395.2011.630249
[141] [J. Phattaranawik, A.G. Fane, A.C. Pasquier, W. Bing, A novel membrane bioreactor based on membrane distillation, Desalination 223 (2008) 386–395. https://doi.org/10.1016/j.desal.2007.02.075
[142] [S. Goh, J. Zhang, Y. Liu, A.G. Fane, Fouling and wetting in membrane distillation (MD) and MD-bioreactor (MDBR) for wastewater reclamation, Desalination 323 (2013) 39–47. https://doi.org/10.1016/j.desal.2012.12.001
[143] [T.M. LaPara, J.E. Alleman, Thermophilic aerobic biological wastewater treatment, Water Res. 33 (1999) 895–908. https://doi.org/10.1016/S0043-1354(98)00282-6
[144] [K.C.Wijekoon, F.I. Hai, J. Kang, W.E. Price, T.Y. Cath, L.D. Nghiem, Rejection and fate of trace organic compounds (TrOCs) during membrane distillation, J. Membr. Sci.453 (2014) 636–642. https://doi.org/10.1016/j.memsci.2013.12.002
[145] [K.C. Wijekoon, F.I. Hai, J. Kang, W.E. Price,W. Guo, H.H. Ngo, T.Y. Cath, L.D. Nghiem, A novel membrane distillation–thermophilic bioreactor system: biological Stability and trace organic compound removal, Bioresour. Technol. 159 (2014) 334–341. https://doi.org/10.1016/j.biortech.2014.02.088