Advanced membrane materials for desalination: carbon nanotube and graphene
Rasel Das
In this chapter, we discuss the fundamental knowledge underlying each carbon nanotube (CNT) and graphene based desalting membrane systems; their methods of fabrication, and separation performances. Challenges of these novel membrane technologies are highlighted, based on which future research can be undertaken. The CNT membrane shows higher water permeability, but their salt retention capacity is compromised. On the contrary, the nanoporous graphene and graphene oxide (GO) laminate membranes are effective for salts retention, but they have low water permeability. Doping of functionalized CNT and graphene/GO into other supportive materials is important to increase the stability and reusability of membranes.
Keywords
Carbon Nanotube, Graphene, Graphene Oxide, Membrane, Desalination
Published online 8/1/2017, 21 pages
DOI: https://dx.doi.org/10.21741/9781945291357-10
Part of Inorganic Pollutants in Wastewater
References
[1] WWAP, The United Nations World Water Development Report 4: Managing Water Under Uncertainty and Risk, UNESCO, Paris, 2012.
[2] R. Das, S.B.A. Hamid, M.E. Ali, A.F. Ismail, M. Annuar, S. Ramakrishna, Multifunctional carbon nanotubes in water treatment: The present, past and future, Desalination 354 (2014) 160-179. https://doi.org/10.1016/j.desal.2014.09.032
[3] C. Sealy, Cleaning up water on the nanoscale, Nano Today 8 (2013) 337-338. https://doi.org/10.1016/j.nantod.2013.06.004
[4] T. Humplik, J. Lee, S. O’hern, B. Fellman, M. Baig, S. Hassan, M. Atieh, F. Rahman, T. Laoui, R. Karnik, Nanostructured materials for water desalination, Nanotechnology 22 (2011) 292001. https://doi.org/10.1088/0957-4484/22/29/292001
[5] J.E. Miller, Review of water resources and desalination technologies, Sandia national labs unlimited release report SAND-2003-0800 (2003).
[6] L.F. Greenlee, D.F. Lawler, B.D. Freeman, B. Marrot, P. Moulin, Reverse osmosis desalination: water sources, technology, and today’s challenges, Water Res. 43 (2009) 2317-2348. https://doi.org/10.1016/j.watres.2009.03.010
[7] X. Qu, P.J. Alvarez, Q. Li, Applications of nanotechnology in water and wastewater treatment, Water Res. 47 (2013) 3931-3946. https://doi.org/10.1016/j.watres.2012.09.058
[8] W.-F. Chan, H.-y. Chen, A. Surapathi, M.G. Taylor, X. Shao, E. Marand, J.K. Johnson, Zwitterion functionalized carbon nanotube/polyamide nanocomposite membranes for water desalination, ACS nano 7 (2013) 5308-5319. https://doi.org/10.1021/nn4011494
[9] D. Cohen-Tanugi, J.C. Grossman, Water desalination across nanoporous graphene, Nano Lett. 12 (2012) 3602-3608. https://doi.org/10.1021/nl3012853
[10] M. Monthioux, V.L. Kuznetsov, Who should be given the credit for the discovery of carbon nanotubes?, Carbon 44 (2006) 1621-1623. https://doi.org/10.1016/j.carbon.2006.03.019
[11] S. Iijima, Helical microtubules of graphitic carbon, nature 354 (1991) 56-58. https://doi.org/10.1038/354056a0
[12] R. Das, Z. Shahnavaz, M.E. Ali, M.M. Islam, S.B.A. Hamid, Can We Optimize Arc Discharge and Laser Ablation for Well-Controlled Carbon Nanotube Synthesis?, Nanoscale Research Letters 11 (2016) 510. https://doi.org/10.1186/s11671-016-1730-0
[13] S. Iijima, T. Ichihashi, SINGLE-SHELL CARBON NANOTUBES OF 1-NM DIAMETER, Nature 363 (1993) 603-605. https://doi.org/10.1038/363603a0
[14] A. Subramani, J.G. Jacangelo, Emerging desalination technologies for water treatment: A critical review, Water Res. 75 (2015) 164-187. https://doi.org/10.1016/j.watres.2015.02.032
[15] B. Lee, Y. Baek, M. Lee, D.H. Jeong, H.H. Lee, J. Yoon, Y.H. Kim, A carbon nanotube wall membrane for water treatment, Nature communications 6 (2015). https://doi.org/10.1038/ncomms8109
[16] R. Das, M.E. Ali, S.B.A. Hamid, S. Ramakrishna, Z.Z. Chowdhury, Carbon nanotube membranes for water purification: A bright future in water desalination, Desalination 336 (2014) 97-109. https://doi.org/10.1016/j.desal.2013.12.026
[17] W. Sparreboom, A. Van Den Berg, J. Eijkel, Principles and applications of nanofluidic transport, Nature nanotechnology 4 (2009) 713-720. https://doi.org/10.1038/nnano.2009.332
[18] M. Ma, F. Grey, L. Shen, M. Urbakh, S. Wu, J.Z. Liu, Y. Liu, Q. Zheng, Water transport inside carbon nanotubes mediated by phonon-induced oscillating friction, Nature nanotechnology 10 (2015) 692-695. https://doi.org/10.1038/nnano.2015.134
[19] K. Sears, L. Dumée, J. Schütz, M. She, C. Huynh, S. Hawkins, M. Duke, S. Gray, Recent developments in carbon nanotube membranes for water purification and gas separation, Materials 3 (2010) 127-149. https://doi.org/10.3390/ma3010127
[20] K. Gethard, O. Sae-Khow, S. Mitra, Water desalination using carbon-nanotube-enhanced membrane distillation, ACS applied materials & interfaces 3 (2010) 110-114. https://doi.org/10.1021/am100981s
[21] J.K. Holt, A. Noy, T. Huser, D. Eaglesham, O. Bakajin, Fabrication of a Carbon Nanotube-Embedded Silicon Nitride Membrane for Studies of Nanometer-Scale Mass Transport, Nano Lett. 4 (2004) 2245-2250. https://doi.org/10.1021/nl048876h
[22] B.J. Hinds, N. Chopra, T. Rantell, R. Andrews, V. Gavalas, L.G. Bachas, Aligned multiwalled carbon nanotube membranes, Science 303 (2004) 62-65. https://doi.org/10.1126/science.1092048
[23] J.K. Holt, H.G. Park, Y. Wang, M. Stadermann, A.B. Artyukhin, C.P. Grigoropoulos, A. Noy, O. Bakajin, Fast mass transport through sub-2-nanometer carbon nanotubes, Science 312 (2006) 1034-1037. https://doi.org/10.1126/science.1126298
[24] K.-J. Lee, H.-D. Park, The most densified vertically-aligned carbon nanotube membranes and their normalized water permeability and high pressure durability, Journal of Membrane Science 501 (2016) 144-151. https://doi.org/10.1016/j.memsci.2015.12.009
[25] R. Das, S.B.A. Hamid, M. Ali, M. Annuar, E.M.B. Samsudin, S. Bagheri, Covalent Functionalization Schemes for Tailoring Solubility of Multi-Walled Carbon Nanotubes in Water and Acetone Solvents, Science of Advanced Materials 7 (2015) 2726-2737. https://doi.org/10.1166/sam.2015.2694
[26] J.H. Walther, K. Ritos, E.R. Cruz-Chu, C.M. Megaridis, P. Koumoutsakos, Barriers to Superfast Water Transport in Carbon Nanotube Membranes, Nano Lett. 13 (2013) 1910-1914. https://doi.org/10.1021/nl304000k
[27] F. Fornasiero, H.G. Park, J.K. Holt, M. Stadermann, C.P. Grigoropoulos, A. Noy, O. Bakajin, Ion exclusion by sub-2-nm carbon nanotube pores, Proceedings of the National Academy of Sciences 105 (2008) 17250-17255. https://doi.org/10.1073/pnas.0710437105
[28] B. Corry, Water and ion transport through functionalised carbon nanotubes: implications for desalination technology, Energy Environ. Sci. 4 (2011) 751-759. https://doi.org/10.1039/c0ee00481b
[29] W.F. Chan, H.Y. Chen, A. Surapathi, M.G. Taylor, X.H. Hao, E. Marand, J.K. Johnson, Zwitterion Functionalized Carbon Nanotube/Polyamide Nanocomposite Membranes for Water Desalination, Acs Nano 7 (2013) 5308-5319. https://doi.org/10.1021/nn4011494
[30] M. Son, H.-g. Choi, L. Liu, E. Celik, H. Park, H. Choi, Efficacy of carbon nanotube positioning in the polyethersulfone support layer on the performance of thin-film composite membrane for desalination, Chem. Eng. J. 266 (2015) 376-384. https://doi.org/10.1016/j.cej.2014.12.108
[31] A. Moslehyani, A.F. Ismail, M.H.D. Othman, T. Matsuura, Design and performance study of hybrid photocatalytic reactor-PVDF/MWCNT nanocomposite membrane system for treatment of petroleum refinery wastewater, Desalination 363 (2015) 99-111. https://doi.org/10.1016/j.desal.2015.01.044
[32] Ihsanullah, T. Laoui, A.M. Al-Amer, A.B. Khalil, A. Abbas, M. Khraisheh, M.A. Atieh, Novel anti-microbial membrane for desalination pretreatment: A silver nanoparticle-doped carbon nanotube membrane, Desalination 376 (2015) 82-93. https://doi.org/10.1016/j.desal.2015.08.017
[33] H. Omachi, T. Nakayama, E. Takahashi, Y. Segawa, K. Itami, Initiation of carbon nanotube growth by well-defined carbon nanorings, Nature chemistry 5 (2013) 572-576. https://doi.org/10.1038/nchem.1655
[34] C.Y. Lee, W. Choi, J.-H. Han, M.S. Strano, Coherence resonance in a single-walled carbon nanotube ion channel, Science 329 (2010) 1320-1324. https://doi.org/10.1126/science.1193383
[35] J. Liu, G. Shi, P. Guo, J. Yang, H. Fang, Blockage of Water Flow in Carbon Nanotubes by Ions Due to Interactions between Cations and Aromatic Rings, Phys. Rev. Lett. 115 (2015) 164502. https://doi.org/10.1103/PhysRevLett.115.164502
[36] K. Zhao, H. Wu, Fast water thermo-pumping flow across nanotube membranes for desalination, Nano Lett. 15 (2015) 3664-3668. https://doi.org/10.1021/nl504236g
[37] S. Kang, M.S. Mauter, M. Elimelech, Physicochemical determinants of multiwalled carbon nanotube bacterial cytotoxicity, Environ. Sci. Technol. 42 (2008) 7528-7534. https://doi.org/10.1021/es8010173
[38] E. Celik, H. Park, H. Choi, H. Choi, Carbon nanotube blended polyethersulfone membranes for fouling control in water treatment, Water Res. 45 (2011) 274-282. https://doi.org/10.1016/j.watres.2010.07.060
[39] G.S. Ajmani, D. Goodwin, K. Marsh, D.H. Fairbrother, K.J. Schwab, J.G. Jacangelo, H. Huang, Modification of low pressure membranes with carbon nanotube layers for fouling control, Water Res. 46 (2012) 5645-5654. https://doi.org/10.1016/j.watres.2012.07.059
[41] K.S. Novoselov, A.K. Geim, S. Morozov, D. Jiang, Y. Zhang, S.a. Dubonos, I. Grigorieva, A. Firsov, Electric field effect in atomically thin carbon films, science 306 (2004) 666-669. https://doi.org/10.1126/science.1102896
[42] Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I. McGovern, B. Holland, M. Byrne, Y.K. Gun’Ko, High-yield production of graphene by liquid-phase exfoliation of graphite, Nature nanotechnology 3 (2008) 563-568. https://doi.org/10.1038/nnano.2008.215
[43] W.S. Hummers Jr, R.E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc. 80 (1958) 1339-1339. https://doi.org/10.1021/ja01539a017
[44] L. Staudenmaier, Method for the preparation of graphitic acid, Ber Dtsch Chem Ges 31 (1898) 1481-1487. https://doi.org/10.1002/cber.18980310237
[45] B. Brodie, Note sur un nouveau procédé pour la purification et la désagrégation du graphite, Ann. Chim. Phys 45 (1855) 351-353.
[46] D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide, Chem. Soc. Rev. 39 (2010) 228-240. https://doi.org/10.1039/B917103G
[47] S. Abdolhosseinzadeh, H. Asgharzadeh, H.S. Kim, Fast and fully-scalable synthesis of reduced graphene oxide, Scientific reports 5 (2015). https://doi.org/10.1038/srep10160
[48] Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications, Adv. Mater. 22 (2010) 3906-3924. https://doi.org/10.1002/adma.201001068
[49] Y. You, V. Sahajwalla, M. Yoshimura, R.K. Joshi, Graphene and graphene oxide for desalination, Nanoscale 8 (2016) 117-119. https://doi.org/10.1039/C5NR06154G
[50] S.C. O’Hern, M.S. Boutilier, J.-C. Idrobo, Y. Song, J. Kong, T. Laoui, M. Atieh, R. Karnik, Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes, Nano Lett. 14 (2014) 1234-1241. https://doi.org/10.1021/nl404118f
[51] S.P. Surwade, S.N. Smirnov, I.V. Vlassiouk, R.R. Unocic, G.M. Veith, S. Dai, S.M. Mahurin, Water desalination using nanoporous single-layer graphene, Nature nanotechnology 10 (2015) 459-464. https://doi.org/10.1038/nnano.2015.37
[52] C. Zhu, H. Li, X.C. Zeng, E. Wang, S. Meng, Quantized water transport: Ideal desalination through graphyne-4 membrane, Scientific reports 3 (2013). https://doi.org/10.1038/srep03163
[53] M. Xue, H. Qiu, W. Guo, Exceptionally fast water desalination at complete salt rejection by pristine graphyne monolayers, Nanotechnology 24 (2013) 505720. https://doi.org/10.1088/0957-4484/24/50/505720
[54] R. Nair, H. Wu, P. Jayaram, I. Grigorieva, A. Geim, Unimpeded permeation of water through helium-leak–tight graphene-based membranes, Science 335 (2012) 442-444. https://doi.org/10.1126/science.1211694
[55] P. Sun, M. Zhu, K. Wang, M. Zhong, J. Wei, D. Wu, Z. Xu, H. Zhu, Selective ion penetration of graphene oxide membranes, Acs Nano 7 (2012) 428-437. https://doi.org/10.1021/nn304471w
[56] Z. Jia, W. Shi, Tailoring permeation channels of graphene oxide membranes for precise ion separation, Carbon 101 (2016) 290-295. https://doi.org/10.1016/j.carbon.2016.02.016
[57] Y. Tian, Y. Cao, Y. Wang, W. Yang, J. Feng, Realizing ultrahigh modulus and high strength of macroscopic graphene oxide papers through crosslinking of mussel‐inspired polymers, Adv. Mater. 25 (2013) 2980-2983. https://doi.org/10.1002/adma.201300118
[58] Z. Jia, Y. Wang, Covalently crosslinked graphene oxide membranes by esterification reactions for ions separation, Journal of Materials Chemistry A 3 (2015) 4405-4412. https://doi.org/10.1039/C4TA06193D
[59] L. Chen, L. Huang, J. Zhu, Stitching graphene oxide sheets into a membrane at a liquid/liquid interface, Chem. Commun. 50 (2014) 15944-15947. https://doi.org/10.1039/C4CC07558G
[60] Y. Han, Y. Jiang, C. Gao, High-flux graphene oxide nanofiltration membrane intercalated by carbon nanotubes, ACS applied materials & interfaces 7 (2015) 8147-8155. https://doi.org/10.1021/acsami.5b00986
[61] J. Zhu, M. Tian, J. Hou, J. Wang, J. Lin, Y. Zhang, J. Liu, B. Van der Bruggen, Surface zwitterionic functionalized graphene oxide for a novel loose nanofiltration membrane, Journal of Materials Chemistry A 4 (2016) 1980-1990. https://doi.org/10.1039/C5TA08024J
[62] S. Bano, A. Mahmood, S.-J. Kim, K.-H. Lee, Graphene oxide modified polyamide nanofiltration membrane with improved flux and antifouling properties, Journal of Materials Chemistry A 3 (2015) 2065-2071. https://doi.org/10.1039/C4TA03607G
[63] J. Wang, X. Gao, J. Wang, Y. Wei, Z. Li, C. Gao, O-(Carboxymethyl)-chitosan nanofiltration membrane surface functionalized with graphene oxide nanosheets for enhanced desalting properties, ACS applied materials & interfaces 7 (2015) 4381-4389. https://doi.org/10.1021/am508903g
[64] Y. Zhang, S. Zhang, T.-S. Chung, Nanometric graphene oxide framework membranes with enhanced heavy metal removal via nanofiltration, Environ. Sci. Technol. 49 (2015) 10235-10242. https://doi.org/10.1021/acs.est.5b02086
[65] J.H. Jhaveri, Z. Murthy, A comprehensive review on anti-fouling nanocomposite membranes for pressure driven membrane separation processes, Desalination 379 (2016) 137-154. https://doi.org/10.1016/j.desal.2015.11.009
[66] Y. Gao, M. Hu, B. Mi, Membrane surface modification with TiO2–graphene oxide for enhanced photocatalytic performance, Journal of Membrane Science 455 (2014) 349-356. https://doi.org/10.1016/j.memsci.2014.01.011
[67] G. Lai, W. Lau, P. Goh, A. Ismail, N. Yusof, Y. Tan, Graphene oxide incorporated thin film nanocomposite nanofiltration membrane for enhanced salt removal performance, Desalination 387 (2016) 14-24. https://doi.org/10.1016/j.desal.2016.03.007
[68] W. Choi, J. Choi, J. Bang, J.-H. Lee, Layer-by-layer assembly of graphene oxide nanosheets on polyamide membranes for durable reverse-osmosis applications, ACS applied materials & interfaces 5 (2013) 12510-12519. https://doi.org/10.1021/am403790s
[69] D.-Y. Koh, R.P. Lively, Nanoporous graphene: Membranes at the limit, Nat Nano 10 (2015) 385-386. https://doi.org/10.1038/nnano.2015.